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Abstract
Several studies in HLA-matched sibling hematopoietic stem cell transplantation (HSCT) have
reported an association between mismatches in minor histocompatibility antigens (mHAg) and
outcomes. We assessed whether single and multiple minor mHAg mismatches are associated with
outcomes in 730 unrelated donor, HLA-A, B, C, DRB1, and DQB1 allele-matched hematopoietic
stem cell transplants (HSCT) facilitated by the National Marrow Donor Program (NMDP) between
1996 and 2003. Patients had acute and chronic leukemia or myelodysplastic syndrome, received
myeloablative conditioning regimens and calcineurin inhibitor-based graft-versus-host-disease
(GvHD) prophylaxis, and most received bone marrow (85%). Donor and recipient DNA samples
were genotyped for mHAg including: HA-1, HA-2, HA-3, HA-8, HB-1, CD31125/563. Primary
outcomes included grades III–IV acute GvHD and survival; secondary outcomes included chronic
GvHD, engraftment, and relapse. Single disparities at HA-1, HA-2, HA-3, HA-8, and HB-1 were
not significantly associated with any of the outcomes analyzed. In HLA-A2 positive individuals,
single CD31563 or multiple mHAg mismatches in the HvG vector were associated with lower risk
of grades III–IV acute GVHD. Based on these data, we conclude that mHAg incompatibility at HA-1,
HA-2, HA-3, HA-8, HB-1 and CD31 has no detectable effect on the outcome of HLA matched
unrelated donor HSCT.

INTRODUCTION
Hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a number of
otherwise untreatable malignancies and hematologic disorders. Despite efforts to closely match
recipients and donors, HSCT is limited by high rates of complications, including graft versus
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host disease, poor engraftment, and disease recurrence.1 HLA matching reduces, but does not
prevent the development of graft versus host disease. Rates of severe acute graft versus host
disease (GvHD) approach 28% in HLA identical unrelated donor transplantation and 30% in
HLA-matched sibling transplants.2–6

Disparities in minor histocompatibility antigens (mHAg) underlie the development of GvHD
in HLA identical transplants.7–9 mHAg are peptides derived from allelic variants of normal
cellular proteins which, when presented by self class I or II MHC antigens, induce cellular
immune responses in HLA-matched individuals lacking the same allelic variant. These protein/
peptide variants most often arise due to single nucleotide polymorphisms (SNPs) or deletions.
Cytotoxic T lymphocytes directed against mHAg have been isolated from recipients of HLA-
matched transplants with acute GvH, and cytotoxic T cell clones from such patients have been
used to identify and characterize mHAg.10–16 While some mHAg are ubiquitously expressed
(HA-3, HA-8), most have more restricted tissue expression, including HA-1, HA-2
(hematopoietic tissue), CD31 (platelets, endothelial cells), and HB-1 (B lymphoblastoid cells).
17,18 There likely exist thousands of protein variants with the potential of functioning as mHAg,
although only about 2 dozen human mHAg have been identified.19

The role for mHAg disparities in HSCT outcomes has been supported by studies showing
higher rates of acute GvH and lower survival in HLA-identical sibling transplant recipients
who are mHAg disparate.20–24 Mismatches in individual mHAg, including HA-1, HA-2,
HA-8, and CD31, have been associated with increased rates of GvHD, and lower rates of
leukemia recurrence observed in pairs who are disparate at HA-1 or HA-2 suggest a role for
such disparities in graft versus leukemia (GvL) effects,20,21 although this is disputed by other
studies.25 Additionally, disparities in HA-8 and CD31 were associated with decreased patient
survival.20–24 Mismatching for HA-1 in HLA-identical, HLA-A2 sibling pairs, was previously
reported to be associated with higher rates of acute GvHD and a possible GvL effect.20,21

However, investigation of the role of mHAg in transplant outcomes has been limited, due to
the requirement to restrict studies to recipient/donor pairs expressing specific HLA types, as
well as by the low frequencies of some mHAg alleles.25

In this study we investigated the effect of single and multiple disparities in autosomal mHAg
on HSCT outcomes in 730 recipients of HLA-matched unrelated donor HSCTs.

MATERIALS AND METHODS
Patient Population

Recipient/donor pairs from 730 unrelated HLA-A, B, C, DRB1, and DQB1 allele-matched
transplants facilitated by the National Marrow Donor Program (NMDP) were studied. HLA
typing was confirmed through the NMDP’s ongoing retrospective high resolution typing
project as previously described (Flomenberg et al.).26 The majority (86%) of the pairs were
mismatched at HLA-DP. Transplants were performed between 1996 and 2003, and patient
disease characteristics are summarized in Table 1. Eligible diagnoses included acute
lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia
(CML), and myelodysplastic syndrome (MDS). Early stage disease was defined as AML and
ALL in first complete remission, CML in first chronic phase, and MDS subtype refractory
anemia. Intermediate stage disease was AML or ALL in second or subsequent complete
remission or in first relapse, and CML in accelerated phase or second chronic phase. Advanced
phase disease was AML in second or higher relapse or primary induction failure, CML in blast
phase, MDS subtypes refractory anemia with excess blasts or in transformation, or MDS not
otherwise classified. All patients received myeloablative conditioning regimens defined as
“traditional” if single dose total body irradiation (TBI) was greater than 500 cGy, or more than
800 cGy total in fractionated doses (with or without cyclophosphamide), or cyclophosphamide
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with at least 9.5 mg/kg busulfan, or “nontraditional” if conditioning included at least 9.5 mg/
kg busulfan without cyclophosphamide or melphalan with a dose greater than 150 mg/m2.

All surviving recipients included in this analysis were retrospectively contacted and provided
informed consent for participation in the NMDP research program. Informed consent was
waived by the NMDP Institutional Review Board for all deceased recipients. Approximately
4% of surviving patients would not provide consent for research. To adjust for the potential
bias introduced by exclusion of non-consenting surviving patients, a modeling process
randomly excluded appropriately the same percentage of deceased patients using a biased coin
randomization with exclusion probabilities based on characteristics associated with not
providing consent for use of the data in survivors.6

mHAg Genotyping
Recipient/donor samples were obtained from the NMDP Research Repository and included
whole frozen blood, buffy coats, peripheral blood mononuclear cells, and DNA. Genotyping
was performed on a panel of mHAg using a Luminex based, multiplex assay developed at the
BloodCenter of Wisconsin, as described previously.25 The mHAg panel and HLA restriction
are summarized in Table 2. The mHAg panel was constructed to include well-characterized
polymorphisms that have been demonstrated in previous studies to affect outcomes in HLA-
matched sibling transplants. Briefly, the assay is performed in multiple steps using EraGen
Biosciences’s (Madison, WI) MultiCode Plx technology.27,28 The assay is initiated with a
multiplex polymerase chain reaction (PCR) amplification of target mHAg loci followed by
allele-specific primer extension reactions which specifically incorporate a 3’ biotin molecule.
Hybridization of biotinylated extension products to EraCode-tagged Luminex™ xMAP beads
is performed at room temperature and is then fluorescently labeled with streptavidin
phycoerythrin (SA-PE) conjugate. Finally, the labeled xMAP beads are detected on a
Luminex™ 100 instrument (Austin, TX). Genotypes are assigned based on the ratios of the
relative fluorescence signals detected on paired Luminex™ beads that distinguish alternate
forms of each mHAg allele. Primers used for mHAg locus-specific amplification and allele-
specific extension reactions were synthesized by EraGen Biosciences.

mHAg mismatches and mismatch vectors, graft versus host (GvH) or host versus graft (HvG),
or both, were assigned based on known mHAg genotypes (Table 2). With the exception of
CD31 and HB-1, whose alternate alleles both encode mHAg, the antigenic peptide that
comprises the mHAg for HA-1,-2,-3,-8 is encoded by only one of the two alleles.11,14,29–31

For these latter mHAg, mismatches occurred in either the GvH or HvG direction, not both.
Both CD31125 and CD31563 isoforms were genotyped; however, only differences at
CD31563 were analyzed due to the strong linkage between CD31125 and CD31563

polymorphisms.

Definitions of outcomes
The primary outcomes of the analysis were overall survival, defined as time from graft infusion
(day 0) to death from any cause, and grades III–IV acute GVHD, defined by the Glucksberg
scale.32 A number of secondary endpoints were also analyzed. Failure to engraft (primary graft
failure) was defined as failure to achieve an absolute neutrophil count greater than 500 ×106/
L by day 28 which was maintained for three consecutive measurements. Extensive chronic
GVHD was defined according to the Seattle criteria.33 Clinical relapse of the primary disease
was defined by the Center for International Blood and Marrow Transplant Research (CIBMTR)
criteria.26 Treatment-related mortality (TRM) is death in continuous complete remission of the
primary disease. Disease free survival (DFS) is survival in continuous complete remission of
the primary disease.
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Statistical Analysis
For evaluation of mHAg matching, the cases were selected based on the previously described
HLA restrictions for mHAg presentation. The sample size for each HLA restriction group, i.e.
HLA-A1, A2 and B44, is noted in Table 3. For discrete factors, the number of cases and their
respective percentages were calculated. Chi-Square tests were used to compare discrete factors
between mHAg matched vs. 1 mismatch vs. ≥ 2 mismatches groups. For continuous factors,
the median and ranges were calculated. The Kruskal-Wallis test was used to compare the
continuous factors between mHAg matched vs. 1 mismatch vs. ≥ 2 mismatches groups.
Probabilities for overall survival were calculated using the Kaplan-Meier estimator with
variance estimated by Greenwood's formula. Comparison of survival curves was done using
the log-rank test. Values for other outcomes were calculated according to cumulative incidence
using a Taylor series linear approximation to estimate the variance.

Multivariate analyses were performed using the proportional hazards model to compare the
mHAg matched vs. 1 mismatch vs. ≥ 2 mismatches groups with adjustment for statistically
significant covariates. Due to multiple comparisons, the significance threshold was set at
p<0.01. Potential covariates include patient age, sex, race, Karnofsky performance status, time
from diagnosis to HCT, donor type, donor-recipient sex match, cytomegalovirus (CMV)
serological status, type of conditioning regimen, graft source, year of transplantation, and
GVHD prophylaxis regimen. Models were fit to determine which risk factors were related to
a given outcome. All variables were tested for the affirmation of the proportional hazards
assumption. Factors violating the proportional hazards assumption were adjusted for by
stratification. Stepwise model building approach was used in developing models for the
primary and secondary outcomes.

Cox regression models were used to evaluate the association between transplant outcomes
versus match/mismatch at any single mHAg, mismatches at 2 mHAg versus one or no
mismatches, and the directionality of the mismatch (GvH, HvG). Table 3 summarizes the
sample size used for each analysis, and the power to detect both a five and ten percent difference
in survival.

RESULTS
Single mHAg mismatches

A single mismatch in either direction (GvH or HvG) for HA-1, HA-2, HA-3, HA-8, and HB-1
was not significantly associated with any outcome analyzed at p < 0.01. Table 4 summarizes
the 95% confidence intervals for the effects of single mHAg mismatches on survival, grades
IIII–V acute GvHD, TRM and chronic GvHD. In no case was the relative risk significantly
different than 1, at p < 0.01 for any mHAg, regardless of the directionality of the mismatch.
Low statistical power due to small sample size shows the limited power of the analysis (Table
3).

The only significant finding occurred in HLA-A2 positive pairs where there was a significantly
reduced risk of grades III–IV GvHD when pairs were mismatched for CD31563 in the host
versus graft direction (RR=0.41; CI=0.24–0.71; p=0.001). Note that a similar association was
not observed for HLA-A1 (RR=0.71; CI=0.39–1.29; p=0.26) or B44 positive pairs (RR=0.95;
CI=0.53–1.71; p=0.86) and comparison of outcomes of all CD31563-mismatched recipient
donor pairs without regard to HLA type showed no significant association with any outcome
when compared to CD31 matched pairs (data not shown). Because previous studies indicated
that donors who were heterozygous for the CD31563 polymorphism were associated with
poorer survival post-transplant, 24 we compared outcomes from transplants with 361 donors
who were heterozygous for the CD31563 SNP with 368 donors homozygous for this SNP. No
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association with survival was observed (RR =0.92; 95% CI = 0.75–1.11). Likewise, no
significant association was observed between a specific recipient or donor CD31563 allele and
any outcome analyzed (data not shown).

An analysis of the impact of HY antigen disparities, a proven mHAg, was also conducted on
the complete dataset using sex match, i.e. female donor into male recipient, as a surrogate for
HY disparity. No effect of HY mismatching was observed for any outcome in the analysis (data
not shown).

Multiple mHAg Mismatches
The effect of multiple mHAg mismatches was determined by comparing outcomes for
recipient/donor pairs based on the total number of mismatched mHAg for each HLA restriction
(Table 5). Specific comparisons were grouped according to HLA restriction and included pairs
mismatched at 2 mHAg versus 1 or no mismatches in both GvH and HvG directions.

When the effects of multiple mHAg mismatches were analyzed, a reduced risk of acute GvHD
was observed among HLA-A2 positive pairs who were mismatched for 2 or more mHAg for
HA-1, HA-2, HA-8 and/or CD31563 in the HvG direction (RR=0.41; CI=0.23–0.73; p=0.003)
when compared to matched pairs, perhaps reflecting the influence of CD31563 mismatching
on this group. HLA-A2 positive pairs who were mismatched for 2 or more mHAg (HA-1,
HA-2, HA-8, and/or CD31563) in the GvH direction appeared to have lower survival (RR=1.54;
CI=1.09–2.18; p=0.01). Likewise, there was a suggestion that HLA-A1 positive individuals
mismatched for both CD31 and HA-3 in the GvH direction had decreased survival and
increased TRM compared to matched pairs (Overall survival: RR=2.01; 95% CI=1.14–3.55;
p=0.02; and TRM: RR=2.28; 95% CI=1.17–4.44; p=0.02); however neither result met the
significance threshold of P<0.01 set for the study due to multiple comparisons (Table 5). No
other multiple mHAg mismatches were associated with any of the outcomes analyzed in any
of the HLA-restriction groups.

DISCUSSION
This comprehensive analysis is the first to examine the role of mHAg disparities in the outcome
of HLA-matched unrelated HSCT and failed to corroborate results in HLA-identical sibling
transplants where single mHAg mismatches have been associated with significantly increased
rates of acute GvHD (HA-1,HA-2,HA-8,CD31), decreased survival (HA-8,CD31), and lower
rates of disease recurrence (HA-1,HA-2).20–24,34–36 The present study comprised the largest
number of HLA-matched recipient/donor pairs evaluated to date. Nevertheless, small subgroup
size and the greater disparity in HLA and non-HLA associated polymorphic genes between
unrelated donor/recipient pairs may have limited the power of our analysis.37 Other limitations
of the study include a predominance of bone marrow as a graft source and a low number of
patients under the age of 20 which may restrict the relevance of these findings in peripheral
blood and pediatric transplants.

We did observe that single CD31563 mHAg mismatches in the HvG vector in HLA-A2 positive
individuals were found to potentially reduce the risk of developing grades III–IV acute GVHD,
although the biological mechanism remains unclear. Significant associations with outcomes
were also observed for multiple mismatches in HLA-A1 positive recipient donor pairs,
mismatching at HA-3 plus CD31 in the HvG direction was associated with increased survival
and decreased treatment related mortality, and in HLA-A2 pairs mismatched for HA-1, HA-2,
HA-8, or CD31in the HvG direction there was a significantly lower rate of acute GvHD, but
may reflect the influence of CD31 mismatching. In all cases it is unclear whether the differences
reflect a true biologic impact of mismatching or a random effect.
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In HLA-identical sibling transplants HA-3 disparity alone had no impact on GvHD, whereas
multiple studies indicated that CD31 nonidentity is a significant risk factor for overall survival
and acute GvHD.24 Any clinical risk of HA-3 mismatching is minimized by the fact that a
majority of Caucasians (77%) express the HA-3 mHAg, making the likelihood of a mismatch
low. It is noteworthy that in contrast to the majority of the other mHAg studied, HA-3 and
CD31 are not restricted to hematopoietic cells but have a wide range of cell and tissue
expression. CD31 (PECAM-1) functions as a homotypic adhesion molecule that is expressed
on a variety of cells and tissues, including endothelial cells, platelets, and leukocytes. CD31
has never been directly demonstrated to be immunogenic nor function as a mHAg, as this latter
property has been implied indirectly through the demonstration that recipient/donor pairs
mismatched for CD31 allelic forms have higher risks of GvHD.24 Cavanagh et al. showed that
donor heterozygosity for CD31563 alleles was associated with decreased survival in matched
sibling HSCT, a finding that suggests that any effect of CD31 polymorphisms on HSCT
outcomes may instead reflect inherent functional properties of CD31 isoforms and are not due
to mHAg effects.24 However, we failed to confirm this effect in unrelated donor HSCT and
further failed to observe any significant association between the presence of specific CD31
alleles in the recipient or donor and any outcome (data not shown).

Although the present study comprised the largest number of fully HLA-matched unrelated
donor HSCT cases evaluated to date, statistical power to detect significant differences was low
for many comparisons due in part to the relative infrequency of some mHAg alleles, low
likelihood of mismatches (e.g., HA-2, HA-3), 25 and the study size limitations resulting from
mHAg HLA presentation restrictions. In addition to the mHAg panel, analysis of the mHAg
effects of HY disparity was also negative, potentially due to low power, with only 15% of the
population at risk. Given these considerations, statistical power will remain a limitation to the
characterization of mHAg disparities on unrelated HSCT outcomes. However, it should be
noted that the original effects of HA-1 and HA-2 mismatching in HLA identical sibling HSCT
outcomes were detected with as few as 117 HLA-A2 positive study subjects, in contrast to the
present study which involved 430 HLA-A2 positive unrelated pairs.20,22 These findings
suggest that additional HLA disparities (HLA-DP) and other factors may mask the impact of
mHAg disparity in unrelated donor HSCT.

The majority of the current study population (86%) was mismatched at HLA-DP, which has
been recently associated with an increased risk of acute GvHD and lower relapse rates in
unrelated donor HSCT.37 The high rate of HLA-DP mismatching in our population may mask
any contributions of mHAg mismatching to risk of acute GvHD in unrelated donor HSCT. By
extension, the clinical impact of mHAg disparities in unrelated HSCT may be rendered moot
given the likelihood that recipient/donor pairs who are selected based on allele-level matching
at HLA-A, B, C, DRB1 and DQB1 are likely to be mismatched at HLA-DP. Another hypothesis
to explain our findings is differences in patient immunosuppression and management, as risk
for HA-1 associated GvHD may be lower in patients receiving both methotrexate and
cyclosporine than in those who receive either alone.21

The failure of our studies to show a significant effect of mHAg disparities on outcomes in
unrelated donor HSCT indicates the importance of other genetic determinants. While further
studies may be warranted to verify the possible biological significance of CD31 mismatching
in unrelated donor HSCT, the clinical utility of matching for mHAg is limited by the lack of
significant clinical correlation with outcome and the low frequencies of many mHAg
genotypes.25,38
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Table 1
Patient demographics

N Eval N (%)

Number of recipient/donor pairs 730

Number of centers 83

Age, median (range), years 729 37 (<1–65)

Age at transplant 729

  < 10 y 50 ( 7)

  11 – 20 y 67 ( 9)

  21 – 30 y 123 (17)

  31 – 40 y 175 (24)

  41 – 50 y 193 (26)

  Over 50 y 121 (17)

Karnofsky prior to transplant ≥ 90 686 506 (74)

Disease at transplant 730

  AML 210 (29)

  ALL 150 (21)

  CML 242 (33)

  MDS 128 (17)

Disease status at transplant 730

  Early 329 (45)

  Intermediate 231 (32)

  Advanced 119 (16)

  Other 51 ( 7)

Graft type 730

  Bone marrow 623 (85)

  PBSC 107 (15)

Donor/recipient sex match 730

  Male/Male 288 (40)

  Male/Female 190 (26)

  Female/Male 110 (15)

  Female/Female 142 (19)

Donor/recipient CMV match 730

  Negative/Negative 275 (38)

  Negative/Positive 194 (26)

  Positive/Negative 101 (14)

  Positive/Positive 140 (19)

  Unknown 20 ( 3)

Donor age, median (range), years 730 35 (19–60)

Year of transplant

  1996–1999 352 (48)

  2000–2003 378 (52)

Median follow-up of survivors, months 60 (10–107)
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Table 2
mHAg panel

mHAg HLA Restriction
Effect of Disparity in HLA Matched

Sibling HSCT Reference

HA-1 HLA-A2 Increased acute GvHD GVL Effect 20–22

HA-2 HLA-A2 Increased acute GvHD GvL Effect 20,22

HA-3 HLA-A1 No effect on GvHD 20

HA-8 HLA-A2 Increased acute GvHD Decreased survival 34

HB-1 HLA-B44 Unknown

CD31 unknown Increased acute GVHD Decreased Survival 23,24
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Table 3
Power to detect a difference in overall survival for individual and combined mHAg

mHAg HLA
restriction

mHAgs mismatched in
GVH vector

N
(Mismatched:Matched)

Power to detect
5% increase in

Overall
Survival

Power to detect
10% increase

in
Overall
Survival

HLA-A*01
(N = 327)

HA-3 and CD31 18:173 7% 13%

HA-3 or CD31 136:173 15% 43%

CD31 86:123 11% 31%

HA-3 42:249 9% 22%

HLA-A*02
(N = 430)

HA-1,HA-2, HA-8 and/or
CD31

90:161 12% 34%

HA-1,HA-2, HA-8 or 179:161 16% 48%

CD31

CD31 96:164 12% 35%

HA-1 90:228 13% 37%

HA-2 19:397 7% 13%

HA-8 95:269 14% 39%

HLA-B*44
(N = 257)

HB-1 and CD31 26:120 7% 15%

HB-1 or CD31 111:120 12% 34%

CD31 52:106 9% 22%

HB-1 61:129 10% 25%

No known
restriction
(N = 730)

CD31 174:280 19% 56%
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