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Abstract
Purpose of review: Severe congenital neutropenia has been a well-known haematological
condition for over 50 years. Over this long period of time, the variable genetic etiology and associated
sequelae of the disease have been ascertained, and successful treatment strategies developed. Over
the last 2 years, however, new studies have added greatly to our understanding of the molecular basis
of the disease, details of which are presented in this review.

Recent findings: Recent studies have elucidated a role for the unfolded protein response in
mediating the pathogenic effects of ELA2 mutations, the most common mutation in SCN as well as
cyclic neutropenia. Genetic lesions in HAX1 have also been identified in the original Kostmann
pedigree representing the autosomal recessive form of SCN. An emerging theme is the convergence
of these and other genetic lesions underlying SCN in enhancing neutrophil apoptosis. Other studies
have revealed the importance of multiple independent mutations in these and other genes in SCN.
Finally, the key role for STAT5 in mediating the effects of G-CSFR truncation mutations in the
development of MDS/AML following SCN has been elucidated.

Summary: As the full spectrum of molecular mutations causing neutropenia emerges it is becoming
possible to differentiate patients into sub-types with different prognoses, for whom tailored therapies
are indicated.
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INTRODUCTION
Severe congenital neutropenia (SCN) represents a heterogeneous disease, with autosomal
recessive, autosomal dominant, sporadic and X-linked forms. The majority of patients present
with life-threatening infections during the first 6 months of life, due to extremely low numbers
of circulating neutrophils [1]. Treatment with pharmacological doses of granulocyte colony-
stimulating factor (G-CSF) has proven to be effective in restoring the neutrophil count in the
majority of SCN patients, with a concomitant reduction in infection-related events [2,3].
However, some SCN patients remain unresponsive [3]. Moreover, surviving SCN patients
remain at high risk of developing myelodysplastic syndrome (MDS) and/or acute myeloid
leukemia (AML) [4,5*,6**].
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REVIEW TEXT
Neutropenias represent a series of potentially life-threatening disorders characterised by a
reduction in circulating neutrophils. Since neutrophils play a major role in host defense against
bacteria, neutropenia patients suffer from frequent episodes of opportunistic bacterial
infections [7**]. Severe congenital neutropenia (SCN) is a heterogeneous group of disorders
characterized by a severe decrease in the number of blood neutrophils (<0.5×109/l), and a
maturation arrest of bone marrow progenitor cells mainly at the promyelocyte/myeloid stage
[5*,7**]. Although SCN was originally described as an autosomal recessive disorder in
Swedish families, this form is now recognized as a separate syndrome, Kostmann's
neutropenia, which produces even lower neutrophil counts (<0.2×109/l) [8*]. More commonly,
SCN occurs as a sporadic and autosomal dominant disorder, and as a feature of several other
inherited disorders. Most SCN patients are successfully treated by G-CSF therapy, although
around 10% are unresponsive. However, a major clinical concern for SCN patients remains
their increased risk of developing myelodysplastic syndrome (MDS) and/or acute myeloid
leukemia (AML) with poor prognosis for survival [5*,6**].

Previous studies have shown that constitutive mutations in the ELA2 gene (encoding neutrophil
elastase) are found in the majority of SCN patients [9,10*] and cause neutropenia [11]. Other
important observations are the finding of acquired mutations in the CSF3R gene (encoding the
G-CSF receptor, G-CSFR) in the majority of patients transforming to MDS/AML [12**], and
constitutive (alternate) mutations in the same gene leading to poor responsiveness to G-CSF
[13**]. This review describes recent studies that have furthered our understanding of each of
these mutations, as well as other mutations responsible for other variants of this disease.

Molecular basis of disease
A number of genes have now been identified that appear to contribute to the etiology of SCN
or its associated sequelae (Figure 1).

Neutrophil elastase (NE)—Neutrophil elastase, encoded by the ELA2 gene, is serine
protease produced at the promyelocyte stage of neutrophilic differentiation and stored within
the primary granules of mature neutrophils [14]. Over 50 mutations in ELA2 have been found
in patients with autosomal dominant and sporadic forms of SCN, as well as in cyclic
neutropenia [10*]. While it has been hypothesized that defective enzyme activity or
inappropriate localization may represent the mechanism of pathogenesis for the various
mutations [10*], more recent studies argue that NE mutations elicit the unfolded protein
response (UPR), which increases the transcription of chaperone-encoding, endoplasmic
reticulum-associated protein degradation (ERAD), and pro-apoptotic genes, which ultimately
leads to apoptosis [15,16*].

Granulocyte colony-stimulating factor receptor (G-CSFR)—The G-CSF-R, encoded
by the CSF3R gene, plays a crucial role in the production and function of neutrophilic
granulocytes, being able to stimulate the proliferation, differentiation and survival of cells
along the neutrophilic lineage, activate the functions of mature neutrophils, as well as mobilize
various precursor cells [17*]. Two classes of CSF3R mutations have been associated with SCN,
with quite different roles [5*,13**].

Acquired mutations in the CSF3R gene have been identified in around 20-30% of SCN [17*,
18]. These mutations produce C-terminally truncated hyper-responsive forms of the receptor
(G-CSFRhyper), which act in a dominant-negative manner to enhance proliferation at the
expense of maturation [13**,19]. The role of G-CSFRhyper mutations in neutropenia appears
to be relatively modest [5*,13**]. However, SCN patients carrying G-CSFRhyper mutations
show a strong predisposition to both MDS and AML, where they appear to represent an early
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step in leukemogenesis [5*,12**]. Recent studies suggest that the pathogenic properties of G-
CSFRhyper mutation are largely due to the enhanced Stat5 activation they elicit [20,21**],
which appears to provide a selective advantage HSCs expressing this mutation [21**,22*].

Constitutive mutations in the CSF3R gene, leading to hypo-responsive forms of the receptor
(G-CSFRhypo), have been reported in several SCN patients who were unable to respond to
normal G-CSF therapy [23]. Again, these mutations – which perturb the extracellular domain
– act in a dominant manner over wild-type receptors, probably by disrupting normal ligand
binding [13**]. While G-CSFRhypo mutations have not formally been shown to cause SCN,
this remains likely, but such mutations are certainly responsible for refractoriness to G-CSF
treatment observed in these cases.

HAX1—HAX1 is a ubiquitously-expressed mitochondrial protein, which functions as an anti-
apoptotic protein, in a manner similar to bcl-2 with which it has weak homology [24**].
Mutations in HAX1 have been reported in cases of autosomal-recessive SCN (as described in
the original Kostmann pedigree) [24**], with some mutations also producing neurological
disorders [25*,26*]. In each case, the genetic lesions serve to inactivate the HAX1 protein,
leading to a loss of mitochondrial membrane potential, release of proapoptotic proteins and
subsequent apoptosis of neutrophils [24**].

Wiskott-Aldrich syndrome protein (WASp)—WASp is exclusively expressed in
hematopoietic cell, where it plays a regulatory key role actin polymerization involved in cell
signaling, cell-cell interactions and cell motility. Patients with X-linked SCN have been
reported with activating mutations in WASp leading to a constitutively-active form of the
protein, and unregulated actin polymerization [27,28]. Concomitant defects in mitosis and
cytokinesis lead to decreased proliferation and increased apoptosis in myeloid progenitors
[29**].

Growth factor-independent protein 1 (GFI1)—GFI1 is a zinc finger protein which
appears to function as a transcriptional repressor [30]. Inactivating mutations in this protein
have been reported in a small number of SCN patients [31]. Two distinct mechanisms have
been proposed for its action, based on the two genes identified to be up-regulated once the
repressive effects of GFI1 have been alleviated by mutation: (i) upregulation of NE [31] leading
to induction of the unfolded protein response and hence apoptosis [7**]; (ii) upregulation of
C/EBPε leading to induction of CSF-1 expression and lineage switching to the macrophage
lineage [32].

Other proteins—Many cases of SCN exist for which no underlying molecular cause have
been identified, although several of the above candidates have been excluded, making it likely
that other mutations also contribute to neutropenia. In one such case, CD40 ligand deficiency
has been suggested as a possible cause [33*]. Moreover, there are several disorders which
exhibit neutropenia as part of a broader spectrum of disease spectrum, the molecular basis of
which have been determined. These include mutations in the Rab27 protein, a small GTPase,
in Griscelli syndrome type 2 [34], the MAPBPIP scaffolding protein in so-called ‘p14
deficiency’ [35], the AP3B1 adapter protein in Hermansky-Pudlak syndrome type 2 [36] and
the CHS1/LYST protein in Chediak-Higashi syndrome [37*].

Key themes
Emerging from the most recent studies are some consistent themes, which serve as a framework
for future work.
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Convergence of mutations at the biological level—Many neutropenia-associated
mutations converge to disrupt the delicate developmental pathway required to form these
protease-packed cells [38*]. Defects in protein trafficking [10*], as well as the molecular
defects underpinning p14 deficiency [35], Griscelli syndrome type 2 [34], Hermansky-Pudlak
syndrome type 2 [36] and Chediak-Higashi syndrome [37*] appear to cause a similar outocme.
Recently, the unfolded protein response has both associated with mutations in both NE [15,
16*] and GFI1 [7**]. Several of the SCN-related mutations result in increased apoptosis,
including those in NE [15,16*], WASp [29**], G-CSFRhypo [39], HAX1 [24**], and
potentially GFI1 [7**], suggesting that mistakes in trafficking and the unfolded protein
response are trigger events for initiating premature cell death. This hypothesis has a number
of implications for therapy. Firstly, such a scenario would imply that the key role of G-CSF
therapy in SCN is as a survival factor for neutrophils, rather than simply stimulating the
production of neutrophils (as is its role in the treatment of other forms of neutropenia).
Secondly, it is possible that other agents that enhance neutrophil survival might be effective
therapeutic agents. Thirdly, the expansion of acquired G-CSFRhyper mutant clones might be
due to enhanced clonal survival rather than exclusively an enhanced proliferative advantage.

Co-operation between mutations—Another common theme from recent studies is the
presence of combinations of the above mentioned mutations in neutropenia. For example, one
of the original Kostman family possessed an NE mutation and another member had an acquired
G-CSFRhyper mutation, presumably on the background of an HAX1 mutation [40]. Similarly,
combinations of NE and acquired G-CSFRhyper mutations have been reported [5*], while we
recently reported a patient with constitutive NE and G-CSFRhypo mutations, who acquired
sequential G-CSFRhyper mutations [41*]. Other cases have been reported with multiple G-
CSFRhyper mutations [5*], as well as with multiple NE mutations [42*]. In the case of
constitutive mutations, such combinations are presumably the result of chance, although there
remains a possibility that the mutations synergise in some way, particularly those that converge
at a similar biological level. In the case of the acquired G-CSFRhyper mutations, it is possible
that the presence of an altered myeloid compartment and G-CSF therapy in neutropenic patients
creates an millieau favourable for the expansion of clones possessing such a mutation [13**].
Indeed, such acquired G-CSFRhyper mutations may partially rescue neutropenia caused by NE
and/or G-CSFRhypo mutations [41*,43].

Treatment strategies—Treatment with G-CSF is effective in the majority of SCN [3].
However, alternative therapies are needed, particularly for patients who are refractory to G-
CSF treatment, and those acquiring truncating G-CSFRhyper mutations on G-CSF treatment
due to concerns about possible contribution of G-CSF to progression to MDS/AML. One
approach would be to improve the reduced neutrophil survival common in neutropenia. While
there are several strategies for doing this, including the inhibition of NE, one key therapeutic
target is STAT5 that we and others have shown to be a key mediator of survival in neutrophilic
granulocyte [41*,44*]. Various strategies can be brought to bear to target this molecule
[45*]. Indeed, we have successfully used corticosteroids to enhance Stat5 activation and
survival in vitro with successful application in the treatment of neutropenia [39], and more
recently showed that constitutively-active Stat5 could improve survival in a cell model of
granulopoiesis [41*]. Undoubtedly, other aspects of the cell survival machinery could also be
targeted.

CONCLUSIONS
Recent studies have elucidated several genetic and molecular perturbations leading to severe
congenital neutropenia. They provide important new insights into both normal and pathogenic
myelopoiesis. Diagnosis and classification based of this new genetic, molecular and cellular
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information affords the opportunity to develop tailored, and potentially new, therapeutic
strategies, and much improved care for SCN patients.
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Figure 1. Mutations in severe congenital neutropenia
Model for the involvement of mutations in severe congenital neutropenia (SCN). Mutations
underlying the different forms of SCN are indicated on the left hand side, while mutations
associated with predisposition of these patients to MDS/AML, or refractoriness to G-CSF
treatment are shown on the right hand side.
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