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Introduction

When a subject presents with symptoms of angina pec-
toris, measurement of biomarkers such as troponin that are
released from damaged myocytes can rapidly identify acute
myocardial injury, allowing for timely interventions and a
dramatic decrease in mortality. The analogous condition of
the kidney, acute kidney injury (AKI), has been referred
to as angina renalis, and the similarities end right there.
AKI is largely asymptomatic, and establishing the diagno-
sis in the estimated 5% of hospitalized patients and a third of
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intensive care patients who suffer from the disease currently
hinges on serial serum creatinine measurements. Unfortu-
nately, creatinine is a notoriously delayed and unreliable
indicator of AKI for a variety of reasons [1,2]. Ironically,
animal studies have identified several interventions that can
prevent and/or treat AKI if instituted early in the disease
course, well before the serum creatinine even begins to
rise. The lack of early biomarkers has crippled our ability
to translate these promising findings, and human AKI re-
mains a major risk factor for a number of non-renal compli-
cations and an independent contributor to the high mortality
rate [3].

The pursuit of improved biomarkers for the early diag-
nosis of AKI and its outcomes is an area of intense contem-
porary research. For answers, we must turn to the kidney
itself. Indeed, understanding the early stress response of the
kidney to acute injuries has revealed a number of potential
biomarkers [4–7]. The bench-to-bedside journey of neu-
trophil gelatinase-associated lipocalin (NGAL), arguably
the most promising novel AKI biomarker, is chronicled
below.

Biology of NGAL

Human NGAL was originally identified as a 25-kDa pro-
tein covalently bound to gelatinase from neutrophils [8–
10]. Like other lipocalins, NGAL forms a barrel-shaped
tertiary structure with a hydrophobic calyx that binds small
lipophilic molecules [11]. The major ligands for NGAL
are siderophores, small iron-binding molecules. On the one
hand, siderophores are synthesized by bacteria to acquire
iron, and NGAL exerts a bacteriostatic effect by depleting
siderophores. On the other hand, siderophores produced
by eukaryotes participate in NGAL-mediated iron shut-
tling that is critical to various cellular responses such as
proliferation and differentiation [11]. Although NGAL is
expressed only at very low levels in several human tissues,
it is markedly induced in injured epithelial cells, including
the kidney [10]. The promoter region of the NGAL gene
contains binding sites for a number of transcription factors,
including NF-κB [8,9]. NF-κB is known to be rapidly ac-
tivated in kidney tubule cells after acute injuries [12] and
plays a central role in controlling cell survival and prolif-
eration [13]. These findings provide a potential molecular
mechanism for the documented role of NGAL in enhancing
the epithelial phenotype, both during kidney development
and following AKI [10].

NGAL for the early diagnosis of AKI

Preclinical transcriptome profiling studies identified NGAL
(also known as lipocalin 2 or lcn2) to be one of the most
upregulated genes in the kidney very early after acute injury
in animal models [14–17]. Downstream proteomic analyses
also revealed NGAL to be one of the most highly induced
proteins in the kidney after ischemic or nephrotoxic AKI
in animal models [18–20]. The serendipitous finding that
NGAL protein was easily detected in the blood and urine
soon after AKI has initiated a number of translational stud-

ies to evaluate NGAL as a non-invasive biomarker in hu-
man AKI. In a cross-sectional study, adults with established
AKI (doubling of serum creatinine) displayed a marked in-
crease in urine and serum NGAL by western blotting when
compared to normal controls [20]. Urine and serum NGAL
levels correlated with serum creatinine, and kidney biopsies
in subjects with AKI showed intense accumulation of im-
munoreactive NGAL in cortical tubules, confirming NGAL
as a sensitive index of established AKI in humans.

A number of studies have now implicated NGAL as an
early diagnostic biomarker for AKI in common clinical sit-
uations. In prospective studies of children, with normal kid-
ney function and no comorbid conditions, who underwent
elective cardiac surgery, AKI (defined as a 50% increase
in serum creatinine) occurred in ∼30% of the subjects, 2–
3 days after surgery [21–23]. In contrast, NGAL measure-
ments by ELISA revealed a 10-fold or more increase in
the urine and plasma, within 2–6 h of the surgery in those
who subsequently developed AKI. Both urine and plasma
NGAL were excellent independent predictors of AKI, with
an area under the curve (AUC) of >0.9 for the 2–6-h urine
and plasma NGAL measurements [21–23]. These findings
have now been confirmed in prospective studies of adults
who developed AKI after cardiac surgery, in whom urinary
NGAL was significantly elevated by 1–3 h after the op-
eration [24,25]. AKI, defined as a 50% increase in serum
creatinine, did not occur until 2–3 days later. The AUCs
for the prediction of AKI were in the 0.71–0.80 range, the
somewhat inferior performance perhaps reflective of con-
founding variables such as old age, pre-existing kidney dis-
ease, prolonged bypass times, chronic illness and diabetes
[25].

NGAL has also been evaluated as a biomarker of AKI
in kidney transplantation. Protocol biopsies of kidneys ob-
tained 1 h after vascular anastomosis revealed a significant
correlation between NGAL staining intensity and the sub-
sequent development of delayed graft function [26]. In a
prospective multicenter study of children and adults, urine
NGAL levels in samples collected on the day of transplant
identified those who subsequently developed delayed graft
function (which typically occurred 2–4 days later), with
an AUC of 0.9 [27]. Plasma NGAL measurements have
also been correlated with delayed graft function following
kidney transplantation from donors after cardiac death [28].

Several investigators have examined the role of NGAL as
a predictive biomarker of nephrotoxicity following contrast
administration [29–33]. In a prospective study of children
undergoing elective cardiac catheterization with contrast
administration, both urine and plasma NGAL predicted
contrast-induced nephropathy (defined as a 50% increase
in serum creatinine from baseline) within 2 h after contrast
administration, with an AUC of 0.91–0.92 [33]. In several
studies of adults administered contrast, an early rise in both
urine (4 h) and plasma (2 h) NGAL was documented, in
comparison with a much later increase in plasma cystatin
C levels (8–24 h after contrast administration), providing
further support for NGAL as an early biomarker of contrast
nephropathy [30,31].

Urine and plasma NGAL measurements also represent
early biomarkers of AKI in the pediatric intensive care
setting, being able to predict this complication ∼2 days
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prior to the rise in serum creatinine, with high sensitiv-
ity and AUCs of 0.68–0.78 [34,35]. In a recent study of
adults in the emergency department setting, a single mea-
surement of urine NGAL at the time of initial presen-
tation predicted AKI with an outstanding AUC of 0.95,
and reliably distinguished prerenal azotemia from intrinsic
AKI and from chronic kidney disease (CKD) [36]. Thus,
NGAL is a useful early AKI marker that predicts devel-
opment of AKI even in heterogeneous groups of patients
with multiple comorbidities and unknown timing of kidney
injury.

Because of its high predictive properties for AKI, NGAL
is also emerging as an early biomarker in interventional
trials. For example, a reduction in urine NGAL has been
employed as an outcome variable in clinical trials demon-
strating the improved efficacy of a modern hydroxyethyl-
starch preparation over albumin or gelatin in maintaining
renal function in elderly cardiac surgery patients [37,38].
Similarly, the response of urine NGAL was attenuated in
adult cardiac surgery patients who experienced a lower inci-
dence of AKI after sodium bicarbonate therapy when com-
pared to sodium chloride [39]. Furthermore, adults who
developed AKI after aprotinin use during cardiac surgery
displayed a dramatic rise in urine NGAL in the immedi-
ate post-operative period, attesting to the potential use of
NGAL for the prediction of nephrotoxic AKI [40]. Not
surprisingly, NGAL measurements as an outcome variable
are currently included in at least 10 ongoing clinical trials
formally listed in ClinicalTrails.gov. The approach of using
NGAL as a trigger to initiate and monitor novel therapies,
and as a safety biomarker when using potentially nephro-
toxic agents, is expected to increase.

The results described thus far have been obtained using
research-based assays, which are not practical in the clinical
setting. In this regard, a major advance has been the devel-
opment of a standardized point-of-care kit for the clinical
measurement of plasma NGAL (Triage R© NGAL Device,
Biosite Inc., San Diego, CA, USA). In children undergo-
ing cardiac surgery, the 2-h plasma NGAL measurement
measured by the Triage R© Device showed an AUC of 0.96,
sensitivity of 0.84 and specificity of 0.94 for the prediction
of AKI using a cutoff value of 150 ng/ml [41]. The assay is
facile with quantitative results available in 15 min, and re-
quires only microliter quantities of whole blood or plasma.
In addition, a urine NGAL immunoassay has been devel-
oped for a standardized clinical platform (ARCHITECT R©

analyzer, Abbott Diagnostics, Abbott Park, IL, USA). In
children undergoing cardiac surgery, the 2-h urine NGAL
measurement by ARCHITECT R© analyzer showed an AUC
of 0.95, sensitivity of 0.79 and specificity of 0.92 for pre-
diction of AKI using a cutoff value of 150 mg/ml [42].
This assay is also easy to perform with no manual pre-
treatment steps, a first result available within 35 min, and
requires only 150 µl of urine. Both kits are currently un-
dergoing multicenter validation in adult populations.

NGAL for the prognosis of AKI

Recent studies have demonstrated the utility of early NGAL
measurements for predicting clinical outcomes of AKI. In

children undergoing cardiac surgery, the 2-h post-operative
plasma NGAL levels measured by Triage R© Device strongly
correlated with duration and severity of AKI, and length of
hospital stay. In addition, the 12-h plasma NGAL strongly
correlated with mortality [41]. Similarly, the 2-h urine
NGAL levels measured by ARCHITECT R© analyzer highly
correlated with duration and severity of AKI, length of hos-
pital stay, dialysis requirement and death [42]. In a multi-
center study of children with diarrhea-associated hemolytic
uremic syndrome, urine NGAL obtained early during the
hospitalization predicted the severity of AKI and dialysis
requirement with high sensitivity [43]. Early urine NGAL
levels were also predictive of duration of AKI (AUC 0.79)
in a heterogeneous cohort of critically ill subjects [34]. In
adults undergoing cardiopulmonary bypass, those who sub-
sequently required renal replacement therapy were found to
have the highest urine NGAL values upon arrival in the in-
tensive care unit [25]. In adult kidney transplant patients
undergoing either protocol biopsies or clinically indicated
biopsies, urine NGAL measurements were found to be pre-
dictive of tubulitis or other tubular pathologies [44], raising
the possibility of NGAL representing a non-invasive screen-
ing tool for the detection of tubulo-interstitial disease in the
early months following kidney transplantation.

Sources of urinary and plasma NGAL

The genesis and sources of plasma and urinary NGAL fol-
lowing AKI require further clarification. Although plasma
NGAL is freely filtered by the glomerulus, it is largely
reabsorbed in the proximal tubules by efficient megalin-
dependent endocytosis [11]. Direct evidence for this notion
is derived from systemic injection of labelled NGAL, which
becomes enriched in the proximal tubule but does not ap-
pear in the urine in animals [20]. Thus, any urinary excretion
of NGAL is likely only when there is concomitant proxi-
mal renal tubular injury that precludes NGAL reabsorption
and/or increases de novo NGAL synthesis. However, gene
expression studies in AKI have demonstrated a rapid and

Table 1. NGAL as an AKI biomarker

Biomarker property NGAL

Specific to AKI (AKI versus CKD versus systemic disease) +/−a

Discern AKI sub-types (pre-renal azotemia versus intrinsic Yes
AKI)

Sensitive to establish an early diagnosis Yes
Conserved across species Yes
High gradient to allow early and easy detection Yes
Proportional increase with injury or loss of function Yes
Associated with a known mechanism Yes
Results available while damage is limitable Yes
Results predict clinical outcomes Yes
Practical to measure Yes
Amendable to existing platform assay methods Yes

aPlasma NGAL may be detected in chronic kidney disease (CKD), chronic
hypertension, systemic infections, inflammatory conditions and malignan-
cies [51–56]. Urine NGAL may be detected in CKD, lupus nephritis and
urinary tract infections [57–60]. In all these situations, NGAL values are
generally substantially blunted compared to those typically measured in
AKI.
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Table 2. Urinary biomarkers for the early prediction of AKI in various clinical settings

Biomarker name and Cardiopulmonary bypass Contrast-induced Delayed graft function Intensive care or emergency
property (CPB) nephropathy (DGF) setting

NGAL 2 h post-CPB 2 h post-contrast 12 h post-transplant 2 days pre-AKI
2 days pre-AKI 1–2 days pre-AKI 2–3 days pre-DGF

AUC 0.78–0.99 0.91–0.92 0.90 0.78–0.95
References [21–25,41,42] [29–33] [27,28] [34–36]

IL-18 12 h post-CPB Not increased 12 h post-transplant 2 days pre-AKI
1–2 days pre-AKI 2–3 days pre-DGF

AUC 0.75 0.90 0.73
References [22] [27] [64]

KIM-1 12 h post-CPB Not tested Not tested in acute setting Not tested in acute setting
1–2 days pre-AKI

AUC 0.83
References [65]

NGAL, neutrophil gelatinase-associated lipocalin; IL-18, interleukin 18; KIM-1, kidney injury molecule 1; AUC, area under the receiver operating
characteristic curve.
AKI is defined as a 50% or greater increase in serum creatinine from baseline and DGF is defined as dialysis requirement within the first week after
transplant. Times shown are the earliest time points when the biomarker becomes significantly increased from baseline.

Table 3. Urinary biomarkers for the early prediction of clinical outcomes in various AKI settings

Biomarker name Cardiopulmonary bypass (CPB) Kidney transplant Intensive care or emergency setting

NGAL Predicts AKI duration, severity, dialysis and death Predicts AKI duration Predicts AKI duration, severity and dialysis
References [41,42] [27] [34,36,43]

IL-18 Predicts AKI duration Predicts AKI duration Predicts death
References [22] [27] [66]

KIM-1 Not tested Predicts long-term graft loss Predicts dialysis and death
References [67] [68]

NGAL, neutrophil gelatinase-associated lipocalin; IL-18, interleukin 18; KIM-1, kidney injury molecule 1.
AKI is defined as a 50% or greater increase in serum creatinine from baseline.

massive (1000-fold) upregulation of NGAL mRNA in the
thick ascending limb of Henle’s loop and the collecting
ducts [11]. The resultant synthesis of NGAL protein in
the distal nephron and secretion into the urine appears to
comprise the major fraction of urinary NGAL. Supporting
clinical evidence is provided by the consistent finding of
a high fractional excretion of NGAL reported in human
AKI studies [11,20]. The over-expression of NGAL in the
distal tubule and rapid secretion into the lower urinary tract
is in accord with its teleological function as an antimicro-
bial strategy. It is also consistent with the proposed role for
NGAL in promoting cell survival and proliferation, given
the recent documentation of abundant apoptotic cell death
in distal nephron segments in several animal and human
models of AKI [45–48].

What about plasma NGAL in AKI? The kidney itself
does not appear to be a major source, since direct ipsilat-
eral renal vein sampling after unilateral ischemia indicates
that the NGAL synthesized in the kidney is not introduced
efficiently into the circulation, but is abundantly present in
the ipsilateral ureter [11]. However, it is now well known
that AKI results in a dramatically increased NGAL mRNA
expression in distant organs [49], especially the liver and

lungs, and the over-expressed NGAL protein released into
the circulation may constitute a distinct systemic pool. Ad-
ditional contributions to the systemic pool in AKI may de-
rive from the fact that NGAL is an acute phase reactant and
may be released from neutrophils, macrophages and other
immune cells [50]. Furthermore, any decrease in glomeru-
lar filtration rate resulting from AKI would be expected
to decrease the renal clearance of NGAL, with subsequent
accumulation in the systemic circulation. The relative con-
tribution of these mechanisms to the rise in plasma NGAL
after AKI remains to be determined.

Limitations of NGAL as an AKI biomarker

Clearly, NGAL represents a novel predictive biomarker for
AKI and its outcomes. However, the majority of studies
published thus far have involved relatively small numbers
of subjects from single centers, in which NGAL appears
to be most sensitive and specific in homogeneous patient
populations with predictable forms of AKI. Plasma NGAL
measurements may be influenced by a number of coexist-
ing variables such as CKD, chronic hypertension, systemic
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infections, inflammatory conditions and malignancies [51–
56]. In the CKD population, NGAL levels correlate with the
severity of renal impairment [55,56]. However, the increase
in plasma NGAL in these situations is generally much less
than that typically encountered in AKI.

There is an emerging literature suggesting that urine
NGAL is also a marker of CKD and its severity [1]. In sub-
jects with CKD due to glomerulonephritides, urine NGAL
levels were elevated and significantly correlated with serum
creatinine, GFR and proteinuria [57]. In patients with au-
tosomal dominant polycystic kidney disease, urine NGAL
measurements correlated with residual GFR and severity
of cystic disease [53]. Urine NGAL has also been shown to
represent an early biomarker for the degree of chronic injury
in patients with IgA nephropathy [58] and lupus nephritis
[59,60], and may be increased in urinary tract infections.
However, the levels of urine NGAL in these situations are
significantly blunted compared to those typically measured
in AKI.

Summary

NGAL as an AKI biomarker has successfully passed
through the pre-clinical, assay development and initial clin-
ical testing stages of the biomarker development process.
It has now entered the prospective screening stage, facili-
tated by the development of commercial tools for the mea-
surement of NGAL in large populations across different
laboratories. But will any single biomarker such as NGAL
suffice in AKI? In addition to early diagnosis and predic-
tion, it would be desirable to identify biomarkers capable
of discerning AKI subtypes, identifying etiologies, predict-
ing clinical outcomes, allowing for risk stratification and
monitoring the response to interventions. In order to ob-
tain all of this desired information, a panel of validated
biomarkers may be needed. The current status of NGAL
as an AKI biomarker is shown in Table 1. Other AKI
panel candidates may include interleukin-18 (IL-18), kid-
ney injury molecule-1 (KIM-1), cystatin C and liver-type
fatty acid binding protein (L-FABP), to name a few [4–6].
A brief comparison of the properties of NGAL versus other
promising urinary biomarkers is shown in Tables 2 and 3.

The availability of a panel of AKI biomarkers could rev-
olutionize renal and critical care. However, such idealistic
thinking must be tempered with the enormous technical
and fiscal issues surrounding the identification, validation,
commercial development and acceptance of multi-marker
panels. Deriving from the recent cardiology literature, a
clinically useful biomarker should (a) be easily measurable
at a reasonable cost with short turnaround times; (b) pro-
vide information that is not already available from clinical
assessment; and (c) aid in medical decision making [61]. In
this respect, troponin as a stand-alone biomarker provides
excellent diagnostic and prognostic information in acute
coronary syndromes and acute decompensated heart fail-
ure [62], although the addition of brain natrituretic peptide
does improve the risk stratification of death from cardio-
vascular causes [63]. If the current prospective multicenter
studies of NGAL measurements with standardized labo-

ratory platforms provide promising results, we may have
already closed in on the ‘renal troponin’.
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A little help from our friends: what an epidemiologic study teaches
us about autoinflammation, granuloma and proteinase-3-specific
antineutrophil cytoplasmic autoantibodies
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The standard epidemiologic approach to complex diseases
tracks down differences in incidence and prevalence rates
between distinct populations. Thereby, the potential im-
pact of genetic susceptibility and/or environmental factors
will be elucidated and can be dissected on the molecu-
lar biologic level in further studies. In this journal issue of
Nephrology Dialysis Transplantation, Watts et al. [1] report
on the incidence of renal vasculitis in a population from
the Norwich area, UK. The authors compared these data
on renal involvement in the three anti-neutrophil cytoplas-
mic autoantibody (ANCA)-associated vasculitides (AAV)
Wegener’s granulomatosis (WG), microscopic polyangiitis
(MPA) and Churg Strauss syndrome (CSS), to recently pub-
lished incidence rates of a Japanese population [1,2]. The
overall incidence rate of renal vasculitis was similar in the
UK and Japan (12.2/106 versus 14.8/106). The incidence of
WG (5.8/106) in the UK was slightly lower, that of MPA
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(4.9/106) slightly higher and that of CSS (1.4/106) compara-
ble to that of newly diagnosed WG, MPA and CSS patients
in central Europe [1,3]. However, no WG or CSS patients
were seen between 2000 and 2004 in the Japanese study.
All patients with renal vasculitis were diagnosed to suffer
from MPA (incidence 14.8/106). ANCA with a cytoplasmic
fluorescence pattern (C-ANCA) and proteinase-3-specific
(PR3)-ANCA were not detected among renal vasculitis pa-
tients in Japan. ENT involvement was virtually absent and
neurological involvement was significantly less frequently
diagnosed in renal vasculitis patients from Japan as com-
pared to those from the UK [1,2].

Caveats with respect to this study regard the compari-
son of data from a prospective (UK) and a retrospective
(Japan) study (as pointed out by the authors), comparing
data from a hospital-based survey (single referral centre
in Norwich, UK) with a population-based analysis of the
incidence of AAV (Miyazaki Prefecture, Japan), and the
lack of information, how ENT, respiratory, neurological
and gastrointestinal involvement were determined. For in-
stance, the history or a questionnaire on ENT-involvement
could be biased by memory, attention and other reasons.
Inspection with or without further endoscopic viewing by
an ENT specialist plus a MRT scan of the head demon-
strating signal intensity suggestive of inflammatory tis-
sue in the sinuses and further signs of vasculitis discloses
previously unsuspected and unrecognized involvement of
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