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Abstract
A feed-forward neural network was investigated to predict the occurrence of lung radiation-induced
Grade 2+ pneumonitis. The database consisted of 235 patients with lung cancer treated using
radiotherapy, of whom 34 were diagnosed with Grade 2+ pneumonitis at follow-up. The network
was constructed using an algorithm that alternately grew and pruned it, starting from the smallest
possible network, until a satisfactory solution was found. The weights and biases of the network were
computed using the error back-propagation approach. Momentum and variable leaning techniques
were used to speed convergence. Using the growing/pruning approach, the network selected features
from 66 dose and 27 non-dose variables. During network training, the 235 patients were randomly
split into ten groups of approximately equal size. Eight groups were used to train the network, one
group was used for early stopping training to prevent overfitting, and the remaining group was used
as a test to measure the generalization capability of the network (cross-validation). Using this
methodology, each of the ten groups was considered, in turn, as the test group (ten-fold cross-
validation). For the optimized network constructed with input features selected from dose and non-
dose variables, the area under the receiver operating characteristics (ROC) curve for cross-validated
testing was 0.76 (sensitivity: 0.68, specificity: 0.69). For the optimized network constructed with
input features selected only from dose variables, the area under the ROC curve for cross-validation
was 0.67 (sensitivity: 0.53, specificity: 0.69). The difference between these two areas was statistically
significant (p=0.020), indicating that the addition of non-dose features can significantly improve the
generalization capability of the network. A network for prospective testing was constructed with
input features selected from dose and non-dose variables (all data were used for training). The
optimized network architecture consisted of six input nodes (features), four hidden nodes, and one
output node. The six input features were: lung volume receiving >16 Gy (V16), generalized equivalent
uniform dose (gEUD) for the exponent a=1 (mean lung dose), gEUD for the exponent a=3.5, free
expiratory volume in 1 s (FEV1), diffusion capacity of carbon monoxide (DLCO%), and whether or
not the patient underwent chemotherapy prior to radiotherapy. The significance of each input feature
was individually evaluated by omitting it during network training and gauging its impact by the
consequent deterioration in cross-validated ROC area. With the exception of FEV1 and whether or
not the patient underwent chemotherapy prior to radiotherapy, all input features were found to be
individually significant (p<0.05). The network for prospective testing is publicly available via
internet access.
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I. INTRODUCTION
Radiation-induced pneumonitis is a major dose-limiting toxicity in thoracic radiotherapy,1-9

occurring in approximately 5-15% of patients who undergo radiotherapy to the thorax. To
minimize toxicity to the lung associated with thoracic radiotherapy, it is necessary to
understand the correlation between the risk of radiation-induced pneumonitis and treatment
parameters such as dosimetric factors, biological factors, and baseline pulmonary function
tests. Several studies have correlated dosimetric factors to the incidence of radiation-induced
pneumonitis.2,10-25 These studies suggest that radiation pneumonitis may be linked to V20
(lung volume receiving >20 Gy),2,10-16,20 mean lung dose,2,12,13,16-19,25 V30

,10,15,17 V15
,

10, V40
,15 and V50.15 Non-dose factors (such as age, tumor lobe location, etc.) have also been

shown to correlate to radiation pneumonitis.11,13,15,17,23,24

Most of these studies focus on univariate correlation, whereas it is possible that much greater
correlation may be obtained by appropriately combining variables into a predictive model. In
addition, most of these studies modeled the normal tissue complication probability (NTCP)
based solely on dosimetric factors. For example, Seppenwoolde et al.25 assumed a sigmoid
relationship between the complication probability and mean lung dose in the Lyman26 NTCP
model. These models may not be ideal for modeling lung injury since they assume that radiation
response depends on dose alone. Non-dose factors may play an important role in inducing and
even enhancing lung injury. For example, chemotherapeutic drugs have been shown to enhance
radiation-induced lung injury.27 Lind et al.11 found that the predictive ability of lung V20 was
substantially improved for the subset of patients under 55 years of age. To account for the
synergistic interaction between dose and non-dose patient factors, it appears imperative that a
powerful, yet robust, model is required to predict for the incidence of radiation-induced
pneumonitis. In this work, predictive modeling using feed-forward neural networks28 is
investigated. Neural networks, unlike simpler models, have the potential to model the
synergistic interaction between variables using a flexible nonlinear relationship.28

Two prior analyses from our group have considered neural networks and concluded that their
predictive capabilities are equivalent29 or better30 than other commonly used dosimetric
models.31,32 However, these earlier works were limited, since the network was constructed
with a fixed number of nodes in the hidden layer,29 they lacked a selection process for input
features,30 and input features did not include non-dose variables.30 In addition, issues such as
overfitting and the correlation of input features were not studied. Therefore, there is an
opportunity to improve upon these prior efforts and potentially enhance the model robustness
and predictive accuracy.

In this work the neural network was constructed using a growing/pruning methodology33,34

that incorporated a unique strategy to reduce overfitting during training and feature selection.
The possibility of overfitting was reduced by training the network using one portion of the
training group and stopping training when the prediction error on the remaining portion of the
training group does not improve (or deteriorates). This same strategy was also used for feature
selection—one portion of the training group was used for identifying potential features, and
the remaining portion was used for selecting from the potential features based on robustness.

The neural network was constructed from a database of 235 patients with lung cancer treated
using radiotherapy (compared to 97 patients29 and 142 patients30 in prior neural network
analyses from our group). Neural network input features were selected from dose and non-dose
patient variables. The network was tested using ten-fold cross-validation, wherein one tenth
of the patients were tested, in turn, using a network constructed from the remaining patients.
The significance of each of the selected features was statistically evaluated. The network is
made publicly available through internet access.
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II. MATERIALS AND METHODS
II.A. Patient variables

This study was based on data from 235 patients with lung cancer treated with external beam
radiotherapy at Duke University Medical Center. Of these patients, 34 were diagnosed with
Grade 2 or higher lung pneumonitis at followup. Radiation-induced pneumonitis was graded
from 0 to 4, as follows. Grade 0: no increase in pulmonary symptoms due to radiotherapy;
Grade 1: radiotherapy-induced symptoms not requiring initiation or increase in steroids and/
or oxygen; Grade 2: radiotherapy-induced pulmonary symptoms requiring initiation or increase
in steroids; Grade 3: radiotherapy-induced pulmonary symptoms requiring oxygen; Grade 4:
radiotherapy-induced pulmonary symptoms requiring assisted ventilation or causing death.
The details of patients and radiotherapy treatments are described in a previous publication.35

In brief, all patients were treated as part of a prospective study to assess radiotherapy-induced
lung injury. Patients were treated using three-dimensional conformal radiotherapy to doses
ranging from 40 to 86.4 Gy (median 66 Gy). Radiation pneumonitis was prospectively assessed
by the treating physician at followups every 3-4 months post-treatment. The cases in which a
diagnosis of radiation pneumonitis was uncertain were classified as “hard-to-score”36 and not
considered in this analysis.

Inputs for the neural network (features) were selected from 93 dose and non-dose variables.
The dosimetric variables consisted of the dose-volume histogram (DVH, the percentages of
normal lung volume above doses ranging from 6 to 60 Gy, in increments of 2 Gy), mean heart
dose, and 37 lung generalized equivalent uniform doses (gEUD)37 (gEUD is calculated as

, where Vi is the lung volume receiving dose Di) for the exponent a
ranging from 0.4 to 4 in increments of 0.1. Note that for a=1, gEUD is equivalent to the mean
lung dose. Non-dosimetric variables consisted of race, age, sex, tumor stage, tumor location,
chemotherapy schedule, histology type, surgery (yes or no), once or twice daily radiotherapy,
pre-radiotherapy FEV1 (forced expiratory volume in 1 s), FEV1% (as percentage of predicted
normal), pre-radiotherapy DLCO (Carbon Monoxide diffusion capacity in lung), and pre-
radiotherapy DLCO% (as percentage of predicted normal). In patient cases where a certain
variable was not collected (missing variable), the variable was assigned the average of non-
missing values. This method of imputing missing values is frequently employed in work on
machine learning.28,34

A characteristic of the data is that the dose variables tend to be highly correlated. Dose variables
that are related to each other with a >95% correlation were identified. During network
construction, variables satisfying this criterion were forbidden from being selected as neural
network input features at the same time. Once a variable was selected as an input feature by
the neural network, all other highly correlated variables were removed from contention in
subsequent feature selection. This ensured a high degree of independence between the input
features selected by a network.

II.B. Feed-forward neural network
An example neural network is shown in Fig. 1. The nodes in the first layer (input layer) take
in the inputs X (X1, X2,...) and nodes in the last layer (output layer) produce the output f(X).
Each node in the hidden and output layer sums (Σ) over all the weighted inputs, which is then
passed through an activation function (σ) that outputs a response. The activation function used
here is sigmoid: σ(v)=1/(1+e-v),28 where v is the input and σ is the response. The choice of
sigmoid activation function was based on its popularity in neural networks, and also because
it is exactly equivalent to the softmax function used in classification problems.28
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The generalization capability of a neural network can be estimated by predicting outcome on
data that are not used during training. Due to the small size of the overall dataset, a cross-
validation28 method was used to estimate network generalization capability rather than rigidly
partitioning the data into a separate training set (used to build the network) and validation set
(used to test the network). In the ten-fold cross-validation28,34 testing scheme adopted here,
the data were broken into ten approximately equal partitions, and each partition was tested
using network(s) built using the nine remaining partitions as the training data.

A shortcoming of neural networks is their tendency to assume that “weak” trends and
idiosyncracies in the training data are generalizable.28 This shortcoming is generally referred
to as overfitting. In this work, the tendency to overfit was reduced by adopting two measures:
(1) An input feature was added only if it is judged robust by a subset of the training data
(training-validation data) that was not used to select the feature, and (2) network weights and
biases were progressively optimized (trained) only as long as the error in the training-validation
data continued to decrease.

II.B.1. Neural network training and cross-validation—Given the data 〈(x1, y1)...(xN,
yN)〉, where xi is the vector of inputs and yi is the outcome, for patient i, the neural network
was trained by adjusting weights and biases to minimize the difference between the network
outputs (f) and the known outputs (y). In this work, the error was defined as the regression
formulation28

(1)

where i labels the N training cases, xi is the vector of input features, and yi is 1 (pneumonitis
Grade 2 or above) or 0 (pneumonitis Grade 1 or lower).

The error R was minimized by the back-propagation iterative learning procedure.38 The
weights and biases at the (r+1)st iteration were updated as follows:

(2)

where β denotes weights or biases, γ is the learning rate, and m is a momentum parameter39,
40 term used to accelerate learning. The learning rate γ and momentum parameter m were
adaptively adjusted based on the change of error with iterations. The learning rate γ was varied
during the course of iterations, starting from γ=0.01. During the iterative process, the
momentum parameter m was fixed at 0.9, and the learning rate γ was increased by a
multiplicative factor of 1.04 if the new iteration error was smaller than the previous iteration
error. If, on the other hand, the new iteration error was larger than the previous iteration error,
m was reduced to zero, and γ was decreased by a multiplicative factor of 0.7.

Since the activation function σ(v)=1/(1+e-v) used here increases with increasing v, the weights
associated with certain variables were constrained to take on only either positive or negative
values. This was essentially a precaution to prevent unrealistic results, such as a higher dose
predicting for a lower probability of injury. While this constraint prohibits a complementary
subtractive effect between two dose variables, it also safeguards against detrimental overfitting
caused by the more flexible constraint-free condition. Thus, the constraint leads to a more
conservative predictive model. All dose, age, and stage features were allowed to have only
positive weights, while pre-radiotherapy FEV1, FEV1%, pre-radiotherapy DLCO, and pre-
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radiotherapy DLCO% were allowed to have only negative weights. All other features were
allowed positive or negative weights.

To avoid converging to the local minimum of the error function,28 the network was trained
five times with different initializations of weights and biases. The solution with the lowest
error was chosen. At the global minimum of the training error R, the neural network can
potentially detrimentally overfit to the training data (overtraining), i.e., the network could
assume that “weak” trends in the training data are generalizable.28 To avoid overfitting, an
early stopping strategy was used.28 This strategy stops network training before convergence
to the global minimum. In this technique, patients with and without pneumonitis were randomly
split into ten groups of approximately equal size. Eight groups of data were used as the training-
construction data set to select input features and optimize the network weights and biases
(network training). One group of data was used as the training-validation data set to monitor
the evolution of a realistic estimate of error with training iterations and, thereby, signal early
stopping in the training. Together, the training-construction and training-validation sets
constitute the training set. During network training, the training-construction error can be
expected to continuously decrease with iterations, whereas the training-validation error can be
expected to initially decrease and then increase when the network starts overfitting. Network

training was stopped (early stopping) when  (Prechelt41), where E(r) is the

training-validation error at iteration r, and  is the lowest training-validation error obtained
up to iteration r.

The one group remaining outside of the training set was used for cross-validation, to obtain a
realistic estimate of model predictive capability. Each of the ten groups was treated as the cross-
validation set, in turn. For each cross-validation set, the nine remaining groups were used as
the training set. The training set was used to create nine neural networks, with each network
using eight of nine groups for training-construction and the one remaining training set group
for training-validation (early stopping). The nine neural networks associated with each training
set possessed the same architecture and input features, but with different weights and biases
(optimized for the particular training-construction set). The selection of input features for the
nine neural networks was based solely on the characteristics of the training set. This selection
process, explained in the next subsection, includes safeguards to reduce the possibility of
overfitting. The results of testing on a cross-validation set were averaged over all nine networks.
The combined results from all ten cross-validation groups were used to assess model predictive
capability.

II.B.2. Neural network construction algorithm—The neural network was synthesized
using an algorithm that combined constructive33,34 and pruning42 approaches. The initial
network consisted of one input node, one hidden layer with three nodes, and one output node.
During the course of network building, three major steps were followed in sequence: pruning,
substitution, and addition. Decrease in a mean-squared-error metric was used as an indicator
of the success of a step in improving neural network (NN) predictive capability

(3)

where the summation i is over all the patients in a set S (|S| is the number of patients). In the
pruning step, input and hidden node(s) were removed if the error metric improved (input node
is equivalent to input feature). In the substitution step, an input feature was substituted with
another unused variable if the error metric improved. In the addition step, an input node or
hidden node was added if the error metric improved. The order of the “operators” involved in
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these steps is as follows: (1) Remove one input node; (2) remove one hidden node; (3) substitute
one input node feature with another input feature selected from the unused variables (unused
variables that have <0.95 correlation with all current input features); (4) add one input node;
(5) add one hidden node.

Two algorithms for network construction are detailed next—Algorithm A: network
construction for cross-validated testing (to obtain a realistic estimate of model predictive
capability), and Algorithm B: network construction for prospective testing (testing on patients
outside the database used in this work). Thus, the neural networks built with Algorithm A used
nine tenths of the data for training, while those built with Algorithm B used all data for training
(no data were reserved for testing). Operatork refers to the kth operator in the order above; TV
and TC refer to the training-validation and training-construction sets, respectively.

Algorithm A: Network construction for cross-validated testing: Step 1: Do for each cross-
validation set i=1, ...,10.

Step 2: Let the initial network be denoted as  (one input node, three hidden nodes), for
training-validation set j=1, ...,10 (j ≠ i).

Step 3: do for each Operator k=1, ...,5

1. ;

2. Train the network  on its training-construction set (all patient groups except i and
j)

3.

.

4. if k=5 and  were not replaced, stop construction.

Step 4: Test networks  on cross-validation set i.

Step 5: Average the nine test results for cross-validation set i.

When there was only one input node, Operator1 (remove one input node) was skipped.

In Algorithm B, all ten groups were used for training. Each of the ten constructed networks
used nine groups for training-construction and the remaining group for training-validation. The
ten networks share a common architecture and input features but with weights and biases
optimized to the corresponding training-construction set (the training-validation set is used for
early stopping). The neural network prediction for a prospective patient is the average of the
results from all ten networks.

Algorithm B: Network construction for prospective testing: Step 1: Let the initial network

be denoted as  (one input node, three hidden nodes), for training-validation set j=1, ...,10.

Step 2: Do for each Operator k=1, ...,5

1. ;

2. train the network  on it’s training-construction set (all patient groups except j);
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3.

;

4. if k=5 and  were not replaced, stop construction.

Step 3: Output the networks .

II.C. Model comparison
Two neural network ensembles were constructed, one (NNdose) with input features selected
only from the 66 lung dose variables and the other (NNall) with input features selected from
all 93 variables. These two networks were compared to each other by comparing their
corresponding receiver operator characteristic (ROC) curves43 for cross-validated testing
(Algorithm A). The ROC curve plots true positive fraction versus 1-true negative fraction for
varying values of the threshold measure of injury separating cases with and without predicted
injury. The area under the ROC curve (AUC) was used to assess the predictive capability of
the models—a larger area suggests a more accurate model. ROCKIT software44 from the
Department of Radiology, University of Chicago, was used to determine if the AUC difference
between the two models was statistically significant. This software calculates the statistical
significance of the difference between two ROC areas using a univariate z score test. (Null
hypothesis: the datasets arose from binormal ROC curves with equal areas beneath them.)

II.D. Evaluation of significance of input features
To evaluate the significance of any one input feature selected in the prospective model
(Algorithm B), the corresponding input node was removed, following which the network was
retrained and tested. The exclusion of an input feature could result in some degradation of
predictive ability, reflected as a decrement of the area under the cross-validated ROC curve.
The statistical significance44 of the ROC area decrement, resulting from feature exclusion, was
used to evaluate the importance of the feature.

III. RESULTS AND DISCUSSION
III.A. Neural network construction

III.A.1. Cross-validated testing (Algorithm A)—The neural network was programmed
in-house, using MATLAB (Mathworks, Natick, MA). The training time differed slightly for
networks with different numbers of hidden nodes and input features. For the network with six
input features and four hidden nodes, the training time was approximately 160 s on a dual-
processor laptop (Intel CPU T7200, 200 GHz, with 2 GB of RAM).

Each of the ten sets of neural networks constructed for cross-validated testing (nine neural
networks in each set) naturally selected input features that were different from each other.
However, the input features selected by the different neural network sets were highly
correlated. For example, the ten sets of networks constituting NNall selected as one of the input
features V24, V12, V12, V16, V18, V16, V20, V16, V20, and V16, respectively. The correlation
coefficient between these features is ≥0.95.

Table I summarizes the sensitivity, specificity, and ROC area for training-construction,
training-validation and cross-validation, for NNall and NNdose. Sensitivity and specificity are
defined as the correctly predicted fraction of cases with and without injury, respectively. For
the network NNall, Fig. 2 shows the ROC curves for training-construction, training-validation,
and cross-validation. The cross-validated area under the ROC curve of the network was 0.76,
with sensitivity and specificity of 0.68 and 0.69, respectively. The network accuracy on the
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training-construction data was not perfect (ROC area: 0.85, sensitivity: 0.76, specificity: 0.76),
due to the overfitting precautions taken during network training. The overfitting precautions
used a mean-squared-error criterion that combined training-construction and training-
validation errors (rather than training-construction error alone; see step 4 in Algorithm A) and
employed early stopping to terminate network training at the minimum of the training-
validation error (ROC area: 0.86, sensitivity: 0.82, specificity: 0.75). Figure 3 shows an
example of the evolution of the training-construction error and training-validation error with
training iterations, for the final architecture of one neural network (i=1, j=2 in Algorithm A).
The training-construction error continuously decreases with increasing iterations, whereas the
training-validation error increases beyond approximately 500 iterations. For the network
NNdose, Fig. 4 shows the ROC curves for training-construction, training-validation, and cross-
validation. The trend is as for the network NNall, albeit with lower ROC areas and sensitivity/
specificity (Table I), suggesting that variables other than dose can improve predictive ability.

The ROC analysis results are consistent with the two prior neural network analyses29,30 from
our group. Su et al.30 constructed the neural network with input features selected only from
lung dose variables. The network was trained with a randomly selected two thirds of 142
patients and tested on the remaining patients. The cross-validated ROC area of 0.68 agrees
well with our results (cross-validated ROC area=0.67 for NNdose

, Table I). Munley et al.29

constructed the neural network with 97 patients, and considered dose and non-dose variables.
The cross-validated ROC area was not attempted, but the ROC area for training-validation
(0.83) is similar to the corresponding ROC area (0.86) in this work. Although the same
technique (neural network) was applied in this work and prior works, a number of
improvements were made to enhance model robustness and predictive accuracy. The main
differences can be described as follows: (1) 235 patients were studied in this work, (2) the
network was constructed using a growing/pruning approach, (3) overfitting was reduced by
using training-validation data, (4) highly correlated variables were forbidden from being input
features at the same time, and (5) the network was tested using ten-fold cross-validation. Thus,
the more optimistic results in Su et al.30 are likely attributable to two major differences with
the current work:

1. The number of patients is substantially higher in this work: 235 versus 142. The
patients in Su et al.30 are a subset of those in this study. This difference in numbers
could naturally lead to differences in the model test results. The larger number of
patients, in conjunction with the more robust feature selection and testing strategy,
suggests that the current results are closer to being asymptotic.

2. The testing methodology is more comprehensive in this work: The neural network
was tested on all data using ten-fold cross-validation, while Su et al.30 tested their
network on one third of the data. This ten-fold testing methodology also implies that
the models used in testing are more representative, in this work, since they are based
on a larger fraction of the total number of patients: nine tenths versus two thirds. For
small datasets, K fold cross-validation is considered more accurate than testing on a
separate set, as explained on page 214 of Hastie et al.28: “Ideally if we had enough
data, we would set aside a validation set and use it to assess the performance of our
prediction model. Since data are often scarce, this is usually not possible. To finesse
the problem, K-fold cross-validation uses part of the available data to fit the model,
and a different part to test it.”

The impact of missing variables on neural network performance was evaluated as follows.
Among the selected input features, FEV1 and DLCO% were not collected for approximately
20% of the patients. They were assigned the average of non-missing values during the process
of network building and cross-validated testing. The impact of these missing values was gauged
by the extent of variation in the cross-validated test results for 10 000 sets of random values
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assigned to the missing FEV1 and DLCO% (randomly assigned within the range of non-
missing values from other patients). The mean of the cross-validated ROC areas was 0.756
±0.002, ranging from 0.746 to 0.762. This small variation implies that the neural networks built
here are only minimally affected by the missing values.

III.A.2. Network construction for prospective use (Algorithm B)—The optimized
architecture had six input features, four hidden nodes, and one output node. Figure 5 steps
through Algorithm B to demonstrate the progress of constructing the network for prospective
testing. The input features selected using Algorithm B are shown in Table II. Among these
features, gEUD a=1 (mean lung dose) frequently appears as a strong predictor of radiation
pneumonitis in the literature.2,12,13,16-19 Although V16 does not often appear in other work, it
is highly correlated with V20.2,10-16,20

III.B. Model comparison
For networks NNall and NNdose constructed using Algorithm A, the areas under the ROC curves
for cross-validated testing were 0.76 and 0.67, respectively (Table I). The difference between
these two areas was significant (p=0.020). Thus, the generalization capability of the network
was significantly improved by adding non-dose features.

III.C. Evaluation of significance of input features
The ROC areas and p values for significance testing of the deterioration are shown in Table
III. The extent of deterioration of the ROC area was feature dependent. Input features
corresponding to significant (p<0.05) deterioration were: gEUD a=3.5, DLCO%, gEUD a=1
(mean lung dose), and V16. Note that this evaluation is limited to the individual exclusion of
features. The nature of the selection process for input features (step 3 in Algorithm A, step 2
in Algorithm B) is such that it exploits the synergistic interaction between features to improve
model prediction. This implies that a certain combination of input features could have greater
influence, when removed, than the sum of their individual influences.

III.D. Model publication
The neural network for prospective use, constructed from dose and non-dose features
(Algorithm B), is available for download from
http://www.radonc.duke.edu/modules/div_medphys/index.php?id=24. The required input
features are shown in Table II. The input file (an example is available on the website) is required
to include the entire lung DVH, DLCO%, FEV1, and whether or not the patient was treated
with chemotherapy prior to radiotherapy. Missing variables are indicated as negative values
in the input file. The program internally computes two of the input features from the lung DVH:
gEUDs with a=1 and a=3.5. The network outputs are two sets of metrics: A discriminant value
that is a measure of the extent of injury (>0 indicates predicted pneumonitis, <0 indicates no
predicted pneumonitis), and the number of patients in the Duke training database with a higher
discriminant than the prospectively tested patient. The latter value ranks the prospectively
evaluated patient in the context of the Duke population.

IV. CONCLUSIONS
In this work, two neural network ensembles (NNall and NNdose) were constructed using input
features selected from all variables and only dose variables, respectively. A comparison of the
cross-validated generalization capability of these two models showed that adding non-dose
features significantly improved predictive accuracy (p=0.020). The selected input features,
arranged in order of decreasing significance were: gEUD a=3.5 (p<10-4), DLCO% (p=0.001),
mean lung dose (p=0.020), V16 (p=0.037), FEV1 (p=0.053), and chemotherapy prior to
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radiotherapy (p=0.059). The optimized neural network for prospective use is available for
public use via internet access.
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Fig. 1.
Typical architecture of a three-layer feed-forward neural network. Σ indicates the summation
over the bias and weighted inputs (sample weights are indicated above arrows leading between
nodes), and σ indicates a linear or nonlinear activation function.
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Fig. 2.
ROC curves of network NNall on training-construction data, training-validation data, and cross-
validation data. The corresponding areas under the ROC curves are 0.85, 0.86, and 0.76,
respectively.
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Fig. 3.
An example of the evolution of the training-construction and training-validation errors with
training iterations. This example corresponds to i=1 and j=2 in Algorithm A for constructing
NNall. The training-construction error continuously decreases with increasing number of
training iterations. The training-validation error, however, initially decreases and then
increases beyond approximately 500 iterations. To avoid overfitting, network training was
stopped at the point of the minimum training-validation error.
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Fig. 4.
ROC curves of network NNdose on training-construction data, training-validation data, and
cross-validation data. The corresponding areas under the ROC curves are 0.78, 0.77, and 0.67,
respectively.
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Fig. 5.
The progress of network construction for NNall (Algorithm B for prospective testing). The
symbols ■ and ○ indicate addition of an input feature and addition of a hidden layer node,
respectively. The initial network architecture (step 1) consisted of one input node and three
hidden nodes.
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Table I
The area under ROC curve (AUC), sensitivity, and specificity of network NNall and NNdose on training data, training-
validation data, and cross-validation data, respectively

NNall NNdose

Training data AUC 0.85 0.78

Sensitivity 0.76 0.74

Specificity 0.76 0.74

Training-validation data AUC 0.86 0.77

Sensitivity 0.82 0.65

Specificity 0.75 0.78

Cross-validation data AUC 0.76 0.67

Sensitivity 0.68 0.53

Specificity 0.69 0.69

Med Phys. Author manuscript; available in PMC 2009 August 5.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 19

Table II
The optimized architectures of neural network for prospective testing

Selected input features Hidden nodes Output nodes

Lung volume receiving >16 Gy 4 1

Lung gEUD a=3.5

Lung gEUD a=1

FEV1

DLCO%

Chemotherapy before radiotherapy
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Table III
Evaluation of significance of input features by single exclusion

Input feature excluded AUC p value

None 0.76 NA

gEUD a=3.5 0.65 <10-4

DLCO% 0.66 0.001

gEUD a=1 0.69 0.020

Lung volume receiving >16 Gy 0.71 0.037

FEV1 0.71 0.053

Chemotherapy before radiotherapy 0.75 0.059
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