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Abstract

Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical
role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate
immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory
proteins, we developed a new high-throughput approach called ‘‘EPSIA’’, Expressed Protein Screen for Immune Activators.
Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein
capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine
macrophage cells and primary peritoneal macrophage cells to secrete TNFa and IL-6, respectively. PSD-induced
proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune
response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ,40% and ,15% of IL-6 production
compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its
enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced
proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD.
PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in
TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo.
Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further
demonstrate the potential application of PSD as a vaccine adjuvant.
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Introduction

Innate and adaptive immunity are two arms of the immune system

that help defend against invading microbes [1,2]. Innate immunity

provides immediate defense against infection in a non-specific

manner and also influences the antigen-specific adaptive immune

response [3,4]. The innate response to microbes involves the

recognition of conserved microbial products, collectively termed

pathogen-associated molecular patterns (PAMPs) by specific host

receptors [2]. Germ-line encoded Toll-Like Receptors (TLRs) are the

best characterized of these receptors [2,5]. To date, 13 TLRs have

been identified in mice, and a few of their cognate ligands include

lipopolysaccharide (LPS) [6], peptidoglycan [7], diacyl- or triacyl-

lipopeptide [8], dsRNA [9], unmethylated CpG DNA motifs [10],

and flagellin, a subunit of bacterial flagella [11,12]. When TLRs that

are either surface-exposed or located in the endosomal membrane

bind PAMPs, signal transduction events are activated leading to

proinflammatory cytokine production [1]. The proinflammatory

response induced by TLR activation can lead to active clearance of

pathogens and an enhancement of the adaptive immune response.

Genome-wide approaches [13] have defined bacterial factors that

cause, for example, cytotoxicity after expression in yeast [14], or the

host factors that modulate bacterial intracellular replication [15,16].

However, a comprehensive screen of the predicted proteome of a

bacterial organism for immune activating proteins has not been

previously reported [13]. Comprehensive genome-wide screening for

bacterial proteins that elicit innate immune responses has been limited

by two factors. Firstly, bacterial genomes encode for thousands of

proteins and this necessitated the development of a resource that allows

high-throughput purification or expression of individual proteins

before screening can take place. Secondly, because evolutionary

pressure can readily select for changes in amino acid sequence, proteins

have been generally thought to have lost conserved motifs that might

be recognized by the innate immune system. To date, only flagellin and
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membrane-anchored lipoproteins were reported to contain conserved

motifs that are recognized by host TLRs [11,17,18,19,20]. Interest-

ingly, bacterial flagellins were also determined to have robust adjuvant

activity enhancing specific T-cell responses against co-administered

antigens in vivo [21,22]. Therefore, identification of new bacterial

proteins that induce the host innate immunity will broaden our

understanding of host responses to bacterial infection and provide an

opportunity to develop new vaccine adjuvants.

Recently, we reported the production of a complete full-length

open reading frame (ORF) expression library for the pathogenic

bacterium V. cholerae [23]. In the same work, we showed that flagellins

(FlaD and FlaC) synthesized from each of their ORF expression

clones by in vitro transcription/translation are capable of eliciting NF-

kB activation in A549 human lung epithelial cells [23]. This suggests

that proteins produced by this system can be used for high-

throughput screening for other protein activators of host innate

immunity. In this study, we developed EPSIA technology as a high-

throughput proteome-wide screen for stimulators of host innate

immune system. Using V. cholerae as a test organism, we identified

numerous new proinflammatory proteins and characterized the

proinflammatory signaling mechanism induced by one of these

protein hits, phosphatidylserine decarboxylase (PSD) that stimulated

murine macrophage cells with the greatest potency. PSD activated

mouse macrophages to secrete proinflammatory cytokines in a

TLR4-dependent, MyD88-dependent manner, and full induction

required a processed, enzymatically active PSD. Moreover, PSD was

shown to act as a robust adjuvant when co-administered with an inert

protein antigen, bovine serum albumin (BSA). Our results reveal the

versatility of the EPSIA approach for uncovering new microbial

activators of host innate immune responses.

Results

V. cholerae phosphatidylserine decarboxylase (PSD) is
identified as an immunostimulatory protein from a high-
throughput proteome-wide screening

The comprehensive genome analysis of V. cholerae 7th pandemic

El Tor strain N16961 indicated that it possesses 3,887 protein

coding genes out of total 4,009 genes in two chromosomes (http://

cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org = gvc). In this

work, 3,882 V. cholerae proteins were successfully synthesized using an

in vitro expression system and screened for their ability to produce

TNFa, a proinflammatory cytokine, in RAW264.7 murine macro-

phage cells. The RAW264.7 cell line was chosen because (i) they, as

macrophage cells, express a broad spectrum of immune-related

receptors and (ii) they grow with established culture stability.

Schematic screening procedures are depicted in Fig. 1. Positive

protein pools were confirmed using a cut-off that was 1.8 fold above

the TNFa levels obtained from the reticulocyte lysate only control

treatment. Then, proteins in the corresponding pools were

individually synthesized and used to stimulate cultures of

RAW264.7 cells. In the final screen using individually synthesized

proteins, TNFa production greater than 2.1 fold of the negative

control value was considered positive for induction. Out of 3,882 V.

cholerae proteins, 8 proteins were reproducibly identified to stimulate

TNFa production and are listed in Table 1. The positive proteins

include a protein of unknown function (protein 3), protein-modifying

enzymes (proteins 4, 6, 7, and 8), a lipid-modifying enzyme (protein

5) and two membrane-associated proteins (proteins 1 and 2).

Although the proteins in Table 1 were identified using

appropriate screening controls, the rabbit reticulocyte lysate that

was used to drive the in vitro protein synthesis reaction contains

many unknown materials that may be contaminating in the assay.

To further verify the screening result, RAW264.7 cells were

treated with purified proteins expressed in E. coli BL21 (DE3).

Among the eight proteins shown in Table 1, five proteins were

successfully purified as His6 tagged-recombinant proteins (Fig. 2A).

The other three proteins were either not expressed or expressed as

insoluble proteins (data not shown). Since RAW264.7 cells are

highly sensitive to LPS, LPS was removed from purified proteins

down to ,0.05 EU/ml as described in Materials and Methods

(data not shown). As shown in Fig. 2B, varying doses of the

purified recombinant proteins were used to stimulate cultures of

RAW264.7 cells. Proteins 1, 4, 5, and 8 induced RAW264.7 cells

to produce TNFa, whereas purified VC1893 (Protein No. 3) failed

to elicit TNFa production. Interestingly, phosphatidylserine

decarboxylase (Protein No. 5, VC0339, herein called PSD)

stimulated TNFa production even at the lowest concentration

tested (100 ng/ml) suggesting that PSD stimulates macrophages

with the greatest potency.

To further prove that PSD-induced TNFa production is not

due to LPS contamination, we compared the level of TNFa
produced in response to the purified PSD and E. coli LPS. As

shown in Fig. 2C, in response to 2 EU/ml E. coli LPS, a level that

is .40-fold higher than that detected in the purified PSD,

RAW264.7 cells produced only ,0.7% of the level of TNFa
produced by PSD. It has been reported that LPS response,

especially at lower concentration of LPS, is enhanced by the

presence of LPS-binding protein (LBP), which facilitates the

efficient delivery of LPS to CD14 [24,25]. As expected, the

addition of LBP dramatically enhances the production of TNFa
(Fig. 2D) and IL-6 (Fig. 2E) in response to LPS. In contrast, pro-

inflammatory cytokine production was robust regardless of the

presence or absence of LBP in RAW264.7 murine macrophage

cells responding to PSD (Fig. 2D and E, right bars). Collectively,

these results strongly support that PSD-induced proinflammatory

response from stimulated macrophages is not caused by LPS

contamination in the purified PSD protein.

PSD is an important enzyme involved in the synthesis of

phospholipid bilayer in both eukaryotic and prokaryotic organisms

[26,27,28]. V. cholerae PSD is 285 amino acids long and is produced

as an immature proenzyme, which then undergoes autocatalytic

Author Summary

Innate immune responses are the first line of defense and
involve the early recognition of pathogenic microorganisms.
Furthermore, these early innate responses can help shape
and influence the development of more specific adaptive
immune responses. One way that innate immunity is
triggered is by activation of TLRs, or Toll-like Receptors. TLRs
recognize a wide spectrum of microbes by binding to
pathogen-associated molecular patterns (PAMPs), which are
conserved microbial products. Here, we have used a high-
throughput method to understand more about how a
pathogen can trigger early innate immune responses and
also how these early responses to infection can influence the
adaptive, more specific, immune response. This technique
can also be utilized for adjuvant discovery which is important
in vaccine development since different adjuvants can induce
or enhance different kinds of immune responses to a
particular antigen. Using this method, we identified a novel
bacterial protein that activates a TLR and further character-
ized its role as an adjuvant. Identifying the TLRs, their ligands,
and the signal transduction events that they initiate has
provided insight into our understanding of how the immune
response to infection begins, and how these factors also
collectively influence the adaptive immune response.

Identification of a Novel TLR Agonist
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cleavage by a, b-elimination. Biologically active mature enzyme

thus produced consists of two subunits, a 27.9 kDa b-subunit and

a 3.6 kDa a-subunit (black arrow in Fig. 2A) [29].

PSD-induced proinflammatory response is MyD88-
dependent and is more potent than other known TLR
ligands in inducing interleukin-6 (IL-6) production from
peritoneal mouse macrophage cells

To gain an insight into the signaling mechanism(s) by which PSD

activates mouse macrophages, PSD was used to stimulate the induction

of the proinflammatory cytokine, IL-6, in MyD882/2 (Myeloid

Differentiation Factor-88) and MyD88+/2 macrophages. MyD88 is

one of most commonly used adaptor molecules that mediates signal

transduction in mammalian innate immune activation [30,31]. Upon

ligand binding, TLRs recruit many downstream signaling molecules

via MyD88 to activate NF-kB, which then transcribes genes involved

in the production of proinflammatory cytokines [1]. LPS is a known

potent stimulator of MyD88-dependent inflammatory pathway and

stimulates a high level of IL-6 secretion from MyD88 positive

macrophages compared to MyD88 negative macrophages [32]. When

treated with PSD or LPS, MyD88 knockout macrophage cells secreted

significantly less IL-6 compared to the level of IL-6 detected in MyD88

positive macrophages (Fig. 3A and C) indicating that PSD triggers

through a predominantly MyD88-dependent inflammatory signaling

cascade similar to that observed with LPS.

To determine the relative strength of PSD as an immunostimulant,

adhered primary macrophages were also treated with various doses of

other known TLR agonists (Fig. 3A and C). FlaD (VC2143) from

flagella and CpG DNA are known TLR agonists that act through a

MyD88-dependent pathway [11,33]. They both induce IL-6

secretion from MyD88 positive macrophages but not from MyD88

negative macrophages. In both cases, the level of secretion is not as

great as that observed with either LPS or PSD stimulation (Fig. 3A

and C). To further rule out the possibility that the IL-6 production is

due to any contaminant that might have been incorporated in PSD

sample during purification, another V. cholerae protein (VC0222,

pantetheine-phosphate adenylyltransferase), which was purified in

parallel with PSD and FlaD, was also used as a negative control in this

assay. After LPS was removed, the purity of these three proteins was

shown by SDS-PAGE (Fig. 3B). We observed that PSD was more

potent at eliciting IL-6 production than FlaD, and IL-6 production

was not detectable in cells treated with VC0222 (Fig. 3A). Again, this

suggests that IL-6 production by PSD is caused by the specific

interaction of PSD with macrophage cells and not by any other

unknown contaminant in the protein sample such as LPS.

Poly I:C (dsRNA mimic) is a TLR agonist that stimulates innate

immune activation through a MyD88-independent pathway [34].

When poly I:C was used to stimulate peritoneal macrophages from

MyD88 knockout and positive mice, we observed a higher level of

IL-6 (Fig. 3C) and IFN-b (Fig. S1) in MyD882/2 macrophages

Table 1. List of proteins identified to cause RAW264.7 cells to
produce TNFa.

Proteins TNFa (pg/ml)

1. VC1085, Sensor-Histidine Kinase 1430.8, 1150.0

2. VC2283, Sodium-Dependent Transporter 1496.6, 1315.6

3. VC1893, Conserved Hypothetical Protein 1172.2, 1186.0

4. VC2261, Methionine Aminopeptidase 1521.0, 1361.1

5. VC0339, Phosphatidylserine Decarboxylase 1142.5, 1292.9

6. VC1494, Aminopeptidase N 1253.3, 1539.0

7. VC0556, Glutamate-cysteine Ligase 1177.2, 1232.6

8. VCA0975, ATP-dependent protease LA-related protein 1082.2, 1317.6

No plasmid DNA control 568.0, 531.1

ELISA results from two independent experiments were shown on the right
column. For controls, cells were treated with protein synthesis reaction
mixtures, in which H2O instead of plasmid DNA was added.
doi:10.1371/journal.ppat.1000556.t001

Figure 1. Screening of V. cholerae proteome library for immunostimulatory proteins. Proteome library was prepared from the ORF
expression plasmid library by in vitro protein synthesis. Six plasmids were placed in each well. After being diluted 4-fold in PBS, rabbit reticulocyte
lysate (RRL) mixtures containing proteins were added to treat cultured RAW264.7 murine macrophage cells for 6 hrs. Culture supernatants were
collected to assay TNFa production by ELISA.
doi:10.1371/journal.ppat.1000556.g001

Identification of a Novel TLR Agonist
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than in MyD88 intact cells. This suggests that the decrease in IL-6

production from MyD88 knockout macrophages induced by PSD

or LPS is not due to a non-specific decrease in ligand-responding

capacity of the MyD88 knockout cells.

PSD, in higher concentration, exerts a cytotoxic effect on
macrophages

Interestingly, we detected a decreased level of IL-6 production

in MyD88+/2 mouse peritoneal macrophages responding to

the higher dose of PSD (Fig. 3A, black and gray bars). To

determine whether this result is due to PSD-induced cytotox-

icity, we measured lactate dehydrogenase (LDH) activity in the

cultures of peritoneal macrophage cells. We observed that PSD

exerted a cytotoxic effect on MyD88+/2macrophage cells at

15 mg/ml concentration (Fig. 3D, left side) as well as in

MyD882/2 macrophage cells (Fig. 3D, right side), suggesting

that the PSD-triggered cytotoxicity occurs irrespective of the

presence of MyD88. In contrast, LPS-stimulated macrophage

cells did not exhibit LDH release in culture supernatants of

either MyD882/2 or MyD88+/2 cells suggesting that LPS

induction of proinflammatory responses is not cytotoxic in

nature (Fig. 3D).

Immunostimulatory activity of PSD is, in part, dependent
on its enzymatic activity

To determine whether the proinflammatory response elicited by

PSD is mediated by its enzymatic activity, an enzymatically

inactive mutant of PSD was constructed and expressed. Biolog-

ically active enzyme consists of two subunits as shown in SDS-

PAGE gels (Fig. 2A and 3B). Fig. 4A shows primary sequence of V.

cholerae wild-type PSD and the mutant PSD, in which the wild-type

LGST motif (underlined) identified to be the processing site for

autocatalytic cleavage [29,35] has been changed to LAAT in the

mutant protein. As expected, the AA-PSD mutant was purified as

a single polypeptide (Fig. 4B), and no enzymatic activity was

observed in the mutant (Fig. 4C).

When murine peritoneal macrophages were treated with either

wild-type or mutant forms of PSD, a reduced level of IL-6 (,40%)

was detected in culture supernatants of cells treated with AA-PSD

compared to cells incubated with WT-PSD (Fig. 4C). Further-

more, heat-inactivated WT-PSD, when compared to untreated

WT-PSD, elicited significantly reduced IL-6 production in

macrophage cells (Fig. 4C). Because the stimulatory activity of

LPS is not affected by heat inactivation (data not shown), this

results further supports our conclusion that the stimulatory

Figure 2. Further verification of screening results using purified recombinant proteins. (A) Purity of the purified proteins in SDS-PAGE.
Molecular weight markers (in kDa) are shown on the right lane. One mg of each protein was separated in 4–12% SDS-PAGE. (B) TNFa production of
RAW264.7 cells in response to each of five purified proteins. Three different protein concentrations were used to treat cells. Prior to being added to
cells, LPS was removed from the protein solution to the level of ,0.05 EU/ml. RAW264.7 cells were grown in DMEM plus 10% FCS for overnight and
cells were treated with each protein in serum-free DMEM for 6 hrs. (C) TNFa production of RAW264.7 cells in response to the purified PSD (VC0339,
100 ng/ml)) and E. coli LPS in 2 EU/ml final concentration. The same E. coli LPS was used to make a standard curve for LPS quantification in the PSD
sample. (D) Effect of the presence of LBP on TNFa production. RAW264.7 cells were treated with LPS (10 ng/ml) or PSD (100 ng/ml) in serum-free
DMEM in the presence or absence LBP (100 ng/ml) for 6 hours. (E) Effect of the presence of LBP on IL-6 production. RAW264.7 cells were treated with
LPS (100 ng/ml) or PSD (1 mg/ml) in serum-free DMEM in the presence or absence of LBP (100 ng/ml) for 6 hours.
doi:10.1371/journal.ppat.1000556.g002
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activity of PSD is not due to LPS contamination. IL-6 was not

detected in supernatants of cells incubated with the control

protein, VC0222 (Fig. 4C) or PBS confirming that our

purification protocols effectively removed residual LPS from

these recombinant proteins. However, IL-6 production was not

completely abrogated by treating macrophages with either the

heat-inactivated WT-PSD or AA-PSD suggesting that a linear,

nonconformational epitope of PSD is likely recognized by

macrophages in this assay.

We then asked if AA-PSD causes the cytotoxic effect in

peritoneal macrophages similar to that observed by stimulating

cells with WT-PSD (Fig. 3D). As shown in Fig. 4D, LDH release

was not detected in cells treated with AA-PSD at the two different

concentrations tested suggesting that the cytotoxic effect is most

likely due to the biological activity associated with the WT-PSD.

TLR4 is involved in PSD-induced proinflammatory signal
transduction

Our results shown in Fig. 3A indicated that V. cholerae PSD

elicits proinflammatory responses in a MyD88-dependent man-

ner. Since most TLRs use MyD88 as a key adaptor protein to

recruit downstream signaling molecules [1,31], we hypothesized

that PSD may signal through a TLR to activate innate immune

responses and the production of proinflammatory cytokines. To

test this hypothesis, HEK293 (human embryonic kidney) cells,

which do not express endogenous TLR [36], were transfected

with each of the individual TLRs (TLR2, 3, 4, 5, 7, and 9) and

assayed for activation by PSD. To ensure full responsiveness to

LPS, the plasmid expressing tlr4 co-transcribes genes encoding

CD14 and MD2, which are involved in LPS responses [37].

HEK293 cells were also transfected with a reporter construct in

which the expression of secreted alkaline phosphatase (SEAP) is

driven from an NF-kB inducible promoter. Appropriate positive

controls (Fig. S2) were tested to compare their NF-kB signaling

activity with that of PSD. As shown in Fig. 5A, HEK293 cells

expressing each TLR responded to its corresponding ligand (blue

bars). No cross reactivity was detected in HEK293 cells

responding to other control ligands (data not shown). We

observed that PSD-induced NF-kB activation was most efficiently

detected in HEK293 cells expressing TLR4/MD2/CD14 in

Figure 3. PSD-induced proinflammatory response is MyD88-dependent and PSD, in higher concentration, exerts a cytotoxic effect
on peritoneal mouse macrophages. (A) IL-6 production in peritoneal macrophages isolated from MyD88+/2 (left) or MyD882/2 (right) mouse
in response to three purified V. cholerae proteins (PSD, FlaD and VC0222). Cells were treated with the protein in three different final concentrations,
15 mg/ml (black bars), 1.5 mg/ml (gray bars) and 150 ng/ml (hatched bars). Isolation and stimulation of resident murine macrophages were performed
as described in Materials and Methods. *p,0.01 vs. IL-6 production in MyD88+/2 cells in each corresponding protein concentration. (B) Purity of the
protein stimulants was shown in SDS-PAGE. One mg of each protein was separated in 4–12% SDS-PAGE. (C) IL-6 production in peritoneal
macrophages isolated from MyD88+/2 (left) or MyD882/2 (right) mouse in response to non-protein ligands indicated at the bottom of the graph.
Experimental conditions were identical with Fig. 3A. *p,0.01 vs. IL-6 production in MyD88+/2 cells in each corresponding protein concentration. (D)
LDH activity was measured in the same culture supernatant that was used for IL-6 ELISA. % cytotoxicity was calculated as a relative LDH activity of
maximally released LDH by a treatment of 1% triton X-100. *p,0.01 vs. the other treatments.
doi:10.1371/journal.ppat.1000556.g003
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comparison to the other TLRs, indicating that PSD likely signals

through TLR4 (Fig. 5A).

To further prove the role of TLR4 in PSD signaling, we next

compared the IL-6 production from peritoneal macrophages

freshly isolated from TLR4 WT (C3H/HeOuJ) and TLR4

hyporesponsive mice (C3H/HeJ) in response to PSD stimulation.

Fig. 5B shows the time course of IL-6 production from cells in

response to S. typhimurium LPS, PSD, VC0222 and PBS. In the

presence of LPS, decreased levels of IL-6 production were

detected at all time points in TLR4 deficient macrophages

compared to levels detected in TLR4 intact cells (Fig. 5B).

However, IL-6 production was only reduced by approximately

50% in the TLR4 deficient macrophages after stimulation with

LPS suggesting that alternative LPS responding pathways exist in

these cells. Indeed, LPS-induced IL-6 production from TLR4-

deficient macrophages may also be mediated by TLR2 as

previously reported [38,39]. In contrast, IL-6 production was

completely abrogated in PSD-treated TLR4-deficient macro-

phage cells, while a high level of IL-6 was produced in TLR4

intact cells (Fig. 5B). When we treated the same TLR4 positive or

deficient macrophage cells with phosphatidylserine (PS) or

phosphatidylethanolamine (PE), that is the substrate or product

of PSD, respectively, no proinflammatory response was detected

(data not shown). This further suggests that the PSD-mediated IL-

6 induction is not due to the lipid substrate or product of PSD.

Collectively, these results show that PSD-induced proinflamma-

tory signal transduction is mediated by TLR4 and further

supports our conclusion that PSD’s TLR4 agonist activity is not

the result of LPS contamination.

PSD has adjuvant activity against a co-administered
antigen

Using this high throughput screen, we have identified PSD as a

TLR4 agonist that signals through a MyD88-dependant pathway.

One of the hallmarks of TLR agonists is that they induce innate

immune responses that can influence and shape adaptive

immunity. Because of this property, many TLR agonists are used

as adjuvants enhancing the adaptive immune response against co-

administered antigens [40]. To determine if PSD can also exert an

adjuvant effect, groups of mice were immunized with the inert

antigen BSA alone or in the presence of either PSD or CpG as

adjuvants. Mice that received BSA in conjunction with PSD

showed enhanced anti-BSA antibody responses compared to mice

that were immunized with BSA alone or naı̈ve animals (Fig. 6A).

This enhanced effect on the anti-BSA immune response was

similar to that observed when mice were immunized with a known

TLR agonist, CpG [41]. This adjuvant effect exerted by PSD was

due to TLR4 activation since TLR4-deficient mice immunized

with PSD in conjunction with BSA demonstrated a significant

decrease in the anti-BSA immune response compared to when

TLR4 intact mice were immunized (Fig. 6A). These data suggest

that PSD is a bacterial protein that acts as an adjuvant against a

co-administered antigen, BSA and further proves the role of TLR4

in PSD-induced signaling pathway in vivo.

Monitoring antibody isotypes generated following immuniza-

tion with a particular adjuvant can reflect the balance of Th1 or

Th2 responses induced. Th1 responses favor the production of

IgG isotypes such as IgG2a and Th2 responses favor the

production of isotypes such as IgG1 [42]. Isotype characterization

Figure 4. Involvement of the enzymatic activity of PSD in IL-6 production and cytotoxicity. (A) Primary amino acid sequences of WT-PSD
and alanine replaced PSD mutant (termed AA-PSD). LGST residue determined to be processed by an autocleavage (shown as a black arrow) was
underlined. (B) SDS-PAGE of purified WT-PSD (lane 1) and AA-PSD (lane 2). (C) Enzyme activity assay of the purified proteins (WT-PSD: black line, AA-
PSD: gray line). Conversion rate of radiolabeled substrate via the enzymatic activity was displayed as mean6SEM, n = 3. (D) IL-6 production in
peritoneal mouse macrophages isolated from BALB/c mice by WT-PSD and AA-PSD (native or heat-inactivated). VC0222 and PBS were used as
controls. *p,0.01 vs. IL-6 production by native WT-PSD. **p,0.01 vs. IL-6 production by native WT-PSD. (E) Peritoneal macrophages were treated
with three different proteins indicated at the bottom of the graph in two concentrations (15 mg/ml, black bars; 1.5 mg/ml, gray bars) for 15 hrs. LDH
activity was measured as in Fig. 3D. *p,0.01 vs. % cytotoxicity by 15 mg/ml WT-PSD. **p,0.001 vs. % cytotoxicity by 15 mg/ml WT-PSD.
doi:10.1371/journal.ppat.1000556.g004
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of serum from mice immunized with BSA in the presence of both

PSD and CpG demonstrated elevated levels of both BSA-specific

IgG1 and IgG2a compared to serum from mice that received BSA

alone (Fig. 6B and C). In contrast, immunization with BSA alone

induced specific IgG1 but not IgG2a responses. These results

suggest that PSD acts as an adjuvant that not only enhances the

default Type 2 (IgG1) humoral immune response, but also induces

IgG2a, a hallmark of Type 1 immunity, against a co-administered

antigen. Consistent with results in Fig. 6A, significantly decreased

levels of both anti-BSA IgG1 and IgG2a were detected in TLR4-

deficient mice.

To determine if cellular responses mirrored the humoral

responses, we determined cytokine profiles from antigen restim-

ulated splenocytes. We isolated single cell suspensions of

splenocytes from immunized and naı̈ve animals and plated them

into 24 well plates in the presence or absence of the BSA antigen

or PSD adjuvant. In this assay, the splenocytes from immunized

animals will recognize the antigen and start proliferating and

secreting cytokines in response. Consistent with isotyping results

(Fig. 6B and C), BSA- and PSD-restimulated splenocytes from

TLR4-intact mice immunized with PSD+BSA secreted IFN-

gamma, a Type 1 cytokine (Fig. 6D) and IL-10, a Type 2 cytokine

(Fig. 6E). Antigen-restimulated splenocytes from TLR4-deficient

mice immunized with PSD+BSA and naive animals failed to

secrete detectable Type 1 or 2 cytokines. Collectively these data

show that PSD serves as an adjuvant which enhances both

humoral and cell-mediated arms of the immune response against a

co-administered antigen.

Discussion

In this study, we show that V. cholerae phosphatidylserine

decarboxylase is capable of stimulating innate immune effector

cells (macrophages) to secrete proinflammatory cytokines, a

hallmark of the innate immune response. PSD was identified in

a high-throughout Expressed Protein Screen for Immune

Activators (EPSIA). EPSIA provides an approach to screening

the entire protein repertoire of an infectious organism for agonists

of immunological responses that can be assayed using appropriate

eukaryotic reporter cell lines. Our successful application of EPSIA

to the discovery of a novel TLR agonist can be attributed to

following contributions; (i) the use of a well-established murine

macrophage cell line RAW264.7 provided cytokine induction

reproducibility and thus, minimized batch to batch variations, (ii)

efficient in vitro protein synthesis was achieved using the rabbit

reticulocyte lysate (RRL) expression system, (iii) LPS, to which

RAW274.7 cells are highly sensitive, was successfully removed

from plasmid DNA and purified recombinant proteins by ion-

exchange column purification and detergent extraction method,

respectively and finally, (iv) the control treatment containing RRL

mixture, but no plasmid DNA, elicited only a basal level of

proinflammatory response from RAW264.7 cells.

The most convincing evidence that V. cholerae PSD may play a

role as an immunostimulatory protein stems from the results

demonstrated in Fig. 2. Purified PSD elicited the strongest TNFa
production at concentration as low as 100 ng/ml, while the other

three proteins stimulated RAW264.7 cells only at the highest

working concentration (10 mg/ml). The experiments using

MyD882/2 peritoneal macrophages led to the observation that

the PSD-induced proinflammatory response may be mediated by

an innate immune signaling pathway. Like LPS, PSD stimulated a

MyD88-dependent signaling mechanism to produce IL-6 (Fig. 3A).

IL-6 production in the freshly isolated peritoneal macrophages

also indicates the in vivo relevance of the PSD-induced host

proinflammatory responses.

Bioinformatic analysis indicates that almost all bacterial species

in the public database possess a gene encoding for PSD. In

addition, the gene encoding PSD cannot be inactivated in V.

cholerae [43]. This suggests that PSD is likely an essential enzyme

for bacterial viability and thus, could be a conserved target for

detection by the innate immune system. Interestingly, PSD is also

present in mammalian cells and sequence alignment between

eukaryotic and prokaryotic PSD suggests that eukaryotic PSD are

also processed by autocatalytic cleavage using the same LGST

motif [44]. Mouse PSD displays 31.7% sequence identity with V.

cholerae PSD while the latter displays 60% sequence identity with E.

coli PSD. It is not known whether the divergence in sequence

between eukaryotic and prokaryotic PSD is sufficient to block its

TLR agonist activity. Importantly, PSD in mammalian cells

resides predominantly in mitochondria [45,46]. This may provide

some degree of compartmentalization, where innate immune cells

may not detect circulating levels of endogenous PSD unless host

Figure 5. Stimulatory effect of PSD on mouse TLR4. (A) SEAP
reporter activity was measured in HEK293 cells transfected with each
mouse TLR construct (indicated at the bottom) and plotted as a 3-D bar
graph. Cells expressing each TLR were treated with its own control
ligand (blue bars), WT-PSD (3 mg/ml, red bars), VC0222 (3 mg/ml, yellow
bars) and PBS (gray bars) in two independent cultures. Average activity
values were used for plotting. LPS levels in the final preparation in PSD
and VC0222 were 0.035 (60.00191) and 0.027 (60.0007) EU/ml,
respectively. (B) Peritoneal macrophage cells isolated from C3H/HeOuJ
(TLR4 WT) or C3H/HeJ (TLR4-deficient) mice were treated with S.
typhimurium LPS (100 ng/ml), WT-PSD (1.5 mg/ml), VC0222 (1.5 mg/ml)
and PBS for 9 hrs and IL-6 level in each treatment was measured after 3
(gray bars), 6 (black bars) and 9 hrs (hatched bars). LPS levels in the final
preparation in PSD and VC0222 were 0.035 (60.00191) and 0.027
(60.0007) EU/ml, respectively. *p,0.01 vs. IL-6 production from TLR4
intact macrophages in each time point.
doi:10.1371/journal.ppat.1000556.g005
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cells lyse and release mitochondrial contents. It is interesting that

disruption of mitochondria is a hallmark of processes such as

apoptosis [47] and thus, mitochondrial PSD may play a role in

amplification of inflammatory responses occurring as a result of

bacterial or viral replication within and lysis of host cells.

We were also intrigued by the observations that (i) PSD at its

highest concentration (15 mg/ml) was cytotoxic to both MyD88+/2

and MyD882/2 macrophages (Fig. 3D), and (ii) this cytotoxicity

was not detected when the non-functional alanine-substituted PSD

mutant (AA-PSD) was used to stimulate cells (Fig. 4D). This suggests

that PSD triggers a MyD88-dependent proinflammatory signaling

up to a certain threshold, after which PSD induces a non-specific

cytotoxicity to host macrophage cells likely due to its enzymatic

activity. Further study is necessary to precisely determine whether

cytotoxic effect imposed on macrophages by PSD is mediated by

apoptosis or random necrosis.

TLR screening of transfected HEK293 cells and antigen

stimulation of TLR4-deficient macrophages clearly identified

TLR4 as a mediator of the PSD-induced proinflammatory

signaling pathway. The gene encoding TLR4 in C3H/HeJ has a

point mutation, which results in an amino acid substitution from

proline to histidine in the intracellular domain [48]. This amino

acid residue change was found to be crucial for the inhibition of

binding of MyD88 to downstream signaling molecules [48]. Our

results in Fig. 4 demonstrated that the enzymatic activity of PSD

appears to be involved, at least in part, in the proinflammatory

signaling. However, more detailed experiments are necessary to

decipher the precise molecular mechanisms of the bacterial PSD

acting on host cells. Recent evidences indicate that upon ligand

binding, TLR4 is recruited to a specific domain in the plasma

membrane, called the lipid raft [49,50]. Because PSD is an

enzyme that possesses the ability to modify the phospholipid

bilayer, we postulate that (i) PSD may directly interact with TLR4

to transduce the proinflammatory signaling or (ii) PSD acting on

host cell membrane may affect the interaction between TLR4 and

lipid rafts.

Our data also suggest that the activation of macrophages by

PSD may be due not only to the enzymatic activity of PSD, but

also a binding determinant of PSD that interacts directly with the

macrophage, presumably through TLR4. There may be a

difference in the accessibility of a binding determinant on PSD,

where the binding determinant is more accessible in the active

cleaved enzyme than the mutant PSD which effectively remains in

the inactive pro-enzyme conformation.

Figure 6. PSD is an adjuvant that induces mixed Type 1 and Type 2 antigen-specific immune responses. (A) Anti-BSA IgG responses
following immunization with BSA in the presence or absence of PSD or CpG as adjuvants show enhanced IgG responses in serum from animals
immunized with PSD compared to serum from mice immunized with BSA alone. (B and C) IgG1 and IgG2a isotype characterization of anti-BSA
humoral responses following immunization with BSA in the presence of PSD or CpG as adjuvants. Both Type 2 IgG1 (B) and Type 1 IgG2a (C) antigen-
specific responses are enhanced when PSD was coadministered with BSA. (D and E) PSD increases BSA-specific Type 1 and Type 2 cytokine
responses. Antigen restimulation assays using splenocytes from PSD+BSA immunized animals with intact TLR4 demonstrated increased Type 1 IFNc
(D) and Type 2 IL-10 (E) cytokine responses when restimulated with BSA or PSD.
doi:10.1371/journal.ppat.1000556.g006
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TLR agonists activate innate immune cells to secrete cytokines

and more efficiently process and present antigens, which in turn,

stimulates robust and effective adaptive immune response [21,51].

Similarly, we observed that V. cholerae PSD exhibited adjuvant

activity against a co-administered inert antigen BSA (Fig. 6). PSD

stimulated enhanced antibody responses against BSA similar to

that observed when a known TLR agonist, CpG was used as an

adjuvant compared to when mice were immunized with BSA

alone. Isotype characterization of the humoral response and the

assaying the cytokine profiles from antigen-restimulated spleno-

cytes following immunization with PSD showed that PSD elicits a

mixed Type 1 cell-mediated response in addition to the default

Type 2 humoral response. Moreover, both of these responses are

enhanced relative to immunization with BSA in the absence of

PSD as an adjuvant.

This study identifies V. cholerae PSD as a novel bacterial protein

that stimulates the host innate immune system, but it still remains

unclear (i) whether PSD, as an inner membrane protein, plays a

direct role in modulating host innate immune system during a

dynamic in vivo infection, and (ii) if so, how much and when PSD is

released into the environment from invading bacterial cells.

Bacterial infection is a complex process, during which bacterial

cells are stressed by a number of factors including encountering

harsh host immune responses and nutrient deficiency. Thus, it is

expected that a subpopulation of invading bacterial cells are lysed

during infection, releasing their intracellular components. Inter-

estingly, spontaneous cell death was observed in bacterial biofilms,

presumed to be the major mode of bacterial growth in host

[52,53]. Therefore, it is likely that our innate immune system may

have been evolved to target intracellular components, such as PSD

and previously identified bacterial CpG DNA [10].

In summary, we utilized a proteome-wide screening technique

called EPSIA to identify a novel bacterial immunostimulatory

protein. Phosphatidylserine decarboxylase (PSD) was shown to

activate the host macrophage cells and results provided in this

work represent a previously undescribed interaction between host

immune system and a bacterially conserved protein. The activity

of PSD was further shown to have utility in stimulating immune

responses to bystander antigens that were co-administered to

animals with PSD as an adjuvant. Thus, EPSIA is a new tool for

identifying microbial proteins which are recognized by the innate

immune system and may therefore provides an exciting novel

approach to identifying antigens and more effective vaccine

adjuvants.

Materials and Methods

Ethics statement
The methods for animal experimentations were approved by

the Harvard Institutional Animal Care and Use Committee

(IACUC).

Screen of the proteome library
V. cholerae proteome library was prepared as described in our

recent publication [23]. In vitro protein synthesis was performed

using the TnTH coupled reticulocyte lysate system kit (Promega

Cor., Madison, WI) following the manufacturer’s instructions. In

the primary screening, proteins were synthesized as a pool in each

well of 96-well plate. For the secondary screening, proteins in each

pool that triggered the TNFa production in RAW264.7 cells were

individually synthesized and screened for their activity to produce

TNFa. Supernatants were collected after 6 hr incubation and

assayed for secreted TNFa by cytokine ELISA (BD Pharmingen).

RAW264.7 cells were seeded at 26106 cells/ml in a 100 ml

volume and grown for overnight before being treated with

proteins. Cells were grown in DMEM containing 10% FBS at

37uC in a humidified 5% CO2 incubator.

Protein purification and construction of mutant PSD
For recombinant protein production, the encoding genes were

PCR-amplified and positionally cloned into pET21b (Novagen).

The resulting plasmid was then transformed into E. coli BL21

(DE3). 1 mM IPTG was used to induce overexpression and

recombinant His-tagged proteins were purified using a Ni-NTA

agarose (Qiagen, Valencia, CA). The purity of purified protein was

assessed by SDS-PAGE.

QuickChangeH site-directed mutagenesis kit (Stratagene, Inc.,

La Jolla, CA) was used to introduce point mutation (AA

replacement). Enzyme activity assay was carried out following

the previously published protocols [54,55].

LPS removal and cytotoxcity assay
LPS removal and LPS detection assay was performed using

EndoCleanTM Endotoxin Removal Kit (Biovintage, Inc., San

Diego, CA) and Endotoxin detection kit (Cambrex Corp., East

Rutherford, NJ), respectively. For cytotoxicity assay, lactate

dehydrogenase (LDH) was measured using a spectrometric assay

kit (Biovision Inc., Mountain View, CA) following manufacturer’s

instructions.

Effect of LBP on the production of proinflammatory
cytokines

RAW cells were seeded at 26106 cells/ml in 96-well tissue

culture plates overnight in DMEM containing 10% FBS. The next

day, cells were washed 3 times with PBS and incubated for 2 hours

with serum-free media. PSD and LPS at the indicated concentra-

tions were added to cells in fresh serum-free media alone or to

serum-free media containing 100 ng/ml LPS-binding protein

(R&D Systems). Cells were then incubated at 37 C, 5% CO2 for

6 hours. Supernatants were collected and assayed for TNFa and

IL-6 by capture ELISA.

TLR screening
TLR stimulation was tested by assessing NF-kB activation in

HEK293 cells expressing a given TLR. The activity of sample is

tested on six different mouse TLRs: TLR2, 3, 4, 5, 7 and 9

(Invivogen, San Diego, CA). HEK293 cells were also transfected

with a reporter construct, in which the secreted alkaline

phosphatase (SEAP) is expressed by a NF-kB inducible promoter.

TLR stimulation in the screening is tested by assessing NF-kB

activation in the HEK293 cells expressing a given TLR. After a 16–

20 hr incubation, SEAP activity was monitored by measuring the

OD650 on a Beckman Coulter AD 340 C Absorbance Detector.

Mice
Five to seven week old female BALB/c mice were purchased from

Charles River. Five to seven week old C3H/HeJ and C3H/HeOuJ

mice were purchased from Jackson Labs. MyD882/2 and

MyD88+/2 mice were from an in-house colony at Harvard Medical

School. All mice were housed using sterile set-up and were allowed a

one week acclimatization period before initiation of experiments.

Isolation and stimulation of resident murine
macrophages

Mice were euthanized and injected with 10 ml of cold PBS into

the peritoneum. Resident cells were then lavaged out of the

peritoneum and pooled. Red blood cells were lysed using a
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hypotonic buffer and the cells were resuspended in complete

RPMI-10 media. These cells were used to seed 96-well plates at

26106 cells/ml in a 100 ml volume and allowed to adhere for 2–

3 hours at 37 uC, 5% CO2. Unbound cells were removed by

washing the plate 3 times with PBS. Adhered cells were incubated

with varying doses of stimulants as indicated in 100 ml volume of

serum-free media for 15 hrs. Supernatants were collected at the

times indicated and assayed for secreted IL-6 by cytokine ELISA

(BD Pharmingen).

Immunization protocol
Groups of four to five BALB/c or C3H/HeJ mice were

immunized three times at biweekly intervals intraperitoneally (IP)

with 10 mg BSA in the presence or absence of 5 mg of PSD. Other

groups of BALB/c mice were similarly immunized with 10 mg

BSA alone or in conjunction with 10 mg CpG DNA. Two weeks

after the last immunization, all animals were sacrificed. Blood was

collected from each mouse by cardiac puncture, and serum was

obtained for the determination of BSA-specific responses by

ELISA. Spleens were collected from each mouse to perform

antigen restimulation assays.

Antigen restimulation assays
Spleens from immunized or naı̈ve animals were homogenized

through a sterile cell dissociation sieve, pelleted and resuspended

in RPMI 1640 (1% FBS, 2% Ab/Am). Splenocytes were isolated

using density centrifugation with Histopaque-1119, washed, and

resuspended in complete RPMI 1640 (10% FBS, 2% Ab/Am,

2 mM L-Glutamine, 50 mM b-mercaptoethanol, 1 mM sodium

pyruvate, and 1 mM MEM non-essential amino acids) containing

0.4 ng/ml of IL-2. Purified mononuclear cells were counted and

2.56106 cells were added to the wells of a 24-well tissue culture

plate. Cells were restimulated with 1 mg BSA or left unstimulated.

Supernatants were collected at 3, 4, and 5 days and kept at 220uC
until assayed for Type 1 (IFN-gamma) and Type 2 cytokines (IL-

10) by cytokine ELISA (BD Pharmingen).

Antibody assays
Serum samples from groups of immunized mice were analyzed

for antigen-specific IgG by ELISA. Immune sera was diluted in

PBS-0.05% Tween 20 and added to microtiter plates precoated

overnight with 1 mg BSA per well. Rabbit anti-mouse IgG, IgG1,

or IgG2a conjugated to alkaline phosphatase was used to

determine serum anti-BSA levels. Plates were visualized by the

addition of p-nitrophenol substrate to each well. Reactions were

stopped with 2 N NaOH and the absorbance at 405 nm was

determined on a spectrophotometer. Data are reported as

reciprocal endpoint titer, with the cutoff calculated as two

standard deviations above the mean of the negative control.

Statistical analysis
Data are expressed as mean6standard error of the mean. An

unpaired Student’s t test was used to analyze the data. A P value of

,0.05 was considered statistically significant.

Supporting Information

Figure S1 List of positive controls that were used to stimulate

each TLR.

Found at: doi:10.1371/journal.ppat.1000556.s001 (0.89 MB TIF)

Figure S2 IFN-b production in peritoneal macrophages isolated

from MyD88+/2 (left) or MyD882/2 (right) mouse in response

to Poly I:C. Experimental conditions were identical with those

described in the legend to Fig. 3C.

Found at: doi:10.1371/journal.ppat.1000556.s002 (0.13 MB TIF)
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