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Abstract
Ma’am – We read with great interest the article by He et al. [2008] describing the effects on HIV
acquisition and disease progression of a single-nucleotide polymorphism (SNP, rs2814778,
-46T→C) that disrupts the promoter region of the Duffy antigen receptor for chemokines (DARC)
gene and abolishes gene expression in red blood cells. He et al. reported that HIV-infected African
Americans have a frequency of the null homozygous genotype (-46C/C) of 70% while non-HIV
infected individuals have a null genotype frequency of 60%. Based on this frequency difference they
argued that the null allele confers susceptibility to infection with HIV-1. They also reported that the
null genotype is associated with better outcomes amongst those who do become infected, including
longer survival, slower loss of CD4+ T-lymphocytes, and delayed progression to HIV-associated
dementia.

We sought to evaluate these suggested associations using a cohort of 471 HIV-1 infected
African Americans with estimated seroconversion dates enrolled in the TriService AIDS
Clinical Consortium (TACC) HIV Natural History Study (NHS) and 227 HIV-negative African
Americans recruited in conjunction with ongoing genetic studies at Duke University in
Durham, NC. A principal component based procedure implemented in the EigenSoft routines
(Price et al., 2006) was used to correct for population structure. This approach has been
extensively used to adjust for population stratification that would otherwise inflate association
statistics (McCarthy et al., 2008).

In assessing population stratification in the 698 African Americans using EIGENSTRAT
(Price et al., 2006), the first axis makes a much larger contribution to the proportion of variation
explained than other axes and reflects the degree of African versus European ancestry in
individuals (Figure 1A). To further demonstrate the separation of African and European
ancestries in the admixed African American population, we added 60 HapMap Utah residents
with ancestry from northern and western Europe (CEU) and 60 HapMap Yoruba in Ibadan,
Nigeria (YRI) samples into the EIGENSTRAT analysis (see Supplemental Materials). The
first axis separates African and European ancestries and is highly correlated to the first axis
without the seed populations (r2=0.9958, Supplemental Materials). We note that the DARC
-46T→C polymorphism is strongly associated with the first axis (p = 6.14×10−23) (Figure 1B).
This confirms that the DARC -46T→C polymorphism itself is highly informative about
ancestry in African American populations, as expected, and that it could therefore generate
strong associations due to stratification for any traits that correlate with ancestry.

We tested for an effect of the DARC -46T→Cpolymorphism on viral load at set-point,
progression to AIDS, and CD4+ T cell decline. Viral set-point was defined as previously
described (Fellay et al., 2007) for 394 HIV-infected patients. A linear regression using gender,
age at seroconversion and the first EIGENSTRAT axis as covariates revealed no association
with the DARC -46C/C genotype and viral setpoint (p = 0.524; when not corrected for
population stratification, p = 0.905).

We defined HIV disease progression as time to AIDS (1993 Centers for Disease Control and
Prevention (CDC) definition). Because many subjects in the cohort eventually initiated highly
active antiretroviral therapy (HAART), we considered multiple methods to account for
treatment initiation in our statistical models. In our primary model, subjects were censored at
HAART initiation so that time to AIDS is considered only in untreated patients to rule out any
effects of HAART. The Cox proportional hazards model was adjusted for gender, age at
seroconversion, and the first EIGENSTRAT axis and shows no association between the -46C/
C genotype and faster disease progression (HR 1.53, 95% CI 0.921–2.54, p=0.101; without
correction for population stratification HR = 1.52, 95% CI 0.932–2.47, p = 0.094; Figure 2A).
Censoring at January 1, 1996 (the approximate date when HAART first became available to
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the cohort), as opposed to HAART initiation, produced similar results (data not shown). In a
separate model adjusted for the same covariates, we considered HAART as a time-updated
covariate rather than censoring at HAART initiation. In this analysis there was no significant
association between -46C/C genotype and disease progression (HR 1.37, 95% CI 0.854–2.21,
p=0.191; without correction for population stratification HR = 1.28, 95% CI 0.835–1.97, p =
0.256; Figure 2B). Lastly, we considered an expanded definition of progression that also
included as progressors those patients who started HAART with CD4+ T-cell counts of less
than 350/mm3. The follow-up was censored at HAART initiation for those patients who started
treatment with CD4+ T cell counts greater than 350/mm3. Single or dual treatment with
nucleoside reverse transcriptase inhibitors was included in the analysis as a time-updated
covariate. This model again showed no effect of the DARC -46C/C genotype on disease
progression (HR = 1.16, 95% CI 0.792–1.70, p=0.446; without correction for population
stratification HR = 1.13, 95% CI 0.797–1.60, p = 0.496, Figure 2C).

The rate of CD4+ T-cell decline prior to HAART initiation was assessed as an additional
biological marker of disease progression. CD4+ counts over time were considered for all
samples with ≥3 pre-HAART CD4+ counts available. The average rate of CD4+ decline in
these samples (N=263) was −5.10 cells per month. For patients with the -46C/C genotype the
rate of CD4+ decline was −5.32 cells per month, and for all other patients it was −4.55 cells
per month. Finally, an analysis using a mixed linear model, which included as covariates
gender, age at seroconversion and the first EIGENSTRAT axis, failed to demonstrate a
significant effect of genotype with respect to rate of CD4+ T-cell decline (p = 0.9359).

We also tested for an effect of -46C/C genotype on risk of HIV acquisition. The frequency of
the -46C/C genotype was not significantly different between the HIV-infected and non-HIV
infected African Americans in this study (70.7% and 68.3%, respectively, Table 1). We used
a logistic regression model to test the association between -46C/C and HIV acquisition using
gender and the first EIGENSTRAT axis as covariates. We found no association of the -46C/
C genotype with HIV acquisition (OR 0.864, 95% CI 0.534–1.41, p = 0.555; without correction
for population stratification OR = 1.05, 95% CI 0.685–1.63, p = 0.809). Assuming an odds
ratio of 1.5, as was reported in He et al., we calculate that our study has 60% power to detect
an effect of the DARC polymorphism at the 0.05 level. Our results, however, are not only not
significant, but, when correcting for population stratification, they are in the opposite direction
of those reported by He et al (OR<1.0). We used a simple simulation framework to test the
probability of a lower allele frequency in HIV-positive samples compared to controls (that is,
an OR < 1, opposite to the direction previously reported) assuming that the He et al. estimate
of an odds ratio of 1.5 is correct. Specifically we simulated random sampling of 471 individuals
assuming a base allele frequency of 0.70 for the risk genotype and compared this with 227
individuals sampled from a population with a base allele genotype of 0.60. After repeating this
procedure 1 million times we found that the probability that the observed odds ratio would be
below 1 was p < 0.01, indicating that the observed odds ratio of 0.864 is an unlikely outcome
if the real effect of the variant is in the same direction and of similar magnitude to that reported
in He et al.

Although the previous report identified the DARC -46C/C genotype as an important risk factor
for HIV acquisition and disease progression, the work presented here, corrected for population
stratification, does not replicate these findings. Whereas He et al. reported an
overrepresentation of the DARC -46C/C genotype in an HIV+ population, we observed similar
allele frequencies in the HIV+ and HIV− populations. It is possible that this result is indicative
of the modest power of our acquisition study; however, it must be emphasized that in addition
to a lack of effect on HIV acquisition, a well-powered analysis of disease course indicates
trends in the opposite direction of those previously published. The cohort used in our study
offers several advantages. For the disease progression analyses, our cohort is larger, includes
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members from all 3 U.S. military services (only 1 was evaluated in the previous report), and
includes only subjects with estimated dates of seroconversion for more accurate time to event
analyses. Therefore, while we cannot rule out the possibility that DARC -46C/C could be
associated with faster time to death, it does not appear to be associated with slower progression
to AIDS or with CD4 decline amongst African Americans.

Another possible explanation for the discrepant results relates to population stratification.
Stratification due to population substructure can create spurious association between alleles
and traits when both differ between subpopulations (Pritchard, 2000, Reich and Goldstein,
2001). Of particular concern, the strength of the stratification effect is known to increase sharply
with the magnitude of the allele frequency difference between subpopulations. Thus, the
DARC null allele would be expected to have a particularly large stratification effect associated
with it in African American populations. He et al. reported the use of 11 markers to develop a
model to predict ancestry and to control for the effects of stratification. It appears that He et
al. used the probability of assignment of individuals to one of the two population groups
(African American versus European American) directly as a covariate to control for population
stratification. In addition to the fact that 11 markers are insufficient to accurately estimate
ancestry and control for stratification, a model that predicts the probability of membership in
one group versus another (African American versus European American) is not the same as a
predictor of the degree of African versus European ancestry. The latter prediction is what is
required for appropriate control of stratification. For these reasons He et al. did not implement
appropriate stratification controls and it seems likely that some, or all, of their association signal
may be due to stratification.

In conclusion, we have found no association between DARC genotype and progression to
AIDS or risk for HIV acquisition. This highlights the importance of strict control for population
stratification in genetic association studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Population stratification of rs2814778. (A) The high Eigenvalue for the first axis indicates that
this axis accounts for a large proportion of population structure in our sample. This axis
represents the degree of African versus European chromosomal ancestry on a genome-wide
level (see Supplementary Materials for further information). (B) The principal component (PC)
score for each subject along axis one (PC1) is significantly correlated with genotype at
rs2814778, highlighting the importance of stratification control for association testing at this
polymorphism.
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Figure 2.
Survival curves for progression to AIDS. Kaplan Meier curves do not indicate that the
DARC -46C/C genotype is associated with slower disease progression. This is true regardless
of whether progression (A) is censored at HAART initiation, (B) includes HAART as a time-
varying covariate or (C) includes patients with CD4+ T-cell counts less than 350/mm3 at the
time of HAART initiation. At time 0, there are 332 patients with the C/C genotype and 121
patients with the C/T or T/T genotype.
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Table 1
Genotypes of the HIV+ and HIV− cohorts at DARC -46T→C

HIV+ Expected HIV+ HIV− Expected HIV−

-46C/C 333 322 157 155

-46C/T 113 135 62 65

-46T/T 25 14 8 7

Total 471 471 227 227

%C/C 70.7% 68.3%

%C/T+T/T 29.3% 31.7%

F(C) 0.827 0.828

F(T) 0.173 0.172

HWE P-value 0.073 0.934

Genotype at the DARC -46T→C does not violate HWE in either population. The low p-value in the HIV+ population is caused by an excess of both
homozygous states, as opposed to a consistent overrepresentation of one allele as would be expected for a true risk allele.
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