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Highly active antiretroviral therapy (HAART) can potently suppress human immunodeficiency virus
(HIV) replication and prevent progression to AIDS. However, HAART does not cure infected patients.
Instead, HIV persists in latently infected CD41 T cells and various cryptic cellular reservoirs. Hence,
under current therapy regimens, patients must continue taking HAART for the remainder of their lives.
Eliminating residual replication-competent virus is critical if eradication of HIV is to be achieved. While
this challenge is formidable, we describe here a number of innovative approaches intended to further
deplete HIV in HAART-treated patients. New antiretroviral drugs that target different viral proteins and
stages of the virus life cycle, compounds that enhance anti-HIV immune responses and novel gene
therapy approaches may each play a role in improving long-term suppression of the virus. Moreover,
methods for more specifically and efficiently inducing HIV from latency and eliminating the newly
activated host cells are also under development.
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Introduction

Human immunodeficiency virus (HIV) establishes a persistent,
lifelong infection, which if left untreated almost invariably leads
to acquired immunodeficiency syndrome (AIDS) and death of the
infected individual. Over the past 25 years, significant advances
have been made in the development of antiretroviral agents that
can potently suppress viral replication and prevent progression to
AIDS. However, the drugs used in combination during highly
active antiretroviral therapy (HAART) are associated with signifi-
cant problems, including toxic side effects, high pill burden,
development of virological resistance and great financial expense.
More importantly, HAART does not completely eliminate HIV
from the body, meaning that if treatment is stopped, residual virus
present in several potential reservoirs rapidly expands allowing
disease progression to continue.1,2 Understanding the sources of
replication-competent HIV that persist during therapy and devel-
oping methods to purge these viral reservoirs have therefore
become important areas of research focus.

Mechanisms of HIV persistence during HAART

Perhaps, the most well-defined viral depository during therapy
is the ‘latent reservoir’ within memory CD4þ T cells.3,4 It is

believed that HIV latency is generally established when an acti-
vated CD4þ T cell becomes infected by HIV but transitions to
a memory cell before it can be killed by the virus. This tran-
sition is associated with a number of cellular changes, including
a reduction in the levels of several transcription and other
factors that are required by HIV for its replication. Because
memory cells are by nature very long-lived, the host cell can
then persist for decades with its silent viral cargo before receiv-
ing a stimulatory signal that activates the cell and concomitantly
induces virus production from the latent HIV genome. Latently
infected cells are rare, representing around one per million
CD4þ T cells, which translates to a total of �1 million latently
infected cells in the body as a whole.5 These cells also decay
very slowly during HAART, with an average half-life of �44
months. It is therefore estimated that under current antiretroviral
regimens, complete depletion of this reservoir would take over
60 years,4 even if there were no further viral replication or
replenishment of the reservoir during therapy.

The situation is further complicated because in addition to
the latent reservoir, other cryptic viral sources exist during
HAART, including a very small amount of active virus replica-
tion that occurs even during therapy.6 It is not clear whether this
is due to poor antiretroviral drug penetration into the sites of
virus replication or because of residual replication that occurs
even under ‘optimal’ drug concentrations. Even more enigmatic
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sources of virus have also been identified in some patients,
although their precise cellular origin is unclear.7,8

The issue of latency and these other obstacles have led some
researchers to voice uncertainty over whether HIV infection can
ever be cured. However, a number of strategies are currently
being investigated that, if successful, may ultimately aid in the
durable, lifelong suppression of HIV, or perhaps even the elimi-
nation of the virus altogether.

Improving long-term virus suppression

In order to cure an HIV-infected individual, all sources of
replication-competent HIV must be eliminated. Achieving this
goal may require a combination of different approaches, reflect-
ing the variety of reservoirs that exist in infected patients. With
this in mind, perhaps the most tractable hurdle is the persistent
replication that occurs during HAART. It is possible, for
example, that residual replication could be further suppressed
simply by strengthening standard therapy regimens. This may be
achieved by enhancing currently available antiretrovirals, either
by improving bioavailability and pharmacokinetic properties of
current drugs or by developing new ones that target different
viral proteins and stages of the virus life cycle. Recent examples
of newly approved antiretrovirals are the entry inhibitor mara-
viroc (UK-427857)9 and the integrase inhibitor raltegravir
(MK-0518).10 The field is eagerly awaiting the results of studies
investigating whether addition of these or other novel agents11,12

to current HAART regimens will further suppress viraemia,
which would indicate that residual replication can indeed be
inhibited by intensification of HAART. One interesting obser-
vation in this area is that raltegravir treatment appears to sup-
press plasma viral loads in infected patients more rapidly than
treatment with other antiretrovirals.13 While the direct cause of
this phenomenon is not clear, it does demonstrate that antiretro-
virals with distinct modes of action can influence viral replica-
tion in different ways and may thus be differentially affecting
the underlying HIV cellular reservoirs.

Other approaches for reducing viraemia include enhancing
adaptive anti-HIV immune responses, which are arguably sub-
optimal from the beginning of infection and may have further
waned because of lack of sufficient antigen exposure during
HAART. Anti-HIV vaccine development has proved challeng-
ing, and induction of sterilizing immunity via a vaccine is unli-
kely to be achieved in the near future. However, immunization
may still yield benefits if therapeutic vaccines can be improved
to the point where administration to infected individuals boosts
immune responses and inhibits virus spread beyond that achiev-
able with HAART alone. Alternatively, more efficient post-
exposure vaccines may suppress viraemia sufficiently for
HAART to be needed only periodically or not at all, thereby
reducing the long-term side effects of therapy. Significant
advances in both prophylactic and therapeutic vaccine develop-
ment are likely to be closely associated with improvements in
our basic understanding of HIV immunology, and in particular
our understanding of what constitutes a truly effective anti-HIV
immune response.

Gene therapy may also prove beneficial for HIV-infected
patients. A strategy that is being actively pursued in this area is
to develop methods that provide patients with immune cells that
are resistant to infection with HIV. For example, our laboratory

has been involved in a recently completed Phase 1 clinical trial
involving introduction of an anti-HIV ribozyme into autologous
haematopoietic stem cells in HIV-infected patients,14 and a
Phase 2 trial with the same ribozyme is currently underway.
Various other approaches using either individual or multiple
anti-HIV genes with different viral or cellular targets are also
being developed.15 – 18 An exciting advancement in this area
involves improvements in human embryonic stem cell (hESC)
technology. Unlike haematopoietic stem cells, hESCs are excep-
tionally amenable to genetic modification, expansion in vitro
and differentiation into a wide range of cellular lineages. As
such, they may be useful for anti-HIV gene therapy. For
example, if hESCs were to be genetically modified to include an
anti-HIV gene then differentiated to the haematopoietic stem
cell stage in vitro, they could be re-introduced to patients where
HIV-resistant T cells and macrophages would be produced.
While this approach may be years from the clinic, the ability to
produce viable genetically modified T cells19 and macrophages20

originally derived from hESCs has recently been established.
The concept that cells with stem-cell-like properties [induced
pluripotent stem (iPS) cells] can be derived from mature human
cell types21 – 24 provides the additional advantage of generating
patient-specific cells, which theoretically could be used in auto-
logous transplant scenarios without the fear of immune rejection.
Clearly, the safety and efficacy of therapies based on hESCs/iPS
cells must be thoroughly scrutinized before these approaches can
be advanced to clinical trials.

Potential approaches for eliminating HIV reservoirs

Given our current understanding of the latent reservoir, it is dif-
ficult to envisage a strategy for eradicating HIV that does not
contain a component intended to specifically target latently
infected cells. Most proposed strategies involve activating these
cells in some way to induce expression from the HIV genome.
The cell would then be killed either by viral cytopathic effects
or by immune effector mechanisms, and virus spread would be
prevented by maintenance of HAART throughout the stimu-
lation period. Stimulants that have proved effective in activating
HIV from latency in these cells include cytokines such as inter-
leukin (IL)-225 and IL-7.26 Other molecules, such as the non-
tumour-inducing phorbol ester prostratin,27 histone deacetylase
inhibitors like valproic acid28 and certain modulators of cellular
microRNAs,29 are also capable of activating a latent provirus.
Unfortunately, none of the strategies that has been tested so far
is capable of purging all latent virus, and those techniques that
lead to the most robust viral activation are also associated with
inducing undesirable generalized immune activation. These
limitations highlight the need for further research into the mol-
ecular mechanisms associated with activation of HIV from
latency. The development of in vitro primary cell models for
latent HIV30,31 may provide the opportunity to identify small
molecules that could improve the ability to activate and then
purge these viral reservoirs. Along these lines, the recently
reported32 chemical synthesis of prostratin and its analogues is
promising because it should facilitate the development of
phorbol esters that activate latent HIV with greater specificity
and efficacy than naturally available compounds.

Methods for enhancing killing of recently activated
HIV-infected cells are also under investigation. One example of
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this is the use of immunotoxins. These are molecules composed
of a targeting domain derived from a monoclonal antibody
linked to a toxic moiety. An immunotoxin specifically targeting
cells expressing the HIV envelope protein has been used to
deplete both latently infected T cells33 and infected macro-
phages34 after up-regulation of HIV gene expression with stimu-
lants. ‘Activation-elimination’ strategies such as this may
therefore accelerate clearance of HIV from its various cellular
reservoirs. Moreover, if this type of approach were used in con-
junction with post-exposure vaccination or genetically modified
stem cell immune reconstitution strategies, it might prove even
more effective in decreasing or eliminating latent and persistent
viral reservoirs.

While many of the approaches outlined above are still at the
developmental stage and are not without limitations, it is hoped
that some of these nascent strategies will be rapidly advanced to
the point that they can provide benefits to patients.
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