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              THERE is accumulating experimental evidence that leg 
blood fl ow is attenuated in the elderly ( 1  –  7 ), a condition 

made worse during physical activity, when metabolic demand 
is increased and must be met by an appropriate rise in perfu-
sion to the exercising tissue. Despite this well-known defi cit, 
to our knowledge no studies have extended these whole-limb 
observations to the level of skeletal muscle microcirculation. 
This is an important distinction, as it is perfusion (ie, the 
movement of blood through muscle tissue), not bulk blood 
fl ow through large conduit vessels, which is the most relevant 
measure of O 2  delivery to the muscle tissue itself. 

 Using nuclear magnetic resonance (NMR) spectroscopy, 
previous work has found evidence both for ( 8  –  10 ) and 
against ( 11  –  13 ) a dysfunction in exercising skeletal muscle 
energetics with age. However, none of these prior studies 
evaluated skeletal muscle perfusion, leaving uncertainty as 
to whether altered metabolism, if present, could be related 
to vascular dysfunction in the elderly cohorts studied. The 
dynamic relationship between microcirculatory blood fl ow 
and oxidative metabolism during exercise thus remains 
virtually unknown. 

 The recent approach of utilizing multiparametric NMR 
techniques may address this issue, as it offers the unique capa-
bility for near-simultaneous measurements of both muscle 
perfusion and metabolism in vivo ( 14  –  18 ). The interleaving of 
these imaging and spectroscopic modules provides the oppor-
tunity to determine skeletal muscle perfusion and metabolism 
kinetics during and following the stress of physical exercise. 
This NMR-based paradigm thus offers the promise of improv-
ing our understanding of the causal relationship between skel-
etal muscle hemodynamics and energetics in the elderly. 

 Accordingly, we evaluated muscle perfusion (arterial spin 
labeling [ASL]) and metabolism (phosphocreatine [PCr] and 
inorganic phosphate [P i ]) during and following moderate-in-
tensity (5W) dynamic plantar fl exion exercise in younger and 
older adults. We hypothesized ( 1 ) that muscle perfusion would 
be attenuated during exercise in older participants compared 
with their younger counterparts ( 2 ), that metabolic demand 
would be similar between groups during exercise, and ( 3 ) that 
following the cessation of exercise, hyperemic decay would 
be accelerated and PCr recovery extended in older participants 
compared with young.  
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   Background.       Aging is associated with a decline in exercise capacity that may be attributable to maladaptations in both 
skeletal muscle perfusion and metabolism; yet very little is known regarding the real-time, within-muscle interplay be-
tween these parameters during physical activity. Therefore, we utilized an unique nuclear magnetic resonance sequence 
to concomitantly examine changes in lower leg skeletal muscle perfusion and metabolism. 

   Methods.       In young (26  ±  5 years,  n  = 6) and older (70  ±  5 years,  n  = 6) healthy volunteers, arterial spin labeling measure-
ments of muscle perfusion were combined with 31 Phosphorous ( 31 P) nuclear magnetic resonance spectroscopy to monitor 
high-energy phosphate metabolites during and after 5 minutes of moderate-intensity ( ≈ 5W) plantar fl exion exercise. 

   Results.       Compared with young, end-exercise perfusion was diminished in older participants (43  ±  10 mL/100 g/minute, 
old; 60  ±  7 mL/100 g·minute, young), accompanied by greater phosphocreatine (PCr) depletion ( – 28%  ±  12%, old;  – 19%  ±  
7%, young) and elevated inorganic phosphate/PCr (0.41  ±  0.2, old; 0.24  ±  0.09, young); yet the time constant for PCr recov-
ery ( t , an index of muscle oxidative capacity) was similar between groups (51  ±  17 seconds, old; 48  ±  7 seconds, young). 

   Conclusions.       Together, these preliminary data provide evidence of an age-related decline in tissue perfusion and in-
creased  “ metabolic stress ”  during exercise but demonstrate that overall oxidative capacity in the elderly does not appear 
negatively affected by this relatively hypoperfused state. 
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 M ethods   

 Participants 
 Six young (26  ±  2 years) and six older (70  ±  2 years) 

volunteers were recruited for the present study. Health 
history and physical activity were assessed using a modi-
fi ed International Physical Activity Questionnaire (IPAQ). 
All participants were normotensive (<140/90 mmHg), 
normally active, and free of overt cardiovascular disease. 
No participants were taking prescription medication. 
Protocol approval and written informed consent were ob-
tained according to Pitié Salpêtrière University Hospital 
guidelines, in accordance with the Declaration of 
Helsinki.   

 Experimental Protocol 
 Detailed accounts of the NMR setup and acquisition have 

been published previously ( 14  –  18 ) and may be found in 
Appendix 1. Briefl y, studies were performed in a 4-T super-

conducting magnet (Magnex 4/60), with participants laying 
supine and the calf of the participant’s dominant leg placed 
inside a volume coil for imaging and on a surface coil tuned 
for 31 Phosphorous ( 31 P) spectroscopy. After a 5-minute pe-
riod of baseline measurements, participants performed 
plantar fl exion exercise (0.33 Hz,  ≈ 5W) for 5 minutes on a 
custom-built ergometer ( 17 ), followed by 10 minutes of 
postexercise measurements.   

 Data Analysis 
 A perfusion map was generated, and four regions of in-

terest (ROIs) of 2 – 3 cm 2  were traced within the gastrocne-
mius and soleus muscles, carefully excluding voxels 
containing lipids or large blood vessels ( Figure 1 ). Perfusion 
data are reported as the average from all ROIs (9 – 10 cm 2 ). 
End-exercise perfusion was determined using averaged val-
ues from 10 seconds immediately preceding the cessation 
of exercise. Postexercise hyperemic decay was determined 
using cumulative perfusion area under the curve (AUC, 
trapezoidal rule) for 5 minutes following cessation of exer-
cise. Relative PCr depletion/repletion and the ratio of Pi to 
PCr were directly measured to provide indices of muscle 
metabolic demand and effi ciency during and immediately 
following exercise ( 11 , 19  –  21 ). Muscle intracellular pH 
was calculated from the chemical shift ( d ) between the Pi 
and PCr peaks ( 22 ). PCr recovery was fi tted monoexponen-
tially (Systat, San Jose, CA) to determine the PCr time 
constant ( t ).       

 Statistical Analyses 
 Statistics were performed with the use of commercially 

available software (SigmaStat 3.10, Systat Software Inc., 
Point Richmond, CA). Student  t  tests were used to identify 
between-group differences in end-exercise perfusion, PCr 
depletion, perfusion AUC, and PCr  t . Repeated measure 
analysis of variance was used to identify between-group 
differences in Pi/PCr, with the Bonferroni test used for post 
hoc analysis when a signifi cant main effect was found. All 
group data are expressed as mean  ±  standard deviation. 
Signifi cance was established at  p   <  .05.    

 R esults  
 Participant characteristics are presented in  Table 1 .      

  

 Figure 1.        Example of arterial spin – labeled perfusion (top panel) and 31 
Phosphorous ( 31 P) phosphocreatine (PCr) recovery (bottom panel) in the lower 
leg upon cessation of plantar fl exion exercise in an elderly volunteer. Top panel 
inlay is a  1 H image of the lower leg (ultrafast spin echo imaging, 6 × 6 mm, fi eld 
of view 22 × 11 cm, acquisition matrix 128 × 36). Four regions of interest have 
been highlighted from medial (left side of image) to lateral (right side of image). 
Bottom panel inlay illustrates a stack plot of  31 P spectra ( – 7 to 20 ppm) with 
visible changes in the PCr peak during recovery.    

 Table 1.        Participant Characteristics  

  Young Old  

  Age (y) 26  ±  5 70  ±  5* 
 Height (cm) 170  ±  5 166  ±  5 
 Weight (kg) 69  ±  7 66  ±  7 
 Gastrocnem   ius/soleus muscle 
 cross-sectional area (cm 2 )

42  ±  5 43  ±  7 

 Plantar fl exion work rate (W) 4.7  ±  0.1 4.8  ±  0.1  

   Note :  *Signifi cant difference between young and old,  p  < .05.   
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 ASL Perfusion 
 Using ASL perfusion images of the lower leg taken such 

as that shown in  Figure 1 , we observed a decrease in gas-
trocnemius/soleus perfusion in older participants (43  ±  10 
mL/100 g·minute) compared with young (60  ±  7 mL/100 
g·minute) at the end of plantar fl exion exercise ( Figure 2 ). 
Postexercise hyperemia (AUC) was lower in the elderly 
(866  ±  352 mL/100 g, old; 1290  ±  341 mL/100 g, young; 
 Figure 3 ). One young participant was excluded from 
postexercise perfusion analysis due to poor signal quality 
caused by excessive movement within the volume coil.           

 Phosphorous Depletion and Recovery 
 PCr depletion at the end of exercise was signifi cantly 

greater in older participants ( – 28%  ±  12%) compared with 
young ( – 19%  ±  7%, young),  Figure 2 . Likewise, during plan-
tar fl exion exercise, Pi/PCr was signifi cantly greater ( ≈ 40%) 
in older participants compared with young ( Figure 4 ). Fol-
lowing cessation of exercise, the time constant ( t ) of PCr 
recovery was not different between groups (51  ±  17 seconds, 
old; 48  ±  7 seconds, young;  p  = 0.7). In both groups, end-
exercise pH (7.04  ±  0.02, old; 7.03  ±  0.07, young) did not 
differ from resting values (7.00  ±  0.02, old; 7.04  ±  0.02, 
young), and thus no correction for pH was applied to correct 
for the effect of acidosis on the  t  of PCr recovery ( 23 ).    

 D iscussion  
 The present study sought to examine age-related changes 

in muscle hemodynamics and metabolism during and fol-
lowing exercise utilizing a noninvasive, clinically relevant 
methodology. To our knowledge, this is the fi rst study of its 
kind simultaneously examining perfusion and metabolism 
in a healthy but aging cohort using NMR measurements of 
microcirculatory blood fl ow (ASL) and energetics ( 31 P 
spectroscopy). The primary fi nding was that despite a  ≈ 30% 
reduction in both skeletal muscle perfusion and metabolic 
stress (PCr depletion) during exercise in the elderly, overall 

muscle oxidative capacity (PCr recovery time constant,  t ) 
was not negatively affected by this hypoperfused condition. 
These preliminary data provide new evidence that the docu-
mented age-related decline in skeletal muscle perfusion 
during physical activity minimally affect muscle metabo-
lism, providing an indication that skeletal muscle function 
is preserved with healthy aging.  

 NMR Approach for Simultaneous Perfusion and 
Metabolism Measurements 

 In the present study, an unique NMR pulse sequence re-
cently developed by members of our group ( 15 ) was em-
ployed to acquire interleaved perfusion and metabolic data 
every 3 seconds, resulting in a set of measurements with 
high temporal resolution. For perfusion, the arrival of the 
tagged arterial blood induces a modulation in tissue magne-
tization proportional to perfusion, and this change is re-
corded by NMR imaging, creating a perfusion map ( Figure 1 ). 
Within the same NMR sequence, skeletal muscle energetics 
were simultaneously assessed through  31 P NMR spectroscopy. 
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 Figure 2.        Lower leg perfusion (black bars) and phosphocreatine (PCr) de-
pletion (gray bars) at the end of 5-minute plantar fl exion exercise in young and 
older participants. Values are mean  ±  standard deviation. Asterisk indicates a 
signifi cant difference between young and old,  p  < .05.    
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 Figure 3.        Lower leg perfusion kinetics (top panel) and phosphocreatine 
(PCr) resynthesis (bottom panel) at the end of 5-minute plantar fl exion exercise 
in young (light gray shade) and older (dark gray shade) participants. Dashed 
line indicates the cessation of exercise. Values are mean  ±  standard deviation. 
AUC, area under the curve;  t , time constant.    
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As PCr depletion is directly proportional to adenosine 
triphosphate (ATP) hydrolysis ( 24 ), relative depletion of 
PCr and recovery can be used as an index of muscle oxida-
tive capacity ( 11 , 19 , 20 ). When viewed together, these ASL 
and PCr measurements provide a unique opportunity to 
probe the dynamic relationship between perfusion and me-
tabolism in skeletal muscle as a result of exercise ( Figure 3 ) 
with advancing age.       

 Consequences of Age on Skeletal Muscle Perfusion and 
Metabolism 

 Until now, the well-documented decline in limb blood 
fl ow with age ( 1  –  7 ) has not been evaluated within the skel-
etal muscle microcirculation, an approach that offers direct 
examination of hemodynamics within the metabolically ac-
tive region of the exercising muscle. With this new approach, 
we have identifi ed a  ≈ 30% decline in lower leg perfusion of 
older participants during plantar fl exion exercise ( Figures 2  
and  3 ). This blunted vasodilation may result from several 
age-related adaptations, including changes in microvascular 
structure, local vascular control mechanisms, peripheral 
muscle sympathetic activation, and circulating vasoactive 
substances. Although involvement of each of these factors 
to the observed responses is beyond the scope of the present 
study, this NMR-based approach offers the promise of a 
spatially and temporally resolved technique to further defi ne 
how each of these adaptations may infl uence skeletal muscle 
perfusion and metabolism with advancing age. 

 Several previous studies have applied NMR spectroscopy 
to examine the effect of age on skeletal muscle energetics fol-
lowing exercise, with evidence for ( 2 , 10 , 25 ) and against ( 11  –
  13 , 23 , 26 ) an age-related decrement in muscle metabolism. 
The discrepancy between these studies may be attributed to 

differences in exercise modality and work rate, volunteer fi t-
ness and age, and technical considerations such as fi eld 
strength and data acquisition time. In the present study, we 
sought to limit these confounding variables by normalizing 
for work rate, the recruitment of volunteers who did not par-
ticipate in regular exercise, and use of a high fi eld strength 
(4-T) magnet with a rapid sampling rate. Consideration of 
these factors thus adds credence to the current fi nding that 
PCr repletion following moderate-intensity exercise is not 
compromised in the elderly compared with their younger 
counterparts ( Figures 2  and  3 ), supporting the existing evi-
dence against a decline in metabolic capacity in skeletal 
muscle with healthy aging ( 11  –  13 , 23 , 26 ).   

 Relationship Between Perfusion and Metabolism 
 The localized, near-simultaneous assessment of perfu-

sion and metabolism in the active skeletal muscle offers the 
unique opportunity to explore the concept of  “ matching ”  
between these variables in the elderly, where the perfu-
sion – metabolism relationship is known to be altered as a 
consequence of age. Although it is diffi cult to determine 
cause and effect with these measurements, it is tempting to 
speculate that the greater PCr depletion is a functional con-
sequence of the relative hypoperfusion in the elderly group 
( Figure 3 ), such that older participants experience some 
degree of  “ mismatch ”  between perfusion and metabolism 
that may ultimately lead to skeletal muscle dysfunction 
during exercise. This concept is supported by clinical in-
vestigations in patients with peripheral artery disease, 
where reduced perfusion has an unfavorable effect on PCr 
kinetics ( 26  –  28 ). However, further studies with multiple 
work rates and refi ned spatial mapping of  31 P are needed to 
fully examine the matching of perfusion and metabolism in 
this cohort.   

 Perspectives 
 Together, the metabolic and hemodynamic data pre-

sented herein suggest that when older individuals perform 
a given level of exercise, it imposes a greater metabolic 
challenge than in their younger counterparts, which may be 
attributed to the proposed decline in skeletal muscle mito-
chondrial function with advancing age ( 29 ). Indeed, in-
creased Pi/PCr during exercise refl ects an accumulation of 
adenosine diphosphate (ADP), which is thought to indicate 
an  “ uncoupling ”  of mitochondrial ATP production and the 
stimulus (ADP) for metabolism ( 21 ). Thus, in the present 
study it appears that the elderly were operating under a 
greater  “ metabolic stress ”  and a subsequent need for greater 
ADP levels to drive muscle metabolism during exercise (ie, 
elevated Pi/PCr,  Figure 4 ); yet they successfully completed 
a similar amount of muscular work. These fi ndings extend 
previous work from our group ( 2 ) identifying a reduced 
skeletal muscle perfusion but similar O 2  consumption in 
the exercising leg of the elderly, suggesting that the elderly 
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 Figure 4.        Changes in muscle metabolism (Pi/PCr ratio) as a consequence of 
plantar fl exion exercise in young (circles) and older (squares) participants. 
Shaded box indicates plantar fl exion exercise. Values are mean  ±  standard 
deviation. Pi, inorganic phosphate, PCr, phosphocreatine. Asterisk indicates a 
signifi cant difference between young and old,  p <.05.    
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are capable of adapting to the condition of reduced perfu-
sion in a way that is of minimal consequence to overall 
muscle function. In agreement with this concept, PCr re-
covery did not differ between young and old despite a dec-
rement in perfusion in the elderly group during recovery 
( Figure 3 ). Together, these previous and present fi ndings 
during exercise in older participants suggest some degree 
of dysregulation in both perfusion and metabolism during 
acute exercise but without a clear decrement in functionality. 
We propose that these data may be interpreted as evidence that 
some age-related changes, which initially appear detrimen-
tal, may in fact represent an adaptive process that ultimately 
preserves  “ normal ”  muscle function with advancing age.   

 Conclusion 
 We have identifi ed age-specifi c adaptations in skeletal 

muscle perfusion (ASL) and metabolism ( 31 P kinetics) dur-
ing and following plantar fl exion exercise using a novel, 
interleaved NMR sequence. End-exercise perfusion was re-
duced and metabolic stress (PCr depletion and Pi/PCr levels) 
was greater in the elderly; yet the time constant ( t ) of PCr 
recovery did not differ between young and old. These data 
extend previous fi ndings of reduced skeletal muscle blood 
fl ow in the leg with age but suggest that this hemodynamic 
difference does not adversely affect overall skeletal muscle 
function.    
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   A ppendix 1 : M ethods   

 Participants 
 Six young (26  ±  2 years) and six older (70  ±  2 years) 

volunteers were recruited for the present study. Health his-
tory and physical activity were assessed using a modifi ed 
IPAQ questionnaire. All participants were normotensive 
(<140/90 mmHg), normally active (ie, no regular exercise 
routine), and free of overt cardiovascular disease. No par-
ticipants were taking prescription medication. Protocol ap-
proval and written informed consent were obtained according 
to Pitié Salpêtrière University Hospital guidelines, in accor-
dance with the Declaration of Helsinki.   

 Experimental Protocol and Setup 
 Studies were carried out in a 4-T, 46-cm internal bore, 

superconducting magnet (Magnex 4/60) interfaced to a 
Bruker Biospec NMR spectrometer. Before the experi-
ments, all participants were familiarized with the experi-
mental setup and were accustomed to lying supine in the 
magnet. The calf of the participant ’ s dominant leg was 
placed inside a 17-cm inner diameter transversal electro-
magnetic  1 H transmit-and-receive volume coil. Affi xed to 
the volume coil was a circular, 8-cm-diameter custom-built 
 31 P surface coil. This volume/surface coil unit was posi-
tioned underneath the gastocnemius muscle, centered at the 
widest portion of the muscle as verifi ed by sequential refer-
ence images. A reference image was also utilized for deter-
mination of cross-sectional area of the gastrocnemius/soleus 
muscle group, which was subsequently used for normaliza-
tion of work rate. 

 After a 5-minute period of baseline measurements, par-
ticipants performed plantar fl exion exercise (0.33 Hz,  ≈ 5W) 
for 5 minutes on a custom-built, nonferrous hydraulic er-
gometer ( 22 ), followed by 10 minutes of postexercise mea-
surements. Participants were encouraged to perform muscle 
contraction as quickly as possible (0.5 – 1 second) in order to 
maximize relaxation time between contractions. To main-

tain optimal signal-to-noise ratio and minimize motion 
artifact, all images were collected during this 2-second 
relaxation phase. 

 Calf muscle perfusion and energy metabolism were stud-
ied by rapidly (3 seconds) interleaved acquisitions of satu-
ration inversion recovery ASL perfusion imaging and  31 P 
spectroscopy of the high-energy phosphate metabolites, as 
described previously ( 22 ). This interleaved acquisition 
scheme was initially proposed and implemented by our 
group ( 20 ) and was here driven by the multiscan control 
(MSC) tool developed and made commercially available by 
Bruker. A complete dataset was generated every 3 seconds. 
The MSC tool automatically distributed the raw interleaved 
data in distinct imaging,  1 H, and  31 P spectroscopy fi les, 
which were immediately ready for processing with standard 
ParaVision and XWIN NMR Bruker software.   

 Satir Perfusion Images 
 A temporary perfusion map was extracted by summing the 

differences between pairs of images (tagged and untagged) 
acquired during and after plantar fl exion exercise. Four ROIs 
of 2 – 3 cm 2  were traced inside sections of the gastrocnemius 
and soleus muscles, carefully excluding voxels containing 
lipids or vessels. Similar ROIs were selected in all the images 
of the series, and perfusion ( f ) was calculated according to  
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 where  M  stands for the image intensity in muscle ROI after 
slice-selective (SS) and nonselective (NS) inversion,  
T  is the ASL time (0.82 seconds),  l  is the tissue/blood parti-
tion coeffi cient, and  r  1  is the tissue spin-lattice relaxation 
rate. In muscle, we assume  r  1  = 0.66/second and  l  = 0.9. 

 Perfusion data are presented as the average from all ROIs 
(9 – 10 cm 2 ). End-exercise perfusion was determined using 
averaged values from 10 seconds immediately preceding 
the cessation of exercise. Postexercise hyperemic decay was 
determined using cumulative perfusion AUC (trapezoidal 
rule) for 5 minutes following cessation of exercise, accord-
ing to the equation      

( ( ) ( / )( )( ))( ) ( ) ( )y x x y y x xi i i i i i i+ + +− + − −∑ 1 1 11 2 .

  31 P Spectra of High-Energy Phosphates 
 The  31 P free induction decays were summed four by four 

and were processed with 8-Hz line-broadening exponential 
multiplication. Pi and PCr integrals were calculated with inte-
gration limits set to 5.6/3.5 ppm and 1.5/ – 1.5 ppm, respec-
tively. No zero fi lling was utilized. Muscle intracellular pH 
was calculated from the chemical shift ( d ) between the Pi and 
PCr peaks ( 24 ).  

pH = + − +
−







6 75
3 27

5 69
. log

.

.

d
d

 .



 WRAY ET AL.974

PCr recovery was fi tted monoexponentially (Systat) to de-
termine the PCr time constant ( t ), according to the equation: 
 y  =  y  0  +  a (1  –  e  –  bx  ), where  y  0  = the PCr baseline value and 
 a  = the difference between the baseline and recovery value.   

 Statistical Analyses 
 Statistics were performed with the use of commercially 

available software (SigmaStat 3.10, Systat Software Inc.). 

Student  t  tests were used to identify between-group differ-
ences in end-exercise perfusion, PCr depletion, perfusion 
AUC, and PCr  t . Repeated measure analysis of variance 
was used to identify between-group differences in Pi/PCr, 
with the Bonferroni test used for post hoc analysis when a 
signifi cant main effect was found. All group data are 
expressed as mean  ±  standard deviation. Signifi cance was 
established at  p  <.05.      


