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ABSTRACT

Summary: The interpretation of genome-wide association results
is confounded by linkage disequilibrium between nearby alleles.
We have developed a flexible bioinformatics query tool for single-
nucleotide polymorphisms (SNPs) to identify and to annotate nearby
SNPs in linkage disequilibrium (proxies) based on HapMap. By
offering functionality to generate graphical plots for these data, the
SNAP server will facilitate interpretation and comparison of genome-
wide association study results, and the design of fine-mapping
experiments (by delineating genomic regions harboring associated
variants and their proxies).
Availability: SNAP server is available at http://www.broad.mit.edu/
mpg/snap/.
Contact: debakker@broad.mit.edu

1 MOTIVATION
Genome-wide association studies (GWASs) have produced an
unprecedented volume of genotype–phenotype results, often
revealing biological pathways with a novel role in disease etiology
(McCarthy et al., 2008). Many genome-wide datasets have become
available to the scientific community, but comparison of association
results between studies is not straightforward when different
genotyping arrays are used. More generally, the extensive nature
of linkage disequilibrium (LD) can confound the interpretation
of an association signal as the true causal variant(s) can lie at
considerable distance from the initial association signal. With more
than 3 million SNPs successfully genotyped in 270 population
samples, HapMap informs about genomic locations, alleles and
LD patterns for a large fraction of common variants in the human
genome (The International HapMap Consortium, 2007). Thus, for
example, when a candidate SNP is not present on a particular
genotyping array, proxy SNPs in LD with that candidate SNP can be
identified based on observed LD patterns in HapMap. Researchers
are increasingly turning to meta-analysis across multiple GWAS
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through in silico imputation and subsequent association testing of
SNPs present on HapMap (Marchini et al., 2007; Zeggini et al.,
2008). Informatics challenges remain due to a general lack of user-
friendly resources to access standardized annotations. We provide a
web server (called SNAP) with potential uses including (i) finding
proxy SNPs, (ii) determining if SNP proxies are in genes, (iii)
resolving whether associations from multiple SNPs represent a
similar association, (iv) plotting publication quality regional views
of associations and/or LD structure, (v) helping to define fine
mapping boundaries, (vi) facilitating cross-GWAS comparisons,
(vii) retrieving annotations for SNPs of interest and (viii) checking
for SNPid aliases across dbSNP builds.

2 IMPLEMENTATION
We used Haploview 4.0 (Barrett et al., 2005) to compute pairwise
r2 and D′ among all SNPs within 500 kb of each other based
on phased genotype data from HapMap release 21 and 22 in
three analysis panels (YRI, CEU and CHB + JPT). We collected
annotation files for commercial arrays, removing non-SNP CNV
probes and SNP probes without dbSNP rs identifiers. We have
included the following arrays: from Affymetrix: Human Gene
Focused (50K), HindIII and XbaI (Mapping 100K), NspI and StyI
(Mapping 500K), SNP 5.0 and 6.0; and from Illumina: Human-1,
HumanHap240S, HumanHap300, HumanCNV370 (single, quad),
HumanHap550, Human610, HumanHap650Y, Human1M (single,
duo) and HumanCVD (CARe iSelect). Because the lifetime of
commercial genotyping arrays spans several builds of dbSNP, some
of the SNP identifiers have been merged and changed creating a
potential aliasing problem. To address this, we used the latest dbSNP
RsMergeTable (build 129), which tracks historical changes in SNP
identifiers to compile a list of SNP aliases, and we integrated this
into our query strategy so that querying with any SNP identifier
is allowed, even if it is deprecated. We store data on the physical
and genetic position of each SNP (as a function of genome build),
which can be returned for each proxy SNP. We use a ‘mashup’ with
the GeneCruiser web service to return information about associated
genes along with each proxy SNP (Liefeld et al., 2005). The SNAP
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Fig. 1. Regional LD plot for SNPs rs10757278 and rs10811661 at 9p21.3,
associated with coronary artery disease and type 2 diabetes, respectively.

service can itself participate in further mashups. Our primary design
goals were rapid performance, scalability for future growth (denser
genotype data and more samples, e.g. HapMap 3 and the 1000
Genomes Project) and low maintenance costs. We achieve near
linear-time query performance by using indexed binary files to store
the pre-computed pairwise LD (currently 7 billion data points, about
50 GB per HapMap panel). To minimize maintenance costs, we have
automated the procedures for incorporating new HapMap releases,
new dbSNP RsMergeArch alias tables and data for new genotyping
arrays.

3 WEB SERVER
SNAP is publicly available at http://www.broad.mit.edu/mpg/snap,
along with documentation. Users can specify a HapMap release and
population. Query SNPs can be entered in a text box or uploaded as
a text file. Optional SNP filters include: membership on genotyping
arrays, and minimum r2 or maximum distance between query and
proxy SNP. For each query SNP, SNAP returns all proxy SNPs
(after applying filters), annotated by physical and genetic position,
recombination rate, r2, D′ and nearby genes. The server can also
generate association plots and graphical plots of proxies for a query
SNP, or for a pair of SNPs.

4 EXAMPLE: ASSOCIATIONS AT 9P21
We query two SNPs at chromosome 9p21 from recent GWAS:
rs10757278, associated with coronary artery disease (Helgadottir
et al., 2007; McPherson et al., 2007), and rs10811661, associated
with type 2 diabetes (Saxena et al., 2007). In Figure 1, these two
associated SNPs are plotted along with their proxies (based on

HapMap CEU) as a function of genomic location, annotated by
the recombination rate across the locus (light-blue line) and nearby
genes CDKN2A and CDKN2B. On the y-axis, the pairwise r2 is
given for each proxy SNP using color shading to indicate whether
that SNP is in strong LD with rs10757278 (in red) or rs10811661 (in
blue). The plot also highlights the ‘associated region’ (spanning 189
kb), defined by the contiguous region that contains all proxy SNPs
with r2 >0.1 to either query SNP. (The user can modify this r2

threshold.) A similar regional LD plot can be generated for a single
query SNP. From Figure 1, we can conclude that there is absolutely
no correlation between the two query SNPs (r2 = 0.000), which is
explained by the recombination hotspot between them. In fact, there
are no observed variants close to or in CDKN2A or CDKN2B with
any appreciable LD to rs10811661 (blue). Thus, it remains to be
seen whether the biological (causal) effect due to the association
to type 2 diabetes at rs10811661 is related to the function of these
two annotated genes or to another genomic element that is so far
unannotated.
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