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Abstract
While the physiology of membrane-initiated estradiol signaling in the nervous system has remained
elusive, a great deal of progress has been made toward understanding the activation of cell signaling.
Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the
identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult
to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-α (ERα) and
ERβ are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of
membrane ERα and ERβ with metabotropic glutamate receptors has been identified that explains the
pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the
mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold
proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the
synthesis of neuroprogesterone, an important component in the central nervous system signaling.
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Introduction
It is well known that estrogens are involved in a wide range of physiological events from
reproduction to development to cognition to neural and cardiovascular protection. As an
extracellular signaling molecule, estrogen's actions are mediated through receptors. An
estrogen receptor (ER) is a molecule that transduces estrogenic signals into cell-relevant events.
The best characterized of the ERs belong to a nuclear receptor superfamily that includes the
androgen receptor, Vitamin D receptor and thyroid hormone receptor.

Classically, ERs have been characterized as nuclear ligand-gated transcription factors of which
there are two isoforms, ERα and ERβ. These isoforms have a high sequence homology and a
conserved structure consisting of: an N-terminal A/B domain responsible for the transacting
function 1 (AF-1); domain C, consisting of two zinc-fingers, responsible for DNA binding;
domain D, the hinge region with the nuclear translocation signal; and domain E/F, the ligand
binding region that has the transcription regulating activation function 2 (AF-2). The different
domain regions of the receptor appear to be involved in specific actions, but their precise
functions continue to remain incompletely elucidated [155;188]. Upon binding 17β-estradiol
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(estradiol), the major circulating estrogen, intracellular ERs homo- or hetero-dimerize,
associate with a specific part of the promoter region of DNA, the estrogen-response-element
(ERE), and attract transcriptional machinery containing RNA polymerase and various co-
factors to regulate gene expression [33]. Since ERα and ERβ differ in their AF-1 and AF-2
domains, it has been suggested that they can subserve different cellular events [59;76]. The
preferential ligand for the nuclear ER is estradiol and the two isoforms, ERα and ERβ, in spite
of having only a moderate homology in the ligand binding domain, both bind to estradiol with
a similar affinity [17;83]. The chiral enantiomer, 17α-estradiol, binds with much lower affinity
and has generally been considered to be biologically inactive. Recent evidence suggests,
however, that 17α-estradiol may activate a novel ER, ER-X [201].

Interestingly, ligand activated nuclear ERs can also modulate the expression of genes through
an ERE independent mechanism. Through the stabilization of protein interactions, estradiol
stimulated ERs bind early immediate genes Fos/Jun to the activated protein-1 (AP-1) site
[89]. Such interactions have been used to explain the agonist actions of selective estrogen
receptor modulators (SERMs) such as tamoxifen. When ERs act through the ERE to upregulate
transcription, tamoxifen, a nonsteroidal triphenylethylene derivative, is an antagonist. When
tamoxifen has agonist actions, the ER is acting through the AP-1 site [89]. On the other hand,
the so-called pure ER antagonist ICI 182,780 (Faslodex/Fulvestrant), a 7α-alkylsulphinyl
analogue of estradiol, competitively inhibits estradiol binding to the ER [213]. The ICI 182,780
binding affinity is 89% of estradiol and, once bound to the receptor, it prevents dimerization
and nucleo-cytoplasmic shuttling, inhibits AF-1 and AF-2 activity and increases proteasome
degradation [37;50]. Reports now suggest that ICI 182,780 may not be a “pure” antiestrogen
as evidenced by its modulation of non-classical pathways [70;215].

A second category of estradiol signaling is mediated by receptors associated with the cell
membrane, the subject of the present review. Though initially not well-accepted, evidence has
accumulated over the past 40 years that these actions are not dependent on translation or
transcription, but may influence them. These estradiol actions are rapid (<5 minutes) and
transient (∼1-4 hours) and can be mediated through membrane localized ERs [210]. Estradiol
membrane-initialized actions stimulate a variety of signal transduction pathways that are
involved in neuronal signaling, differentiation and survival. Recent experiments have focused
on novel ERs being responsible for membrane estradiol signaling however most evidence
supports that ERα and ERβ are involved in estradiol membrane-initialized actions. This review
will concentrate on studies related to ERα and ERβ and discuss membrane estradiol signaling
in the brain, and other tissues, where some of the questions about the mechanism of estradiol
signaling are: what is/are the membrane estrogen receptor protein(s)? Is it a G protein-coupled
receptor (GPCR)? How does it activate cell signaling pathways? What is/are the physiological
significance of membrane-initiated estradiol action?

Localization of ER in the Brain
In the brain, the initial approach to studying ERs was binding studies that identified the areas
involved in estradiol receptivity. For autoradiography experiments, animals were injected
with 3H-estradiol or 125I-estradiol, which accumulated in cells within hypothalamic and limbic
nuclei of the brain, consistent with their role in sexual reproduction and behavior [69;127;
138;172;175]. Physiological studies demonstrated the essential importance of estradiol action
in the brain for inducing lordosis, the stereotypic sexually receptive behavior in female rodents
[104]. Similarly, estradiol priming is needed for progesterone induction of proceptive or
solicitation behaviors [48;109;130]. Cells that regulate these behaviors are distributed in a
sexual receptive—lordosis-regulating circuit that includes the posterodorsal medial amygdala,
bed nucleus of the stria terminalis, medial preoptic area, arcuate nucleus and ventromedial
nucleus of the hypothalamus [182;207]. This circuit signals to downstream estradiol receptive
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areas, including the periaquaductal gray and the spinal nucleus of the vestibular complex that
eventually innervate the medial motor neurons in the spinal cord that innervate axial muscles
that affect the behavior [80].

The cloning of the ERα and then the discovery of another isoform, ERβ [63;83], allowed for
in situ hybridization studies that revealed the distribution of ERα and ERβ mRNA throughout
the neuraxis. Although these studies largely confirmed previous results, new regions were
demonstrated to have ER message that did not have a significant autoradiographic signal
[176;178;179]. Moreover, ERα and ERβ have differential distribution in the brain between
sexes and across species [24;168;177;214;224]. For example, in the hypothalamus, ERα and
ERβ neurons are found in many of the same areas. On the other hand, in the supraoptic and
paraventricular nuclei, a paucity of ERα is replaced by tremendous levels of ERβ [7;193].
Another example is the distribution of ERβ mRNA in the hippocampus of humans, rats and
mice, which is more readily detected than ERα mRNA. Alternatively, ERα mRNA has been
found to be more abundant in the prefrontal cortex of non-human primates [66;154;176]. To
add to the complexity, both ERα and ERβ are found in glial cells, pointing to a non-neuronal
role for estradiol [12;29;146]. While the distribution of ERα and ERβ have been well-worked
out, the fundamental significance of ERβ remains more difficult to elucidate.

Novel ERs
If ERα or ERβ mediated all estradiol action, then knocking out these receptors should eliminate
all effects of estrogens. In many systems, this is what is observed. For example, in the control
of reproduction, both behavior and regulation of ovulation are eliminated in ERα-/- knockout
mice [108;128;158;159;219]. In dorsal root ganglion (DRG) neurons, estradiol attenuates the
adenosine triphosphate (ATP)-induced intracellular ([Ca2+]i) flux, an action dependent on
ERα [29]. Social discrimination is severely compromised in ERα-/- and ERβ-/- knockout mice
[34], as is neuroprotection in cortex [43] and nigrostriatal dopamine system [87], intracellular
signaling [1] and feeding [196].

However, removal of classic ER proteins does not eliminate all estradiol binding. 125I-estradiol
binding is still observed in the hypothalamus and amygdala of double-knockout ERα-/-/
ERβ-/- mice [173], suggesting the existence of other estrogen binding proteins that are not
coded by ERα (ESR1) or ERβ (ESR2) genes. Moreover, estradiol actions on events such as
synaptic transmission remain in the ERα-/-/ERβ-/- double-knockout mice [41;54]. To explain
these results, other estrogen binding proteins have been hypothesized [74;97;143;152;197;
200].

One such protein is ER-X, a novel membrane ER that has been observed in neocortex, uterus
and lung plasma membrane microdomains associated with caveolin proteins [135;199;200].
Using antibodies against ERα (C1355, MC-20) and ERβ from Zymed, ER-X was
immunoprecipitated, fractionated by SDS-PAGE and determined to have an apparent
molecular weight of 62-63 kDa. Interestingly, ER-X preferentially binds 17α-estradiol and is
not antagonized by ICI 182,780. Ligand stereospecificity and blockade with the ER antagonist
ICI 182,780 are two important features of the classical receptors, ERα and ERβ. As with
ERα, ER-X is developmentally regulated in the cortex. Expression peaks at post-natal days
7-10, and then drops off over the next month. In the normal adult, the expression of ER-X is
almost undetectable, but re-emerges after ischemic injury or in animal models of Alzheimer's
disease. The developmental profile and the response to both estradiol isoforms strongly suggest
that ER-X is not the ER mediating functions that are affected by gonadectomy (e.g.
reproduction).

Recently, it has been reported that estradiol stimulates a membrane-localized protein with
features resembling a GPCR [49]. G protein-coupled receptor 30 (GPR30) was originally
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identified in a screen for neurotransmitter receptors in a Burkitt's lymphoma cell line and
subsequently cloned [28]. GPR30 has significant sequence homology to the angiotensin II 1A,
interleukin 8A and chemokine type 1 receptors, suggesting that the protein might be the
receptor for a peptide or glycoprotein. However, the ligand for this orphan receptor appears to
be estradiol [51]. GPR30 is an integral membrane protein with seven transmembrane domains
expressed throughout the brain and periphery and in cancer cells [142]. At the cellular level,
GPR30 was initially thought to be expressed on the plasma membrane, suggesting that it could
serve as a membrane ER, but more recent studies have found it restricted to the Golgi apparatus
and endoplasmic reticulum [61;103;132]. In cell lines, estradiol stimulation of GPR30 resulted
in the rapid activation of signaling cascades that were similar to the response mediated by
ERα through adenylyl cyclase pathways [156;197]. In addition, estradiol stimulation of
GPR30-transfected cells was blocked by ICI 182,780. Although others have shown that ICI
182,780 acts as an agonist [197]. To add to the confusion, others reported that endogenously
expressing GPR30 cells did not respond to estradiol, while cells expressing endogenous ERα
and ERβ responded [132;136]. The results are consistent with GPR30 knock out mice in which
estradiol was still fully capable of modulating the electrical properties of γ-aminobutyric
(GABA)-ergic neurons in arcuate neurons [131;143;161]. Moreover, in vivo studies carried
out with the selective GPR30 agonist G1 failed to demonstrate estrogenic properties [132].
Thus, current pharmacological and immunohistochemical data do not strongly support a role
of GPR30 as a mediator of sexual reproduction.

Kelly and colleagues have suggested another membrane ER candidate. This protein has been
characterized pharmacologically. It is activated by the diphenylacrylamide compound, STX,
and estradiol [143;144]. Interestingly, STX-induced activation of the phospholipase C/inositol
triphosphate (PLC/IP3) signaling cascade remains in the ERα-/-/ERβ-/- mouse. Consistent with
its role as an ER, the STX-binding protein is stereospecific for estradiol and is blocked with
ICI 182,780. The STX-binding protein may regulate gonadotrophin-release hormone (GnRH)
secretion through its attenuation of β-endorphin (β-END) and GABA synapses directly onto
GnRH neurons leading to an increase in excitability [75;212]. Since GnRH neurons do not
express ERα, the STX-binding protein may mediate direct actions of estradiol on these neurons.
Moreover, STX mimics the anorexic action of estradiol by attenuating the ovariectomy-
induced increase in neuropeptide-Y (NPY) expression in the arcuate nucleus of female guinea
pigs [144]. On the other hand, mice with ERα deleted from neurons do not have a physiological
luteinizing hormone (LH) surge [219]. One explanation is that a cooperative role between
ERα and the STX-binding protein is required for the LH surge. As with ER-X, the molecular
characterization of this STX-binding protein remains to be elucidated.

Other potential estrogen binding proteins also await characterization. On western blots, ER
immunoreactive bands with different molecular weights suggest that splice variants of ERα
and/or ERβ receptors may be expressed. For example, a 46 kDa variant, ER46, was identified
with the H222 C-terminal directed ERα antibody [97]. ER46 triggers nitric oxide synthase
(NOS) activation in vascular endothelial cells. Others report 25 and 18 kDa ER-
immunoreactive proteins that appear to be mitochondrial ATPase subunits expressed in
cerebellum, olfactory bulb and hypothalamic membranes [148]. Interestingly, membrane ERs
with apparent molecular weight of higher than 67 kDa has also been reported, but it is unclear
whether these are artifacts or functional receptors [97]. In CHO-K1, COS-7, and Rat2 fibroblast
cell lines, both estradiol and 17α-estradiol activate extracellular-signal regulated kinase (ERK)
signaling, but probing these tissues using antibodies directed against ERα (MC-20, C1355,
6F11) and ERβ does not reveal proteins corresponding to native ERα, ERβ or ER-X [125].
These putative membrane ERs remain to be characterized, but in many assays ERα and ERβ
appear to mediate membrane-initiated estradiol action.
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Extranuclear ERα and ERβ Expression
In addition to nuclear and cytoplasmic immunoreactivity, ERα and ERβ have been associated
with plasma membranes [3;67;72;118;119]. This along with numerous reports of rapid actions
of estradiol strongly implies that ERs have actions apart from their long-established function
of regulating transcription [74;113]. This was dramatically demonstrated by Levin and
colleagues using Chinese hamster ovary (CHO) cells [152]. CHO cells transfected with single
cDNA transcripts for either ERα or ERβ yielded a single product for each transcript.
Significantly, ERα and ERβ proteins were localized in the nucleus and the plasma membrane,
providing strong evidence that the same receptor found intracellularly is also associated with
the plasma membrane and may be responsible for the rapid actions of estradiol [152]. Moreover,
estradiol binding affinity is similar for the nuclear and plasma localized receptors, ERα ∼0.2
nM and ERβ ∼1 nM. In breast cancer cells, 5% of endogenous ERα and ERβ are located in the
cell membrane, which is similar to cells transfected with ERα and ERβ cDNAs [151].

On balance, overwhelming biochemical, molecular and pharmacological evidence reinforces
the idea that the major membrane ERs are ERα and ERβ. The presence of membrane ERs
explains the observation of estradiol rapidly modulating neuronal physiology in hippocampal,
neostriatal and hypothalamic tissue [65]. A membrane impermeable estrogen, estradiol
conjugated to bovine serum albumin (E-6-BSA) mimics the action of free estradiol [65].
Though ERα and ERβ are present in the membrane [152], it is still not well understood how
ERs are trafficked to the membrane and promote rapid estradiol effects. ERα and ERβ appear
to undergo post-transcriptional modification that allows for their insertion into the membrane
[2;22;101].

Estradiol Regulation of ERα and ERβ
If membrane ERs are products of ERα and ERβ genes, then the regulation of their expression
is an important question for understanding their physiology. Estradiol regulation of its cognate
receptors is observed during the estrous cycle. For example, ER mRNA levels in the medial
preoptic nucleus are highest during estrus and metestrus, attenuated at diestrus and low during
proestrus [174]. Estradiol can also downregulate ERα and ERβ protein; extranuclear ER
immunoreactivity parallels the loss of ER mRNA [92;93;96;153;169;174;180;195;208]. In an
ovariectomized preparation, estradiol treatment of less than 20 minutes caused the
disappearance of cytoplasmic ER immunostaining in the hypothalamus [18;19;106]. In cortical
neurons, expression of green fluorescent protein tagged ER (ER-GFP) is downregulated by
estradiol, and increased by ICI 182,780 [222]. The processes responsible for controlling the
expression of ER mRNA and protein in the brain is unknown but it is likely that a
posttranscriptional mechanism(s) is/are involved in their regulation.

Besides transcriptional regulation, estradiol regulation of ER degradation may account for
change in expression. In cell lines, chronic or acute exposure to estradiol rapidly induced a
50-60% loss of intracellular ERα in the presence of protein synthesis and translation inhibitors
[5;209]. A viable explanation for these results is that proteolytic degradation of ERs is
responsible for the downregulation. Estradiol transiently increases ubiquitination of
intracellular ERs [126] and estradiol binding and estradiol-dependent sexually receptive
behavior is increased in the presence of proteasome pathway inhibitors [5;60]. This suggests
that proteasome pathways are involved in maintaining ER levels in the brain and possibly
involved in regulating the tissue response to estradiol. Whether membrane ERs are regulated
by the proteasomal degradations is unknown. However, regulation of ER-GFP expression is
dependent on ERK activation, suggesting membrane-initiated estradiol signaling has a role in
ER expression [221].
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Membrane Associated ERα and ERβ is Regulated by Estradiol
Membrane receptors, as a group, are regulated in a number of complex ways, only one of which
is through transcriptional regulation. Other regulatory mechanisms include posttranslational
modification, phosphorylation and trafficking of receptors into and out of the membrane.
Removal of receptors from the cell membrane by internalization is a well-characterized
mechanism of desensitization. For example, estradiol treatment induces the internalization of
μ-opioid receptors (MOR) and the NPY-Y1 receptors through the release of β-END and NPY,
respectively. The internalized receptors are transported to endosomes where the ligands are
released from their receptors which are then sorted for either recycling or degradation. Such
endosomal trafficking has been reported for many, if not all, membrane receptors [122;163].

In the uterus, acute estradiol stimulation resulted in the internalization of a plasma membrane-
localized ER, and in hypothalamic neurons, estradiol application rapidly increased the
appearance of pits in the plasma membrane, an event associated with endocytosis. Taken
together, these studies suggest that estradiol treatment induces ER internalization [56;73;
129;191]. The internalization of membrane receptors, such as during desentization, involves
several cellular components associated with endocytosis including GTP-ases, adaptor proteins
and ubiquitin. A well-characterized mechanism of desensitization involves the
phosphorylation of activated GPCRs by G protein receptor kinases (GRKs), which can lead to
binding of arrestins and adaptor/scaffolding proteins, and deter signaling by preventing any
further G protein coupling [55]. For example, β-arrestin bound to β2-adrenoreceptors acts as
an adaptor for binding with clathrin or caveolin proteins to help assemble the components
needed for the endocytosis of β2-adrenoreceptors [90;91;149]. GRKs are activated by the
Gβγ subunit which initiates the binding of β-arrestin to the activated GPCR in order to initiate
internalization [46;116]. It is unknown whether activation of ERs involves their
phosphorylation but estradiol has been reported to modulate GRK expression and activation
[9;42;47].

Estradiol can induce internalization of membrane ERs. Within 5-60 minutes after treatment
with membrane impermeable estradiol constructs, the conjugated molecules have been
visualized within cells [15;42;100;120;121]. One interpretation of the data is that ligand-bound
membrane ER is internalized carrying the membrane impermeable estradiol (Fig. 1A). Upon
agonist binding, the agonist-receptor complex is phosphorylated and β-arrestins are attached
to the receptor and rapidly internalized into early endosomes. In this low pH intracellular
compartment, the receptor is dissociated from its agonist and either returned to the plasma
membrane or degraded (downregulation) [182]. The two events are distinguishable in terms
of their time-course and effect on receptor number [10;45;98;211]. Desensitization does not
alter receptor number, whereas downregulation reduces receptor number. Desensitization is
associated with the rapid internalization (translocation) of receptors following agonist binding
while downregulation is a slower process. The internalization and recycling to the membrane
occurs without loss of receptor number. Thus, internalization of GPCRs visualized by
immunocytochemistry can be used as a marker of receptor activation [182;183]. For ER,
fluorescein-tagged E-6-BSA (E-6-BSA-FITC; Fig. 1B) and the membrane-constrained
estradiol E-6-biotin (Fig. 1C) was observed to be internalized [42]. After 60 minutes, E-6-BSA-
FITC and E-6-biotin were seen associated with plasma membranes and within the cytoplasm,
suggesting these conjugated hormones are internalized in cortical neurons. These observations
suggest that membrane ERs are internalized.

What is the mechanism by which the membrane ERα is internalized? As mentioned above, a
general mechanism by which GPCRs are sequestered is modeled after the β2-adrenergic
receptor and requires the binding of β-arrestin proteins to the receptor's cytoplasmic tail after
agonist-induced activation and phosphorylation by GRKs [82;223]. Co-immunoprecipitation
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after acute estradiol stimulation of primary cortical neuronal cultures showed an increased
interaction between β-arrestin-1 and ERα, indicating that membrane ERα is internalized
through a β-arrestin-mediated mechanism (Fig. 2) [42]. These results strongly support the idea
that membrane ERα is regulated like other membrane receptors and that constant exposure to
its natural ligand, estradiol regulates the number of receptors in the membrane, lending support
to the idea that constant estradiol attenuates cellular response.

ERα and Receptor Trafficking
Insertion and internalization of ERs to and from the membrane has been more difficult to parse
but these actions raises their own set of questions. Is there a stable population of membrane
ERs and does exposure to estradiol cause internalization, or does estradiol cause the insertion
of ERs into the membrane and then their internalization? While there is a dispute over whether
ERα and ERβ can be trafficked to the membrane, a rapid translocation of ERα and ERβ has
been observed within 5-60 min of estradiol exposure in HT22 cells and in cortical neurons
[42;171]. Since neither membrane targeting sequences nor stretches of hydrophobic residues
have been identified within ERα and ERβ [190], the predominant hypothesis is that ERs are
localized to the membrane via palmitoylation. ERα mutated to prevent palmitoylation, (e.g.,
Cys 477 to Ala), does not associate with calveolin-1 (CAV1) nor is it targeted to the membrane
[2]. A conserved nine amino acid membrane targeting sequence has been identified in several
steroid receptors including: the ligand binding domain of ERα and ERβ (that includes Cys477),
as well as in the androgen receptor and progesterone receptors A and B [78;137]. The
association with CAV1 is important because it is a scaffolding protein that aids in membrane
trafficking to lipid rafts [58;100;167]. Lipid rafts are membrane microdomains consisting of
high concentrations of specific proteins and lipids. Among the most prominent of these proteins
are caveolins. These microdomains function as regions in which membrane receptors and
trimeric G proteins are clustered to concentrate membrane signaling.

One way to establish that ERα or ERβ are intrinsic membrane proteins that have a portion of
the molecule exposed to the extracellular space is through surface biotinylation. With this
process, surface proteins are labeled by chemically attaching a biotin molecule to exposed
amine groups. The reagent, sulfo-biotin, is membrane impermeable and thus only proteins
exposed on the extracellular surface are labeled. Once the proteins are biotinylated, the labeled
proteins can be isolated using avidin conjugated beads and examined using western
immunoblot analysis to determine the amount of cell surface protein. Recently, such an
experiment was done with embryonic hypothalamic neurons and demonstrated a biotinylated
ERα with a molecular weight of 50 kDa [61;150]. Similar studies demonstrated a
transmembrane ERα in astrocytes as well as the full length 66 kDa ERα [21]. Others have
suggested that membrane ERs are attached to the inner leaflet of the cell membrane [189].
Stimulation of hypothalamic cultures with estradiol for 48 hours increased levels of a 50 kDa
surface biotinylated ERα immunoreactive protein [61]. The presence of higher molecular
weight biotinylated ER proteins in cortical tissue has also been observed [150].

Regardless of the timing, trafficking of ERs into and out of the cell membrane reveals a level
of regulation not previously appreciated. These recent observations indicate that ERs in the
membrane may not be a stable population, but rather inserted as needed and then sequestered
following activation. The fact that estradiol causes ERs to be inserted into the membrane, but
only transiently, suggests that continuing exposure to estradiol does not continually activate
membrane ERs. Their activity, based on the levels in the membrane, may peak within minutes
and then, as the ERs are removed, estradiol may no longer be able to signal through the
membrane-initiated steroid signaling mechanism Thus, it is the nuclear localized ERs that
primarily shape the long-term response to estradiol. On the other hand, signaling from the
membrane to the nucleus demonstrates that membrane action will have long-term
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consequences, such as has been demonstrated for rapid estradiol activation of sexually
receptive behavior [38;81].

ERα and G proteins
In neurons and cell lines, estradiol has been shown to activate several second messenger
signaling pathways coupled to G proteins. Activation of these pathways rapidly change
synaptic and cellular responses, suggesting they are mediated by membrane ERs, but it is
unclear whether these effects are mediated through a direct interaction with ERs and G proteins
or through estradiol sensitive GPCRs. Estradiol rapidly modulates potassium and calcium
membrane currents through activation of cyclic AMP (cAMP) and protein kinase A (PKA)
pathways, suggesting that estradiol signaling is mediated through a Gαs coupled mechanism
[11;65;123].

The membrane ER also appears to be coupled to a Gαq coupled mechanism. For example,
estradiol modulates a Gαq coupled membrane ER that activates the PLC/protein kinase C
(PKC) and PKA pathways [22;23;39;40;143]. Alternatively, a membrane ERα coupled to
Gαi/o may also explain estradiol-induced activation of downstream G protein signaling
cascades. In immortalized hypothalamic and COS-7 cell lines, a putative interaction between
ERα and Gαi/o is reduced within 5 minutes of estradiol treatment [124;220]. ICI 182,780 and
pertussis toxin blocked the dissociation of ERα and Gαi/o. In cerebellar neurons, Gαi/o coupled
ER is linked to ERK signaling and modulates striatal dopamine D2 receptor activation in
estradiol primed ovariectomized rats [14;198]. Activation of downstream G protein signaling
cascades may also be induced by the Gβγ coupled ER mechanism [52;151]. The mechanism
by which ERs interact with G proteins is unknown. However, mutagenesis of ERα and use of
G protein blocking peptides reveal that the ligand binding domain is necessary for the
interaction [84]. These data suggest that estradiol-activation of these various signaling
pathways involves ERs G proteins activation to initiate cell signaling and that the proximal
events in this signaling may involve interaction with another membrane receptor that is a
GPCR.

ER Signaling Through Metabotropic Glutamate Receptors
Classical ERα and ERβ are transcription factors that have extremely limited structural
similarity with membrane GPCRs. Surface biotinylation studies show that ERα is inserted in
the membrane and has an exposed extracellular portion [61;150], but how this molecule
initiates cell signaling is not clear. Boulware et al. [23] provided an alternative explanation to
the “ER as a GPCR hypothesis” [113]. Upon estradiol binding to the ER, the ER promotes
transactivation of the metabotropic glutamate receptors (mGluR), initiating mGluR signaling
without the need for glutamate [23;39;85]. Estradiol binding to the ER activates mGluR,
initiating downstream G protein signaling. A similar indirect activation of cell signaling has
been proposed for ERs and tyrosine kinase receptors [115;164;187;192;204]. ER/tyrosine
kinase receptors are activated following estradiol treatment [71]. Thus, the idea that membrane
ERs may use other receptors to initiate cell signaling including tyrosine kinase receptors,
insulin-like growth hormone receptor and mGluRs has emerged [23;47;145]. Such a receptor-
receptor interaction of ERs and mGluRs is supported by co-immunoprecipitation experiments
that indicate ERα can directly interact with mGluR1a [38]. In female hippocampal neurons,
estradiol induces the phosphorylation of cAMP response-element binding (CREB) protein via
stimulation of group I (Gαq-coupled) mGluRs [23]. In neurons from male hippocampus,
estradiol did not increase CREB phosphorylation. Use of an mGluR agonist and an ER
antagonist strongly suggest that a putative protein-protein interaction can alter the function of
mGluR signaling. Activation of mGluR1a with S-3,5-dihydroxyphenylglycine (DHPG)
induces CREB phosphorylation, but the response is attenuated following treatment with the
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ER antagonist ICI 182,780. ICI 182,780 does not appear be acting at the mGluR1a since male
neurons that do not respond to estradiol respond to DHPG by increasing CREB phosphorylation
levels.

The ER/mGluR interactions are dependent upon caveolin proteins [22] that are essential for
the trafficking and clustering of signaling molecules. Along with palmitoylation, the interaction
of caveolin proteins with ERα is critical for the insertion of the receptor to the membrane
[151]. Interestingly, there is a brain region-specific ER-caveolin interaction. In hippocampal
neurons, ERα interaction with either mGluR1 or mGluR2/3 was dependent upon caveolin-3
(CAV3) or CAV1 respectively. Conversely, ERβ interacts with mGluR2/3 via CAV3[22]. In
striatal neurons, ERα via CAV1 activates mGluR5 [64]. Functional isolation of different ERs
with mGluRs suggests a diverse array of potential estrogen-sensitive signaling pathways at the
disposal of individual cells. The generation of specific ER/mGluR pairs via caveolin function
may eventually be found to be responsible for many of the diverse observations of novel
estrogen signaling in the central nervous system [113].

Physiology of Membrane ERs
Another of the continuing questions about rapid, membrane-initiated estradiol signaling relates
to its physiological significance. A putative plasma membrane ER rapidly stimulated prolactin
release from pituitary carcinoma cells (GH3/B6). Administration of E-6-BSA to GH3/B6 cells
released prolactin after 1 minute [135], and the release of prolactin could also be modulated
by antibodies directed towards ERα [216]. Here we describe three separate estrogen-sensitive
processes that require a “novel” mechanism of estradiol action: regulation of sexual receptivity,
neuroprogesterone synthesis and its influence on the hypothalamic-pituitary-gonadal (HPG)
axis and signaling in DRG neurons associated with nociception. In these systems, we find a
rapid component of estradiol signaling that is dependent upon ER/mGluR signaling.

Sexual receptivity
Arguably the best studied and most robust actions of estradiol in the brain have been on neural
circuits controlling the HPG axis that regulates reproduction. In the female rat, estradiol acts
on a limbic-hypothalamic circuit to allow the expression of lordosis, a stereotypic behavior
indicative of (or reflecting) sexual receptivity [110;186]. Although lordosis can be elicited by
implanting estradiol directly into the hypothalamus [139;166], attempts to induce lordosis
behavior exclusively through membrane actions of estradiol have not been successful. The
assumption is that gene transcription is needed to elicit lordosis behavior. In a normally cycling
rat, estradiol rises slowly for several days before peaking on the afternoon of proestrus prior
to the onset of sexual receptivity. Experimentally, this is mimicked in ovariectomized rats
treated with estradiol, which induces lordosis behavior 30-48 hours later. Lordosis behavior,
a measure of sexual receptivity, depends on the transcription of new proteins [62;147],
including enkephalin, β-END and oxytocin [13;36;111;140;141;160;217]. Both the
demonstration of new protein synthesis and the time course of estradiol action pointed to an
estradiol transcriptional regulation of sexual receptivity. A role of rapid, membrane-initiated
signaling gradually emerged. Priming with E-6-BSA followed with a behaviorally-ineffective
dose of estradiol was as efficacious as two injections of free estradiol at inducing lordosis
behavior [81]. These results suggest that membrane-initiated estradiol signaling facilitates
nuclear ER-stimulated transcriptional events, signifying cooperation between membrane- and
nuclear-initiated actions of estradiol and indicating that rapid actions are involved in the
estradiol induction of sexual receptivity.

One of the best studied neuropeptides that regulates sexual receptivity is the endogenous opioid
peptide, β-END (Fig. 3). β-END is synthesized in the arcuate nucleus and has an extensive
projection throughout the forebrain, including the medial preoptic area [117]. Passive
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immunoneutralization experiments in the medial preoptic area with antibodies directed against
β-END hinted that an endogenous opioid is rapidly activated by estradiol to regulate lordosis
[203]. To examine the rapid estradiol component involved in the facilitation of lordosis,
estradiol activation in the arcuate to medial preoptic nucleus projection was studied [117]. A
hallmark of estradiol activation of this circuit is the rapid activation and internalization of MOR
in the medial preoptic nucleus, an area associated with the regulation of lordosis behavior
[45;184]. Without MOR activation, lordosis behavior is significantly attenuated [181;202].
E-6-biotin injected directly into the arcuate nucleus activated MOR facilitated lordosis
behavior, providing further evidence that this was membrane-initiated signaling [39]

The potential that the estradiol activation of the arcuate to medial preoptic nucleus projection
involves membrane-initiated signaling and an interaction with the mGluR1a was
systematically examined and it was determined that: 1) indirect estradiol activation of MOR
depends on ERα [114]; 2) ERα colocalizes with mGluR1a [39]; 3) ERα co-immunoprecipitates
with mGluR1a in a membrane preparation from arcuate nucleus tissue [40]; 4) antagonism of
mGluR1a attenuates the estradiol-induced MOR activation and lordosis [39]; 5) mGluR1a
blockade of lordosis behavior is only effective at the time of estradiol treatment. These results
suggest a model for ER/mGluR interaction that mediates behavior (Fig. 3) [113]. During low
systemic estradiol levels, the arcuate-medial preoptic circuit is quiescent and the animal is not
sexually receptive. In the medial preoptic nucleus, MORs are localized to the cell membrane,
an indication these receptors are not activated. During proestrus, systemic estradiol reaches
levels that induce behavior and increase the levels of ERα on the cell plasma membrane. In the
arcuate nucleus, the new membrane-inserted ERα is stimulated, leading to MOR internalization
and subsequent full lordosis behavior. Membrane ERα can be bypassed by directly stimulating
mGluR1a under low estradiol conditions, resulting in MOR internalization and facilitation of
lordosis. Conversely, when estradiol levels are high, antagonizing mGluR1a blocks estradiol-
induced MOR internalization and attenuates sexual behavior. These data are consistent with
the in vitro demonstration of ERα/mGluR1a signaling in hippocampal neurons and provided
the first in vivo evidence that estradiol can signal through activation of mGluR1a. Further
evidence of this rapid estradiol signaling is the demonstration that estradiol in vivo stimulates
the phosphorylation of a novel, calcium independent PKCθ in the arcuate nucleus [40].
Pharmacological stimulation of PKC overcame ER antagonism with ICI 182,780 or mGluR1a
antagonism with LY367485 and stimulated lordosis. This set of experiments demonstrates that
lordosis behavior, a classical assay of estradiol action, has a rapid non-genomic component
and underscores the importance of ER/mGluR interactions in the brain.

Neuroprogesterone synthesis
The brain, like the gonads and adrenal cortex, is a steroidogenic organ. All of the necessary
steroidogenic enzymes needed to synthesize sex steroids from cholesterol have been isolated
in various parts of the brain [170]. Steroids synthesized de novo in the nervous system are
considered neurosteroids. The steroidogenic capacity in the cells of the central nervous system
is widespread, but different cell types appear to preferentially produce specific steroids [226].
One of the most intriguing steroids synthesized in the brain is progesterone.
Neuroprogesterone, progesterone produced by nervous tissue, is a product of astrocytes and
its synthesis is widely distributed in the rat brain [108;112;185]. In addition to the myriad of
progesterone-mediated actions, its metabolite, allopregnenalone, has profound effects on
neuronal excitation through actions at the GABAA receptor [27;99]. Since progesterone is
involved in the estrogen positive feedback of the LH surge, an intriguing observation was that
estradiol stimulates the synthesis of neuroprogesterone in the hypothalamus of adult female
rats [108]. To reach an integrative understanding of the LH surge, the interaction between
circulating estradiol and neuroprogesterone synthesis in astrocytes was demonstrated (Fig. 4).
Estradiol rapidly increased free cytoplasmic calcium flux by releasing intracellular stores of
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calcium [29]. This calcium flux is dependent on activation of the PLC/IP3 pathway and was
blocked by an inhibitor of the IP3 receptor. Similarly, estradiol increased the synthesis of
neuroprogesterone that was dependent on robust [Ca2+]i [112]. To mimic the actions of
estradiol on releasing IP3 receptor sensitive intracellular calcium stores, thapsigargin was used
to induce the release of [Ca2+]i. The effect was a stimulation of neuroprogesterone synthesis
that was as robust as estradiol. Moreover, the increase of progesterone synthesis was seen after
one hour of treatment, the earliest time point examined [112]. Thus, in astrocytes, stimulation
of neuroprogesterone synthesis is dependent on calcium flux.

How does estradiol signal though the PLC/IP3 pathway to stimulate [Ca2+]i flux and
neuroprogesterone synthesis? As in neurons, astrocytes also express mGluR1a, and like
neurons, co-immunoprecipitation demonstrates a potential interaction between ERα and
mGluR1a in astrocytes, but not between ERβ and mGluR1a [85]. This observation is consistent
with data that the ERα selective agonist, 4,4″,4”-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)
trisphenol (PPT), but not the ERβ selective, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN),
stimulates [Ca2+]i flux in astrocytes. As in the arcuate nucleus, the mGluR1a antagonist
LY367385 blocked estradiol-induced [Ca2+]i flux, suggesting that in astrocytes the same ER/
mGluR1a interaction exists between membrane ERα and mGluR1a [86]. Activation of the
mGluR1a without estradiol induced a robust [Ca2+]i flux. When estradiol and DHPG were
applied together, the [Ca2+]i flux was greatly amplified. Dual stimulation of astrocytic
mGluR1a and ERα produced a significantly greater [Ca2+]i flux and in preliminary experiments
a greater synthesis of neuroprogesterone, suggesting that for maximal neuroprogesterone
signaling activation of both receptors is necessary. Micevych and Mermelstein [113] proposed
that in vivo, estradiol acts most effectively on astrocytes that are near active glutaminergic
terminals. Although this intriguing hypothesis requires testing, it suggests an integration of
neuronal and astrocytic functions in terms of initiating the activation of GnRH neurons.

ATP signaling in DRG neurons
Another example of rapid, membrane-initiated estradiol signaling was observed in the cell
bodies of primary afferent neurons. The cell bodies of primary spinal afferent neurons are
located in the DRG at each spinal segment. Primary afferents transmit information about
chemical or mechanical stimulation from the periphery to the spinal cord. There are several
distinct size-categories of DRG neurons, and nociceptors are small to medium sized DRG
neurons whose peripheral processes detect potentially damaging physical and chemical stimuli.
ATP is a putative visceral pain signal that is released by mechanical distortion, tissue damage
or inflammation to activate high threshold nociceptors [20;26]. Visceral nociceptive C-fibers
are activated by ATP and excitatory amino acids that are released by noxious stimuli from cells
in target organs [25]. ATP activates purinergic P2X receptors on primary afferent fibers [44].
Opening of P2X channels results in membrane depolarization sufficient to trigger action
potentials and calcium influx through voltage-gated calcium channels (VGCC) associated with
nociception [79]. The predominant ATP receptor in small diameter nociceptive DRG neurons
is P2X3 [32;206]. P2X3-null mice have reduced pain-related behavior in response to noxious
stimuli [35;225].

ERs are distributed in regions of the central and peripheral nervous system that mediate
nociception. For example, ERs are expressed in dorsal horn neurons of the spinal cord [8;
218] and DRG neurons [133;134;194]. Both ERα and ERβ are present in DRG neurons
including the small to medium diameter putative nociceptors [133]. In vitro, 85% of the ATP-
sensitive DRG neurons that appear to be visceral afferents [105], respond to estradiol [30],
which correlates well with the idea that visceral afferents are estradiol sensitive. Indeed,
visceral pain is affected by hormonal levels in cycling females [157;165;205], and the
prevalence of functional disorders involving the viscera is sex differentiated [95;162]. Thus,
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in addition to central actions of estradiol [6], estradiol can also act in the periphery to modulate
nociception.

Estradiol modulates neuronal L-type VGCC [30;94;107] and has a significant role in
modulating visceral sensitivity, indicating that estradiol alterations in sensory processing may
underlie sex-based differences in functional pain symptoms [4]. However, reports of estradiol
modulation of visceral and somatic nociceptive sensitivity are conflicting. For example,
elevated estradiol levels have been reported to increase the threshold to cutaneous stimuli
[102], but decrease the percentage of escape responses to ureteral calculosis [57]. On the other
hand, nociceptive sensitivity appears to increase when estradiol levels are elevated [68] and in
clinical studies, women report more severe pain levels, more frequent pain, and longer duration
of pain than men [16;53].

In a primary culture of DRG neurons, estradiol inhibited the ATP-mediated calcium influx in
response to ATP stimulation. The estradiol action was stereospecific and inhibited by ER
antagonists, tamoxifen and ICI 182,780 [30]. ATP initiates two calcium currents, one through
P2X channels and a secondary response due to the opening of VGCCs in response to membrane
depolarization [79]. The entire calcium transient is blocked with the purine receptor antagonist
PPADS, but the calcium response is only partially inhibited by estradiol, suggesting that
estradiol does not directly antagonize P2X receptors. Blockade of the L-type VGCC with
nifedipine, however, significantly attenuated the ATP-induced calcium influx, and estradiol
treatment did not result in additional inhibition, suggesting that estradiol mediates the opening
of the L-type VGCC. This result is consistent with estradiol blockade of L-type calcium
channels in PC-12 cells [77], neostriatal and hippocampal neurons [88;107].

Although both ERα and ERβ are expressed in DRG neurons, only ERα is necessary for the
estradiol attenuation of ATP-induced calcium influx [31]. In DRG neurons from ERα-/- mice,
estradiol was not able to attenuate the ATP-induced calcium influx. While in wild type and
ERβ-/- mice, estradiol attenuated the ATP-induced calcium influx [31]. As in other neurons,
DRG neurons express mGluRs, but in these cells estradiol did not activate [Ca2+]i through
these receptors. Instead it was reported that activated ERα rapidly attenuates calcium influx
through L-type VGCCs. Such an interaction was hypothesized when ERα interacted with
mGluR2/3 [22;23]. The estradiol attenuation of ATP-induced calcium signaling was disrupted
if the mGluR2/3 was blocked with the inhibitor, LY341495. Thus, rapid estradiol inhibition
of calcium influx through L-type VGCCs in DRG neurons is dependent on mGluR2/3 (Li, P.
et al., submitted for publication).

Summary
Although ERs have been extensively studied, the more recently embraced membrane-initiated
estradiol action has created a great deal of confusion in the field. While estradiol action has
repeatedly been demonstrated at the cell surface, the nature of membrane ERs remains elusive.
Several candidate membrane ERs have been proposed to exist in the brain, including: ER-X,
GPR30 and STX-activated protein. All of these, except GPR30, are located in the cell
membrane. ER-X appears to have a large homology to ERα, but is not antagonized by ICI
182,780 and is not stereospecific. The STX-binding protein is antagonized by ICI 182,780, but
has not been cloned. The best and most extensive support for membrane ER is for ERα and
ERβ, the same molecules that act as ligand-gated transcription factors in the nucleus. These
receptors are palmitoylated, and in association with caveolin proteins, trafficked to the cell
membrane. In the cell membrane, ERα and ERβ appear to act like GPCRs to activate a wide
range of cell signaling pathways. Membrane ERs bind estradiol as demonstrated by
experiments using membrane-impermeable estradiol constructs. Estradiol treatment induces
β-arrestin binding to ERα and subsequent internalization into endosomes. All of these results
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are consistent with the ER as a GPCR hypothesis, but what has been more difficult to
demonstrate is the direct interaction of ERα and ERβ with G proteins. Indeed, it is clear that
ERα and ERβ are not GPCRs. They initiate cell signaling by interacting with mGluRs. With
or without glutamate, estradiol-activated ERs transactivate mGluRs stimulating them to
activate G proteins. Co-immunoprecipitation studies demonstrate the potential interactions of
ERα and ERβ with specific groups of mGluRs to signal through Gαq or Gαi/o pathways,
explaining estradiol actions in different cells and in activated or quiescent cells.
Pharmacological blockade of mGluRs abrogate membrane-initiated estradiol actions,
including activation of cytoplasmic calcium flux, PKC and nuclear CREB, further suggesting
that such interactions may be critical for ER signaling at the membrane.

In spite of this evidence, some membrane-initiated estradiol action remain in animals missing
both ERα and ERβ, the so-called double knock outs (ERα-/-/ERβ-/-). Whether one of the known
ER candidates or an as yet unknown ER is ultimately found to mediate this remaining estradiol
action remains to be determined. It is likely, however, that whichever protein is added to the
ER family, membrane-initiated estradiol signaling will involve interactions with mGluRs to
modulate cell signaling in the nervous system. Many questions remain to be answered about
membrane ERs, but research during the past decade has proven to be extremely valuable in
beginning to define the parameters of membrane-initiated estradiol signaling.
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Figure 1. E-6-BSA-FITC and E-6-biotin are internalized in primary cortical neurons
(A) Ligand bound receptors are internalized and transported to endosomes to be sorted for
recycling or degradation by a β-arrestin mediated mechanism. (B) Cortical neuronal cultures
were prepared on glass coverslips and treated with 1 μg/ml E-6-BSA-FITC for 60 min at 37 °
C, fixed, and prepared for confocal microscopy. Analysis of reconstructed confocal z-stack
slices (side panels) show that E-6-BSA-FITC binding was localized on plasma membranes
(arrowheads) and within subcellular compartments (arrows) in several neuronal profiles. (C)
Cortical neurons were prepared as described above but were treated with 50 nM E-6-biotin and
permeablized after fixation. Biotin conjugated-estradiol was labeled with 1 mg/ml Alexa488-
strepavidin to visualize internalization of the ligand. Reconstructed confocal z-stack slices (side
panels) demonstrate that the fluorescein labeled E-6-biotin/strepavidin complex was
internalized in a similar manner as E-6-BSA-FITC in several neuronal profiles. These findings
suggest ligand bound ERs are internalized. Scale bar = 20 μm. [these data redrawn from 42]
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Figure 2. Estradiol treatment increased the interaction between ERα and β-arrestin-1 in cortical
neuronal cultures
Cortical neuronal cultures were treated with 10 nM estradiol for the times indicated and
collected. An antibody raised against the C-terminal of ERα (MC-20) was used to
immunoprecipitate (IP) receptors from cellular extracts. To determine the levels of co-
immunoprecipitated β-arrestin-1 western immunoblot (IB) analysis (upper panel) was used.
The bar graph shows that estradiol treatment increased the interaction between β-arrestin-1
and ERα over time (n = 4). Immunoblot analysis of ERα was used to verify loading. (Tukey's
post hoc test, *p < 0.05) [these data redrawn from 42]
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Figure 3. Regulation of sexual receptivity through the arcuate-medial preoptic nucleus projection
Estradiol acts in the arcuate nucleus of the hypothalamus (ARH) to activate NPY expression
cells. This membrane initiated estradiol signaling requires the interaction of ERα with
mGluR1a to phosphorylate PKCθ. NPY released within the ARH activates NPY-Y1 receptors
on β-END neurons that project to the medial preoptic nucleus (MPN) where released β-END
activates MOR. This circuit enhances the lordosis behavior of the rat.
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Figure 4. Proposed mechanism through which estradiol signaling in astrocytes is integrated with
local neuronal activity involved in the synthesis of neuroprogesterone
Estradiol (E2), typically of ovarian origin, binds to membrane ERα and activates mGluR1a.
This increases levels of free cytoplasmic calcium (Ca2+) through the inositol trisphosphate
(IP3) receptor mediated release of intracellular stores of calcium. Elevated levels of
intracellular Ca2+ are needed for neuroprogesterone (P4) synthesis in astrocytes. Studies in
vitro demonstrate that E2 alone or an agonist mGluR1a alone increase intracellular calcium
levels. However, when both an mGluR1a agonist and E2 are applied to astrocytes, the resulting
Ca2+ flux is significantly greater, suggesting that P4 synthesis is also augmented. We propose
that in vivo when E2-stimulated astrocytes are in the proximity of active nerve terminals, the
released glutamate (Glu) activates astrocyte mGluR1a, resulting in significantly greater Ca2+

responses. This elevated Ca2+ response is hypothesized to produce a greater P4 synthesis in
astrocytes [113].
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