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Abstract

Background: Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome
associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic
syndrome are insufficiently understood.

Principal Findings: To identify the mechanisms underlying the pathological changes associated with short and long-term
exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF) diets
was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes
reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related
pathways. The major changes in gene expression take place during the early (day 3) and late (week 12) phases of HF
feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two
phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late
repression) and lipogenic/adipogenic pathways (early repression, late activation). Transcriptional network analysis identifies
NF-kB, NEMO, Akt, PPARc and SREBP1 as the key controllers of these processes and suggests that direct regulatory
interactions between these factors may govern the transition from early (stressed, inflammatory) to late (pathological,
steatotic) hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by
expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes
most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of
hepatic gene expression and triglyceride levels.

Conclusions: The transition from an inflammatory to a steatotic transcriptional program, possibly driven by the reciprocal
activation of NF-kB and PPARc regulators, emerges as the principal signature of the hepatic adaptation to excess dietary fat.
These findings may be of essential interest for devising new strategies aiming to prevent the progression of high-fat diet
induced pathologies.
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Introduction

Pathologies associated with metabolic syndrome, such as

overweight and obesity, insulin resistance, hypertension, hyperlip-

idemia, non-alcoholic hepatic steatosis and diabetes are becoming

a health problem of epidemic proportions in Western societies [1–

3]. In addition to genetic factors, diet represents the most

important determinant of the development and progression of

the metabolic syndrome [4]. High-fat diets have been shown to

induce obesity and insulin resistance in humans and rodents [5–7].

It is believed that short-term high-fat feeding triggers a stress

response (termed ‘‘metabolic stress’’), which challenges the system

to adapt to the new conditions and maintain homeostasis. If the fat

overload persists, the system fails to adjust and consequently

undergoes pathophysiological changes characteristic for metabolic

syndrome [8,9]. The early diagnostics of metabolic stress and the

elucidation of the molecular mechanisms underlying a transition

from the early to late stages of metabolic syndrome are of crucial

importance for developing intervention strategies for preventing

irreversible disease characteristics.

It is generally acknowledged that excessive exposure to dietary

lipids disrupts the homeostasis of cellular metabolism and triggers

an inflammatory response in adipose tissue [10]. Nevertheless, the

dynamics and coordinate regulation of processes perturbed by
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excess dietary fat in other organs is scarcely understood. Several

recent studies highlighted the important role of lipid-activated

nuclear receptors such as peroxisome-proliferator-activated recep-

tors (PPARs) in the integration of metabolic and inflammatory

processes [11]. In addition to their role as transcription activators

of metabolic genes, PPARs are receiving an increasing attention as

inhibitors of inflammatory gene expression achieved primarily

through suppression of the pro-inflammatory NF-kB pathway

[11,12]. This dual function makes PPARs attractive targets for

intervention in both metabolic and inflammatory disorders,

although little is known about role of PPARs in the diseases

where the cross-talk of these pathways may be fundamental to the

development of pathogenesis [13–15]. Despite the significant

progress in the field, much work is still required to fully understand

the molecular mechanisms underlying the effects of high-fat diets

and delineate their coordination during onset and progression of

metabolic syndrome on organ and systems level.

In this study, we have used Apolipoprotein E3-Leiden (ApoE3L)

mice to investigate the effect of two types of standard laboratory

high-fat (HF) diets on development of metabolic syndrome.

ApoE3L transgenic mice are an established model for studying

the effect of dietary interventions on hyperlipidemia, atheroscle-

rosis and other diet-related pathologies [16–23]. Due to the

expression of the human APOE*3Leiden and apoC1 gene cluster

in C57BL/6J (B6) background, the ApoE3L mice display a

lipoprotein profile that closely resembles that of humans, and they

develop human-like dysbetalipoproteinemia and atherosclerotic

lesions when fed Western-type diets [24,25]. We show that

ApoE3L mice fed either a beef tallow- or palm oil- based high-fat

diet (HFBT and HFP, respectively) for 16 weeks develop metabolic

syndrome characteristics, such as obesity and hepatic steatosis. By

monitoring the genome-wide hepatic mRNA expression of these

mice at eight time-points, covering the period from the beginning

of the high-fat feeding until the occurrence of significant changes

in metabolic syndrome parameters (week 16), we could construct a

comprehensive view of the biological processes characteristic of

hepatic adaptation to excess dietary fat during the progression

from metabolic stress to metabolic syndrome. The reciprocal

activation of the inflammatory/immune response and the

lipogenic/adipogenic pathways emerges as the most prominent

signature of the transition from short to long-term HF feeding and

underscores the relevance of the antagonistic action of NF-kB and

PPARc regulators in controlling the shift from the stressed,

inflamed to the pathological, steatotic hepatic state. These results

provide novel insights into the interaction between metabolic and

inflammatory processes during the development of metabolic

syndrome that may be important when considering strategies to

prevent and treat the disease.

Results

To investigate the processes associated with the high-fat (HF)

induced metabolic stress and the progression of the metabolic

syndrome, male ApoE3L mice were fed one of the three standard

laboratory diets: chow (control diet), HFBT (45 energy %, beef

tallow high-fat diet containing 0.25% cholesterol) and HFP (45

energy % palm oil high-fat diet), for a period of 16 weeks

(Materials and methods). The primary aim of the study was to

identify the effects of excessive dietary fat content and to determine

how these effects change over time. The additional aspect that we

aimed to address was to which extent parameters other than

percentage of fat determine the consequences of HF feeding.

Dietary parameters, such as fat origin or presence or absence of

cholesterol, may also be relevant determinants of HF diet effects.

To address this aspect, cholesterol-containing animal fat-based

diet (HFBT, also referred to as Western-type diet) and plant oil-

based diet with relatively high amount of saturated fats (HFP) were

investigated in parallel. During the 16 week experimental period

the body weight of both HFBT and HFP fed mice increased

significantly compared to the chow-fed mice (Figure 1A).

To focus on the molecular mechanisms underlying the

development of metabolic syndrome, hepatic mRNA expression

of HF- and chow-fed ApoE3L mice (n = 150) was monitored using

DNA microarrays over a period of 16 weeks. At the day 0 and

eight additional time-points (day 1, day 3, week 1, 2, 4, 8, 12 and

16) mice were sacrificed, their livers were sampled and the RNA

expression was analysed using NuGO Affymetrix mouse arrays

[26]. After the quality control and the preprocessing of data,

expression values were obtained for 15105 genes in 3 to 6

biological replicate samples per diet and time-point (Materials and

methods).

Global temporal changes in hepatic transcriptome
during the 16-week time-course

To assess temporal changes in hepatic gene expression over the

16-week period under the control and two high-fat diets, each of

the time points per diet was compared to time-point day 0 in a

pairwise fashion using limma statistical package [27]. Applying

statistical cutoff of false discovery rate (FDR) ,0.1, we identified

839, 3027 and 3316 genes differentially expressed by chow, HFBT

and HFP feeding, respectively, across any of eight time-points

(Figure S1). This showed that ageing of animals from 14 weeks (at

the beginning of the experiment) to 30 weeks (at its end) affected

expression of a portion of genes, also in the control condition.

Nevertheless, the combined effects of ageing and high-fat feeding

observed in HFBT and HFP conditions was substantially larger

compared to solely aging effects.

In addition to overall temporal effects, comparing each of the

time points to day 0 allowed assessment of dynamics of transcrip-

tional response by detecting the magnitude of the gene expression

changes at each time point compared to the starting condition. In

both HF conditions we observed three phases of hepatic

transcriptional response characterized by local peaks in the

number of differentially expressed genes: early (day 1 to week 1),

mid (week 2 and week 4) and late (week 8 to week 16) (Figure S1).

In addition to the phasic trend, the number of differentially

expressed genes in HF conditions increased gradually during the

course of the experiment. This may be expected considering that

using day 0 as a common reference leads to combined contri-

bution of both high-fat intervention and ageing to the observed

effects. In chow condition, temporal trends identified for HF diets

were absent and the numbers of changed genes in each of the

time-points remained below the ones identified in HF conditions

(Figure S1).

Hepatic transcription response to high-fat diets
After determination of the temporal effects of all three diets

across 16-week time-course, we focused on dissecting the HF-

specific effects on the hepatic transcriptome. To analyse the effects

of HF diets independently of changes occurring due to the animal

age, we compared the gene expression of mice fed HFBT and

HFP diets to those of mice fed the chow diet in each of the

corresponding time-points. The pairwise comparisons were

performed using the limma statistical package, and FDR q-

value,0.1 was used as a threshold for significance. The numbers

of identified differentially expressed genes in each diet and time-

point are shown in Table 1 and Table S1. Per time-point, the

number of up- and down-reglated genes was largely balanced, and

Hepatic Effects of HF Diets
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Figure 1. Increased body weight and gene expression changes induced by HFBT and HFP high-fat diets. (A) Average body weight of
ApoE3L mice fed either chow, HFBT or HFP diet in each time point of the 16-week time course. Error bars represent standard deviation within a
group. Statistically significant (p,0.05) increase in body weight of HFBT and HFP fed mice compared to chow fed mice are marked with asterisk and
hash sign, respectively. (B) Overlap between the total numbers of statistically significant differentially expressed genes in livers of ApoE3L mice fed
either HFBT or HFP diet compared to chow diet per time-point, over the 16-week time-course. (C) Hierarchical clustering (Pearson correlation,
complete linkage) of 16 experimental conditions (two high-fat diets at 8 time-points) and 1663 genes differentially expressed under either of two
high-fat conditions. Values used for clustering are average HFBT vs. chow and HFP vs. chow per time-point expression ratios. The branches of the
condition tree are colored so to discriminate three subclusters with the largest distance, corresponding to three phases of the time-course: early (red),
mid (orange) and late (yellow). This is summarized in the color bar underneath the cluster diagram. The lower color bar indicates distinct time-points,
stressing the similarity of HFBT and HFP transcriptional response at each point of the time-course.
doi:10.1371/journal.pone.0006646.g001
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genes changed expression in the same direction in both HF

conditions (Table S1). In total, during the 16-week time-course the

HFBT diet significantly affected the expression of 1263 genes,

while HFP diet affected 836 genes (8.3% and 5.5% of the

monitored genome, respectively). The statistically significant

differentially expressed genes (DEG) under the two HF diets

largely overlap (436 genes, p-value 1.7E-265) (Figure 1B).

To compare gene expression patterns of identified HFBT and

HFP DEGs across all conditions, expression profiles of genes that

are changing in either of HF diets compared to chow diet per

time-point (1663 genes in total) were hierarchically clustered

(Figure 1C). The close proximity of condition tree branches

corresponding to two diets in each of the time-points revealed a

striking similarity between the effects of HFBT and HFP diets on

the expression of all 1663 genes. Therefore, not only 436

overlapping genes, but also the remaining genes unique to each

condition changed similarly under the HFBT and HFP diets,

although they did not pass significance threshold in both

conditions. Due to this highly comparable gene expression

response, the union of differentially expressed genes under the

HFBT and HFP diets was further considered as a total set of 1663

HF-responsive genes (Table S1, Table S2). This set of HF-

responsive genes was used for all downstream functional analyses

that required a limited set of genes of interest as input.

Nevertheless, to be able to assess subtle differences between the

effects of two HF diets caused by different fat origin and/or the

presence or absence of cholesterol in a diet, gene expression

changes are always displayed separately for each of two diets.

Three distinct phases (early, mid and late) of hepatic

transcriptional response to HF diets were observed by comparing

each time-point to day 0 (Figure S1). These phases are also

revealed by hierarchical clustering of the experimental conditions

in Figure 1C, where gene expression of mice fed HFBT and HFP

diets was compared to those of mice fed the chow diet at each of

the corresponding time-points. To further characterize the

expression profiles of the 1663 HF-responsive genes, Smoothing

Spline Clustering was performed [28] (Figure S2, S3, S4 and S5).

The identified gene expression profiles typically show peaks at

early (day 3), mid (week 2) and/or late (week 8/12) phase of the

time-course. Especially prominent expression changes were

observed at the early and the late phase, as determined by the

intensity of the gene expression changes and the abundance of the

significant differentially expressed genes (Table 1, Figure 1C,

Table S1, Table S2). Interestingly, many genes change the

direction of their regulation between the early and the late phase

of the time-course (Figure 1C, Figure S2, Figure S3, Figure S4 and

Figure S5). Similarly to the observation obtained by comparing

each time-point to day 0, the peak-intervening time-points are

characterized by a more modest transcription response and may

reflect resumptions of the local homeostasis resulting from the

transient adaptation to excess dietary fat.

To identify which cellular processes are most affected by the

hepatic exposure to excess dietary fat over the entire time-course,

we first analyzed the overrepresented functional categories among

the 1663 HF-responsive genes [29]. The most prominent

significantly enriched functional clusters are related to lipid,

cholesterol and oxido-reductive metabolism, as well as inflamma-

tion, immune response, apoptosis, cell cycle, protein folding and

the regulatory pathways controlling these processes (Figure 2,

Table S3 (‘‘All HF-responsive genes’’)). The expression changes

per diet and time-point of the selected representative genes for

each functional cluster are also shown in Figure 2. To assess if

some of the categories are specifically enriched in either up- or

down-regulated genes, we additionally performed the equivalent

type of analysis using separately lists of HF-responsive up- and

downregulated genes (Table S3 (‘‘Upregulated HF-responsive

genes’’ and ‘‘Downregulated HF-responsive genes’’)). As a number

of genes changed the direction of their regulation between the

early and the late phase of the time-course, many categories were

represented in both lists. Specifically, the enrichment of lipid

metabolism and inflammatory processes were highly significant

among the upregulated HF-responsive genes, and glutathione

metabolism and cholesterol biosynthesis were most significant

among the downregulated HF-responsive genes.

Integrative temporal and functional characterization of
the hepatic transcription response to high-fat diets

To include prior biological knowledge in pathway analysis, both

public and proprietary gene sets were used for Gene Set

Enrichment Analysis (GSEA) [30] of each of the HFBT and

HFP versus chow per time-point comparisons. In addition, to

facilitate the dynamic interpretation of the identified biological

functions, statistically significant GSEA results were hierarchically

clustered across all conditions, thus integrating temporal and

functional information into single visual output (Materials and

methods). Hierarchical clustering of the GSEA-calculated nor-

malized enrichment scores (NES) resulted in an aggregation of the

similarly regulated gene sets, facilitating the visualization of

Table 1. Number of statistically significant differentially expressed genes per time-point (FDR q-value,0.1).

Time point HFBT vs. chow HFP vs. chow
Overlap (HFBT vs. chow)
and (HFP vs. chow)

Day 1 0 0 0

Day 3 550 416 193

Week 1 88 82 31

Week 2 317 136 76

Week 4 33 44 9

Week 8 7 209 2

Week 12 521 144 85

Week 16 23 52 7

All time-points 1263 836 436

Total (both diets, all time-points) 1663

doi:10.1371/journal.pone.0006646.t001

Hepatic Effects of HF Diets
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Figure 2. Functional characterization of the high-fat responsive genes. Representative overrepresented functional categories in the set of
1663 high-fat responsive genes are grouped according to their biological function: (a) lipid and cholesterol metabolism, (b) oxidative and metabolic
processes, (c) inflammatory and immune response, (d) apoptosis and protein folding, (e) cell growth and cell cycle and (f) transcription regulation and
signal transduction. For each functional group, representative genes are listed and their expression profiles (average HFBT vs. chow and HFP vs. chow
expression ratios per time-point) are shown in the adjacent diagrams.
doi:10.1371/journal.pone.0006646.g002
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pathway activities during the 16-week response to HF diets. The

resulting cluster of 314 gene sets, significant (FDR q-value,0.1) in

at least one of the HF conditions, can be visually divided into five

temporal modules (Figure 3).

An examination of the cluster heatmap reveals that the vast

majority of the gene sets change the direction of their

transcriptional regulation throughout the time-course. The first

and largest module contains gene sets that are generally

significantly upregulated during the early phase (day 3) and

downregulated at the late phase of the HF-response (week 8, 12

and/or 16). The most characteristic gene sets in the module 1 are

associated with inflammation and immune response and their

regulation, such as Interleukin (IL)-1, IL-2, IL-3, IL-4, IL-5, IL-7

and IL-9 pathways, CD40 pathway, antigen processing and

presentation, T and B cell receptors signaling, natural killer (NK)

cell cytotoxicity, leukocyte migration and Tumor necrosis factor

(TNFalpha), Nuclear factor-kappa B (NF-kB) and Toll-like

Receptor (TLR) signaling pathways. The second representative

functional theme in module 1 is related to cell growth,

proliferation and differentiation. Examples of these gene-sets

include cyclins and cell cycle regulators, G1 to S and G2 to M

checkpoint controllers, DNA replication reactome and Mitogen-

activated protein (MAP) kinases, Epidermal growth factor (EGF)

and Transforming growth factor beta (TGF-b) signaling pathways.

Additionally, various gene sets related to cancer and development

also follow the early induction/late repression expression pattern.

In contrast to module 1, gene sets in the last module (5) are

generally repressed during the early phase and significantly

upregulated during mid and late phases. The most prominent

functional characteristic of module 5 is the presence of the PPAR

signaling pathway as well as many PPARs-regulated gene sets,

including those associated with adipocytes differentiation (IDX_T-

SA_UP_CLUSTER6, ADIP_VS_FIBRO_UP, ADIP_DIFF_UP,

NADLER_OBESITY_DN), fatty acid oxidation and lipogenesis.

The transcriptional activation of these gene sets during the mid

phase and their amplification during the late phase implies an

important role for PPARs in regulating the transition from short- to

long-term effects of hepatic exposure to excess dietary fat.

Additionally, hepatic activation of the genes involved in adipocytes

differentiation and lipogenesis suggests that fat accumulation and

adipogenic transformation likely take place in the liver after long-

term exposure to a high-fat diet. Other aspects of the metabolic

control, such as amino acid metabolism and tricarboxylic acid cycle,

are also upregulated during mid and late phases of the HF-response.

Despite the large overall similarity in transcription response to

HFBT and HFP diets, a comparison of pathway activities reveals

specific differences between the two high-fat conditions. This is

particularly evident in the gene sets clustered in the lowest part of

the module 3. Notably, the regulation of gene sets involved in

energy metabolism (glycolysis and gluconeogenesis, oxidative

phosphorylation, pentose phosphate pathway, electron transport

chain) is sensitive to variations in fat origin and/or specific

compositions of HF diets. Specifically, a palm oil-based HF diet

(HFP) causes a transient induction of the gene sets involved in

energy metabolism at day 1 but shows attenuated induction of

these gene sets in the late phase compared to a beef tallow-based

HF diet (HFBT). Similar deviation in the gene set activity patterns

between HFP and HFBT conditions is also visible in the module 5.

Finally, a small fraction of all the represented gene sets retains a

constant transcriptional pattern throughout the time-course. These

are represented in modules 2 (constantly downregulated gene sets,

e.g. cholesterol biosynthesis, glutathione metabolism and metab-

olism of xenobiotics by cytochrome P450) and module 4

(constantly upregulated gene sets, such as lipoprotein metabolism).

The reciprocal transcriptional profiles of the pathways repre-

sented in modules 1 and 5 emerge as the principal signature of the

transition from early to late hepatic transcription response to

excess dietary fat. The coincidence of the repression of

inflammatory, immune and cell proliferation pathways and the

induction of metabolic, lipogenic and adipogenic pathways

prompted the hypothesis that these events may be interdependent

and their swap relevant for driving the transition from a stressed to

pathological hepatic state. The relationships between inflamma-

tory and metabolic processes and the key regulators controlling

them were further investigated using biological network analysis.

Network analysis of the HF-responsive genes: interplay
between PPARc and NF-kB regulatory modules

To further explore the control of and the biological connectivity

between the HF-responsive genes, the set of 1663 genes (Figure 1B,

1C, Table S1, Table S2) was used as an input for the network

analysis within the Ingenuity Pathway Analysis suite [31]. The

networks with the highest significance score (network score equal

to or higher than 35) and their associated biological functions are

listed in the Table 2. To focus on the interactions between the

processes identified as crucial for the transition from early to late

hepatic response to excess dietary fat, networks related to immune

response, lipid metabolism and hepatic steatosis (networks 1, 2 and

4) were merged for further examination (Figure 4, 5). The network

number was limited to three to restrict the size and facilitate the

clarity of the resulting network.

The analysis identified several major regulators of the cellular

response to high-fat diets appearing as the hubs in the resulting

network: PPARc, SREBF1 and SREBF2 - regulators of lipid, fatty

acid and cholesterol metabolism, NF-kB – regulator of immune

response and Akt – regulator of cell growth, proliferation and

differentiation. Aside from the constant transcriptional shutdown

of the SREBF2 local subnetwork that regulates cholesterol

biosynthesis, the majority of network components show a

characteristic swap in transcription response between early (day

3) and late (week 12) phase of the time-course (Figure 4, 5).

To further investigate relations between the network compo-

nents that show the observed swap in transcription response and to

characterize their associated functions in more detail, we

examined ‘‘Function and disease’’ categories that are overrepre-

sented in the network. By overlaying the most significant

categories over the network, the categories ‘‘hepatic steatosis’’ (p-

value 1.41E-08) and ‘‘immune response’’ (p-value 5.85E-07) were

identified as the best representatives of processes that are

reciprocally regulated during the early and the late phase of

high-fat response. In addition to the largely reciprocal regulation,

these processes are interconnected via few key network compo-

nents (pink lines, Figure 4, 5). The gene expression of nearly all the

network components involved in the promotion of inflammation

and immune response is induced during the early phase and

repressed during the late phase of the HF response, including NF-

kB regulatory factors, interferon, cytokine and chemokine

signaling molecules, acute phase response reactants and comple-

ment components. In contrast, network members promoting

development of hepatic steatosis, such as PPARc, SCD, SREBF1,

ACOX1, CIDEC and CFD (adipsin) are repressed during early

phase and induced during the late phase of hepatic response to HF

diets. The exception to the observed global repression of

inflammatory and immune response in the late phase are

interleukin-1 pathway components and, somewhat, the acute

phase reactants that show statistically insignificant, low-grade re-

induction at week 12 and week 8, respectively. This indicates that

a modest fraction of the inflammatory response, likely mediated by

Hepatic Effects of HF Diets
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Figure 3. Temporal modules of pathway activities during the hepatic high-fat response. Hierarchical clustering (Pearson correlation
(uncentered), average linkage) of Normalized Enrichment Scores (NES), as determined by Gene Set Enrichment Analysis. The NES values of 314 gene
sets, significant (FDR q-value,0.1) in at least one of HFBT vs. chow and HFP vs. chow per time-point comparisons are used as an input for hierarchical
clustering. The NES scores, represented by the color gradient, correspond to the relative up- (red) and down- (blue) regulation of the gene sets under
each of experimental conditions. The cluster diagram can be divided into five main temporal themes (depicted as modules 1 to 5), highlighting the
main trends in temporal pathway activities: (1) early activation/late repression; (2) constant repression; (4) constant activation and (5) early repression/
mid and late activation. Module (3) includes fuzzy pathway profiles that bring to light differences in transcription response to beef tallow- (HFBT) and
palm oil-based (HFP) high-fat diets.
doi:10.1371/journal.pone.0006646.g003
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JNK/AP-1 pathway parallel to NF-kB signaling escapes the global

repression [32,33].

Particularly interesting are the network members that are

associated with both inflammatory and steatotic transcriptional

modules, namely PPARc and IKBKG (inhibitor of kappaB kinase

gamma). It has been previously shown that PPARc antagonizes

inflammatory responses by a transrepression of NF-kB regulators

and that its hepatic activation leads to the development of liver

steatosis [11,12,34–38]. In contrast, IKBKG, also known as NF-

kB essential modulator (NEMO), is required for the activation of

the NF-kB complex by proinflammatory stimuli, and it has

recently been recognized as suppressor of hepatic steatosis,

possibly through the negative interaction with PPARs [39–42].

The gene expression data show significant repression of PPARc
during the early phase of the high-fat response. In contrast, at the

mid and/or late phases, PPARc and its target genes are induced,

while NEMO is simultaneously significantly repressed (Figure 6,

Table S2). This reciprocal transcriptional activity proposes an

appealing model where the direct trans-repression between

PPARc and NEMO/NF-kB regulators may occur, controlling

the transition from early to late hepatic response to HF diets.

Evidently, further biochemical studies are required to confirm the

suggested temporal transrepression.

Transition from hepatic inflammation to steatosis is
reflected by inflammatory plasma proteins and hepatic
triglyceride levels

The transition from an inflammatory (early) to steatotic (late)

transcriptional program in livers of ApoE3L mice observed by

gene expression profiling is supported by expression of plasma

proteins and liver triglyceride content. A series of inflammatory

plasma proteins were quantified by multiplex immunoassay during

the complete high-fat feeding time-course (Materials and meth-

ods). The transient activation of many inflammation-related

proteins has been observed during the early phase of the time-

course (data not shown). The levels of plasma proteins likely reflect

a systems response of multiple organs to excess dietary fat.

Nevertheless, the trend of early activation coupled with late

repression, which has been observed in the expression of many

hepatic inflammatory genes when HF diets are compared to chow

diet, can also be found in the expression of NF-kB-related plasma

inflammatory proteins. Examples of such proteins are NF-kB

activating protein Immunoglobulin A (Figure 7A) and NF-kB

activated proteins Beta-2 Microglobulin, Interleukin-18 and

Macrophage-Derived Chemokine (CCL22) (Figure 7B-D) [43–

47]. The upregulation of Interleukin-18 at week 4 and week 8

under all three dietary conditions is followed by HF-specific

repression at the two last time-points (Figure 7C).

The activation of the steatotic transcriptional program during

the late phase of the high-fat feeding time-course observed by

transcriptome analysis harmonizes with the increased hepatic

triglyceride content at the late time-points (Figure 8A). To identify

genes whose expression is most predictive of hepatic fat

accumulation under high-fat dietary conditions, liver triglyceride

content and expression of 1663 high-fat responsive genes in each

animal were used to perform regression analysis by random forest

modeling [48,49]. The genes with highest importance in the

resulting model (n = 30) are shown in Figure 8B. The genes we

identified as steatosis-associated by the network analysis (Figure 4,

Figure 5), such as ACOX1, SCD, PPARc, CFD and CIDEC were re-

discovered by the regression analysis. Also, matrix metallopepti-

dase 13 (MMP13) implicated in liver fibrosis and ENTPD5,

associated with hepatopathy and hepatocellular tumors were

identified by the regression approach [50,51]. In addition to the

known markers of hepatic pathology, random forest modeling

uncovered putative novel candidate genes whose expression may

predict the development of hepatic steatosis. This includes fatty

acid metabolism associated genes (CRAT, ACAA1b and ACAT),

matrix endopeptidase related proteins (ITIH5, MME) and several

genes of unknown function. The gene identified as the best

predictor of hepatic steatosis by the regression analysis, butyr-

ylcholinesterase (BCHE) has been mostly studied in the context of

its effect on the brain’s cholinergic system [52]. However, there is

evidence showing that serum butyrylcholinesterase is associated

with adiposity, serum lipid profile and insulin resistance in humans

[53]. Therefore, BCHE may be the potential marker of interest for

further investigation of the hepatosteatosis development.

Together, inflammatory plasma proteome and hepatic triglyc-

eride content support findings obtained by mRNA expression

analysis, further substantiating the proposed shift between the

hepatic inflammatory and steatotic transcriptional program during

prolonged exposure to high-fat diets.

Discussion

Hepatic pathophysiological changes induced by short-
and long-term exposure to excess dietary fat

In this study, we focused on investigating the molecular

mechanisms underlying the onset and progression of the metabolic

syndrome during a 16-week high-fat feeding time-course in

ApoE3L transgenic mice. The changes in hepatic transcriptome

revealed that the adaptation to excess dietary fat proceeds in three

phases: early, mid and late. The early (day 1 to week 1) and the

Table 2. Top scoring networks among the high-fat responsive genes (Ingenuity Pathway Analysis).

Network number Score* Focus Genes** Top Functions

1 40 33 Immune Response, Tissue Development, Skeletal and Muscular System Development and
Function

2 40 33 Cellular Development, Connective Tissue Development and Function, Lipid Metabolism

3 37 32 Protein Synthesis, Genetic Disorder, Neurological Disease

4 35 31 Hepatic System Disease, Liver Steatosis, Cancer

5 35 31 Endocrine System Development and Function, Lipid Metabolism, Small Molecule
Biochemistry

*Score is the negative exponent of the p-value representing the likelihood that the network eligible molecules that are part of a network are found therein by random
chance alone.
**Focus Genes is the number of network eligible genes from the input list represented in the network.
doi:10.1371/journal.pone.0006646.t002
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late (week 8 to week 16) phases are characterized by the most

prominent, and often reciprocal peaks in gene expression changes.

During the early phase, the initial sensing of the fat overload

triggers the cellular stress response, characterized by activation of

acute phase reactants, inflammatory and immune response

(Figure 2, 3, 4). The deregulation of the cell cycle and certain

apoptotic genes during the early phase of high fat feeding resemble

hepatic regeneration response, further suggesting compromised

liver integrity. Additionally, the immediate perturbation occurs in

mitochondrial, microsomal and peroxisomal oxido-reductive

processes, including the severe repression of specific members of

cytochrome P450 family and glutathione transferase genes

(Figure 2, 3, Table S2). The imbalance in oxido-reductive

processes accompanied with a diminished protective function of

glutathione transferases may create conditions of elevated liver

sensitivity to oxidative damage [54]. The hypersensitivity to

oxidative stress could synergize with the lipotoxic stress, manifest-

ed by the activation of unfolded protein response (UPR),

endoplasmatic reticulum (ER) stress and DNA damage response

(Figure 2, 3). Apart from the stress response, the early phase of the

hepatic transcriptional response to high-fat diets is also character-

ized by metabolic adaptation. Of all the pathways involved in lipid

metabolism, early activation is exclusively observed in lipid/

lipoprotein binding and transport (Figure 2, 3). This suggests that

Figure 4. Molecular network underlying hepatic response to high-fat diets (day 3). The global molecular associations of the high-fat
responsive genes are functionally characterized and divided into networks based on the functions and/or diseases that are most significant to the
network objects (Ingenuity Pathway Analysis). Depicted is the result of merging the network 1 (Immune Response, Tissue Development, Skeletal and
Muscular System Development and Function), network 2 (Cellular Development, Connective Tissue Development and Function, Lipid Metabolism)
and network 4 (Hepatic System Disease, Liver Steatosis, Cancer). The overrepresented ‘‘Function and disease’’ (Fx) categories ‘‘immune response’’ and
‘‘hepatic steatosis’’ are overlaid onto resulting network, showing which genes (nodes) are directly involved in these processes. The interactions
between nodes that are directly connected to both processes are highlighted in pink. Color coding of the nodes corresponds to the direction of gene
expression changes at day 3 in HFBT vs. chow diet comparison (upregulated genes are shown in red and downregulated in green).
doi:10.1371/journal.pone.0006646.g004
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the primary, short-term metabolic adjustment may involve hepatic

elimination of fatty acid surplus by means of its excretion in the

form of very low-density lipoprotein (VLDL) particles. Cholesterol

efflux and biliary secretion are also immediately activated, coupled

with repression of cholesterol biosynthesis (Figure 2, 3).

The major signature of the late phase of the hepatic adaptation

to excess dietary fat is the transcriptional induction of nearly all

aspects of lipid metabolism, including those regulated by PPARa
(lipolysis, fatty acid beta-oxidation), PPARc (adipogenesis and

adipogenic transformation, lipogenesis, lipid accumulation, lipid

uptake) and SREBP1 (lipogenesis, fatty acid synthesis, fatty acid

desaturation, fatty acid elongation) (Figure 2, 3, 5). The need for

long-term lipid management is, thus, likely resolved by an

activation of both lipolysis and hepatic lipid storage. The pro-

steatotic transcriptional program, manifested in the activation of

lipogenic, adipogenic and lipid accumulation pathways and the

activation of genes such as PPARc gene itself, stearoyl-CoA

desaturase 1 (SCD1) and CIDEC (Fsp27) (Figure 2, 3, 5, 6) suggest

that the adipogenic transformation of hepatocytes and the

development of liver steatosis may occur during the late phase of

HF feeding [34–37,55]. This finding is supported by the increase

of total hepatic triglycerides in the late phase of the time-course

and their significantly elevated levels at the week 16 in mice fed

HF diets compared to chow fed mice (Figure 8A). The incidence of

hepatic steatosis under the similar experimental conditions has also

been reported in the literature [21,35]. The regression analysis of

association between hepatic gene expression and the lipid

accumulation identified known and novel genes that may be

valuable as predictors of hepatosteatosis development.

The observed hepatic adaptation to excess dietary fat occurs

similarly in investigated beef tallow- (HFBT) and palm oil- fat

(HFP) based diets. Nevertheless, specific differences in the gene

expression response to these two diets do exist. This is particularly

evident in the expression of pathways related to energy

Figure 5. Molecular network underlying hepatic response to high-fat diets (week 12). The equivalent network to that in Figure 4, except
that the color coding of the nodes corresponds to the direction of gene expression changes at week 12 in HFBT vs. chow diet comparison.
doi:10.1371/journal.pone.0006646.g005
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metabolism during the early and the long-term adaptation to high-

fat feeding. In general, mice fed HFP diet show more pronounced

transient induction of these pathways at the very beginning of the

time course, but fail to activate them as efficiently as the mice fed

HFBT diet at the late phase of the time-course (Figure 3). These

differences in processes that are relevant for energy expenditure

may account for a higher increase in body weight (Figure 1A) and

significantly higher whole-body insulin resistance (data not shown)

of HFP-fed mice compared to HFBT-fed mice at the end of the

time-course. This observation may be relevant in the context of

dietary recommendations, suggesting that the excess of palm oil-fat

based diet may be at least as harmful, if not more so, than the

cholesterol-containing beef tallow fat-based diet.

The hypothesized mechanism controlling the switch
from an inflammatory to steatotic hepatic state during
the high-fat feeding response

The majority of pathways affected by the high-fat diets exhibit

opposite regulation during the early and the late phase of the high-fat

feeding time-course. This synchronous swap of the major functional

signatures between the early and the late phase and the fact that the

key controllers of the reciprocally regulated processes (as revealed by

the network analysis (Figure 4, Figure 5)) are implicated in the mutual

repression suggest that the regulatory exchange may occur via tightly

controlled reactions, limited to few master regulators.

The NF-kB and Akt regulators, the key controllers of the

pathways showing early activation/late repression expression

mode (i.e. inflammation, immune response, cell proliferation and

cell differentiation), have been previously reported to act

synergistically [56–59]. Similarly, PPARc and SREBP1, identified

in our study as the key regulators of pathways in the early

repression/late activation transcriptional module are co-acting in

regulating lipid metabolism and adipogenesis [60,61]. In contrast

to the synergistic activities within these transcriptional modules,

there is emerging evidence of the antagonistic activity between

them, particularly regarding NF-kB and PPAR regulators. There

is limited evidence for the NF-kB mediated repression of PPARc
[62]. In turn, multiple mechanisms by which PPARs inhibit

inflammatory gene expression through interference with NF-kB

signaling have been reported (reviewed in [11,15,63]). Several

studies investigated the inhibitory effect of PPARc and its agonists

on the activity of the inhibitor of nuclear factor kB kinase (IKK)

complex [64–66]. The IKBKG (NF-kB essential modulator,

NEMO) is the subunit of the IKK complex indispensable for the

activation of NF-kB [42]. Considering its critical role, we propose

the model in which down-regulation of NEMO in the mid and the

late phases of HF response could be the most important regulatory

event controlling the shut-down of NF-kB driven inflammatory

response at the switch point between stressed and pathological

hepatic state. In addition to NEMO, other two IKK related genes

(IKBKE, IKBKAP) and the gene coding for NF-kB subunit RelB

also show characteristic early induction and late repression

transcription mode (Figure 6, Table S2). The coincident opposite

transcriptional activity of PPARc and its target pathways suggests

that the two regulatory events may be interdependent (Figure 6).

This hypothesis is supported by the recent studies showing that

NEMO has an essential physiological role in preventing the

spontaneous development of hepatic steatosis preceding hepato-

cellular carcinoma and that the hepatic ablation of NEMO in mice

fed HF diet increases PPARc mRNA levels and aggravates hepatic

steatosis [39,40]. The suggested mechanism of the mutual

repression of PPAR and NEMO/NF-kB regulators during their

coordination of the transition from early to the late phase of HF-

response remains to be confirmed by biochemical studies.

The relevance of the proposed model of the transition
from high-fat induced metabolic stress to metabolic
syndrome in ApoE3L mice

The dynamic functional landscape of the hepatic transcriptional

adaptation to excess dietary fat during the 16-week time-course

suggests a model in which sequential physiological changes underlie

the transition from metabolic stress to metabolic syndrome,

Figure 6. Reciprocal activation of regulators of an inflammatory and steatotic transcriptional programs during high-fat feeding
time-course. The average gene expression profiles of NF-kB regulators (RelB, IKBKG, IKBKE, IKBKAP) (red line) and PPARc/hepatic steatosis-associated
genes (PPARc, SREBF1, SCD1, ACOX1, CIDEC, CFD) (yellow line) during the 16-week high-fat feeding time-course. (A) HFBT vs. chow diet. (B) HFP vs.
chow diet.
doi:10.1371/journal.pone.0006646.g006

Hepatic Effects of HF Diets

PLoS ONE | www.plosone.org 11 August 2009 | Volume 4 | Issue 8 | e6646



summarized in Figure 9. These results provide novel insight into the

delicate cross-talk between inflammation and lipid metabolism in

controlling the progression of metabolic disease development. It is

Figure 7. Expression changes of plasma proteins caused by
HFBT and HFP high-fat diets. Expression changes of a subset of
inflammatory plasma proteins that show trend of early activation
coupled with late repression compared to the control condition during
the 16-week high-fat (HF) feeding time-course, as measured by
multiplex immunoassay. Plotted are average protein expression levels
per time point in mice fed chow, HFBT and HFP diets. Statistically
significant changes in protein expression of HFBT and HFP fed mice
compared to chow fed mice per time-point are marked with asterisk
and hash symbol, respectively (p value,0.05). All four proteins are
associated with NF-kB activation. (A) Immunoglobulin A, protein that
activates NF-kB. (B–D) Beta-2 microglobulin, Interleukin-18 and
Macrophage-derived chemokine (CCL22), proteins activated by NF-kB.
doi:10.1371/journal.pone.0006646.g007

Figure 8. Regression analysis of gene expression and hepatic
triglyceride content in chow and high-fat-fed ApoE3L mice. (A)
Changes in hepatic triglyceride (TG) content induced by HFBT and HFP
high-fat diets and a control (chow) diet during the 16-week time course.
Plotted are average values of hepatic triglyceride levels per time point
in each of the three diets. Statistically significant increase (p#0.01) in
hepatic TG content of HFBT and HFP fed mice compared to chow fed
mice (marked with asterisk and hash symbol, respectively) was
observed at the time-point 16 weeks, indicating development of
hepatic steatosis. (B) The most important genes for the prediction of
hepatic triglyceride levels, as assessed by Random Forests Regression
analysis. The expression of 1663 high-fat responsive genes and the
hepatic triglyceride levels in each animal were used as an input for the
regression analysis. The plot shows the importance of the top 30 genes
in the Random Forest regression model. The importance of a gene in
the model is expressed as the increase of Mean Squared Error (MSE)
when the gene is excluded from the analysis. Higher the percentage of
increase of MSE, the more important the particular gene is for the
prediction of the hepatic TG levels. The genes identified as steatosis-
associated by the network analysis, such as ACOX1, SCD, PPARc, CFD and
CIDEC are also discovered among the top 30 genes resulting from the
regression analysis of gene expression and hepatic TG levels.
doi:10.1371/journal.pone.0006646.g008
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important to note that the late repression of the hepatic NF-kB

driven inflammatory/immune response may not seem in line with

the established model of the obesity-associated inflammation, well

studied in the adipose tissue [10,67]. The previously shown

association of inflammatory signaling pathways with obesity and

hepatic steatosis is the most prominent feature observed in our data.

Nevertheless, the assumption that, similar to the situation in adipose

tissue, hepatic inflammation is secondary to hepatic steatosis is not

supported by our findings [68,69]. In fact, our results show that the

temporal order of events contradicts this assumption, at least during

the examined time frame and in our mouse model. Extending the

duration of treatment and/or increasing amount of excess dietary

fat would likely provoke transitions to further grades of severity in

hepatic pathology such as hepatosteatitis, fibrosis, cirrhosis and

hepatocellular carcinoma. To fully understand the complex

relationship between inflammation and metabolic syndrome,

information originating from different organs and at various time

points needs to be considered on the systems level [69].

Finally, the identified central role of ppar and nemo/nf-kb

regulators in coordinating the onset and progression of metabolic

syndrome may have important implications in treatment of the

disease. currently, pparc ligands are used in clinics for their anti-

inflammatory and insulin-sensitizing effects in diseases such as

psoriasis, atherosclerosis, inflammatory bowel disease and type 2

diabetes [13,14,70–74]. our results suggest that pparc activation

could also have negative effects in disorders where the cross-talk

between inflammation and lipid metabolism is essential to the

development of pathogenesis, as it is in diet-induced metabolic

syndrome. the activation of pparc may inhibit nf-kb and therefore

suppress inflammation, but in turn evoke transition to pathological

state, in this case hepatic steatosis. despite the apparent harmful

effects of inflammation, such as triggering insulin resistance, its

protective physiological role in preventing transitions to even less

preferable system states should not be neglected. thus, the tradeoff

between the beneficial and harmful effects of altered pparc activity

should be carefully considered when using pparc ligands and nf-kb-

inhibiting agents to ameliorate metabolic syndrome associated

pathologies. the presented findings demonstrate the use of high-

throughput dataset analyses as a starting point for generating testable

hypotheses that may open new avenues for dietary prevention

strategies, clinical research and pharmaceutical therapies.

Materials and Methods

Ethics Statement
Animal experiments were approved by the Institutional Animal

Care and Use Committee of the Netherlands Organization for

Applied Scientific Research (TNO) and were in compliance with

European Community specifications regarding the use of labora-

tory animals.

Animals and diets
The study involved 186 male ApolipoproteinE3-Leiden transgen-

ic mice [24] at 1462 weeks of age. Apolipoprotein E3-Leiden

Figure 9. Model of the hepatic physiological response to high-fat diets during the 16-week time-course. The summary of a proposed
model for the hepatic physiological changes in response to high-fat diets during the 16-week time-course in ApoE3L mice. The initial perturbation of
hepatic homeostasis by excess dietary fat triggers the stress response largely controlled by NF-kB and Akt regulators and manifested in activation of
acute phase response, inflammation, immune response, hepatic regeneration-like response and lipotoxicity (day 1 to week 1). Upon prolonged high-
fat feeding, liver fails to regain the basal state and consequently shifts to pathological state controlled by PPAR and SREBP regulators and
characterized by hepatic lipid accumulation and adipogenic transformation, indicative of hepatic steatosis (late phase, week 8 to week 16). The
flagship processes induced at the early and at the late phase are shown in boxes. The transition between the stressed and the pathological hepatic
state may be controlled by trans-inhibitory interactions between NF-kB and PPARc regulators, resulting in the tradeoff between inflammatory and
steatotic transcription programs (mid phase, week 2 to week 4). On the systems level, the activation of steatotic program is followed by other
metabolic syndrome associated pathologies such as obesity and whole-body insulin resistance.
doi:10.1371/journal.pone.0006646.g009
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(ApoE3L) transgenic mice display lipoprotein profile that closely

resembles that of humans and develop human-like dysbetalipopro-

teinemia and atherosclerotic lesions when fed Western-type diets.

The age of 14 weeks was chosen as optimal because the animals are

considered adult at that stage (neither juvenile at early time points

nor aged at the late time points of the study). The first (control) group

of ApoE3L mice was fed standard chow diet (RM3 (E) DU; Special

Diet Services, Witham, Essex, UK), the second group of mice was

fed a high-fat diet based on animal fats (HFBT, beef tallow fat high-

fat diet +0.25% cholesterol, also referred to as Western-type diet,

Arie Blok BV, The Netherlands) and the third group of mice was fed

a high-fat diet based on plant fats (HFP, palm oil high-fat diet based

on open source D12451 SDS diet in which lard is replaced with palm

oil, Research Diet Services, Woerden, The Netherlands). The

macronutrient content and the fatty acid composition of chow and

high-fat diets are provided in Supporting Table S4.

Experimental design and sample preparation
From three weeks prior to diet intervention onwards, all animals

were fed a standard chow diet. At the beginning of the study, mice

were divided into three groups: (1) control group fed chow diet, (2)

group fed HFBT diet and (3) group fed HFP diet. Because the

interest of the study was to asses effects of high-fat diets under

physiological conditions, animals were fed ad libitum. Series of

control experiments employing a metabolic cage setup showed

that C57Bl/6 mice, the genetic background of the APOE3L mice,

have isocaloric food intake when fed low fat and HFBT and HFP

diets. The light cycles were identical for all animals. For mRNA

expression profiling, six mice from each diet group (total n = 150)

were sacrificed at time points 0 days (chow only), 1 day, 3 days, 1,

2, 4, 8, 12 and 16 weeks, their livers were dissected after 4 hour

fasting period (typically from 9 h AM to 1 h PM), snap frozen in

liquid nitrogen and stored at 280uC until further processing.

RNA isolation, labeling and hybridization to microarrays
Total RNA was isolated using TRIzol reagent (Invitrogen, Breda,

The Netherlands) according to the manufacturer’s instructions. RNA

was treated with DNAse and purified using the SV total RNA

isolation system (Promega, Leiden, The Netherlands). Concentrations

and purity of RNA samples were determined on a NanoDrop ND-

1000 spectrophotometer (Isogen, Maarssen, The Netherlands). RNA

integrity was checked on an Agilent 2100 bioanalyzer (Agilent

Technologies, Amsterdam, The Netherlands) with 6000 Nano Chips

according to the manufacturer’s instructions. RNA was considered as

suitable for array hybridization only if samples exhibited intact bands

corresponding to the 18S and 28S ribosomal RNA subunits, displayed

no chromosomal peaks or RNA degradation products, and had a

RNA integrity number (RIN) .8. Applying this criterion, 142 RNA

samples were used for hybridization to microarrays, including 5 to 6

biological replicate samples per diet, per time-point. RNA samples

were hybridized to NuGO Affymetrix Mouse GeneChip arrays

(NuGO_Mm1a520177) containing 23865 probesets including 73

control probesets [26]. Arrays were scanned on a GeneChip Scanner

3000 7G (Affymetrix). Detailed methods for labeling, hybridizations to

the arrays and scanning are described in the eukaryotic section of the

GeneChip Expression Analysis Technical Manual, Revision 3, from

Affymetrix, and are available upon request. The gene expression data

are made available via ArrayExpress repository [75].

Data preprocessing, differential expression analysis and
Gene Set Enrichment Analysis

Quality control of microarray data, normalization, differential

expression analysis and Gene Set Enrichment Analysis [30] were

performed using packages from the R/Bioconductor project

[76,77] through the Management and Analysis Database for

MicroArray eXperiments (MADMAX) analysis pipeline [78].

Quality control of the hybridized microarrays was performed

using simpleaffy and affyplm packages. Upon rigorous examina-

tion of the resulting diagnostic plots, 116 microarrays of the

supreme quality were taken for the further analysis. This resulted

in analysis of 3 to 6 biological replicate samples per diet, per time-

point. Gene expression estimates were calculated using the library

GC-RMA, employing the empirical Bayes approach for back-

ground correction followed by quantile normalization. The

custom MBNI CDF-file (MmNuGOMm1a520177 version 9.0.1),

available at http://brainarray.mbni.med.umich.edu/Brainarray/

Database/CustomCDF/CDF_download_v9.asp and http://nugo-r.

bioinformatics.nl/NuGO_R.html [79,80] was used to re-annotate

the probes to new probesets, remove poor quality probes and derive

unique signal values for different probesets representing the same

gene. This resulted in gene expression values for 15105 genes with

unique identifiers.

Differentially expressed genes between control and each of

treatment groups per time point, as well as between each of time

points and day 0, were identified using the limma package, applying

linear models and moderated t-statistics that implement empirical

Bayes regularization of standard errors [27]. False discovery rate of

10% (q-value,0.1) was used as a threshold for significance of

differential expression. Significance of the overlap between

differentially expressed genes in HFBT and HFP conditions

(Figure 1B) was calculated by hypergeometric distribution.

The t-test values of differential expression between control and

each of treatment groups per time point calculated using limma

package were used as the input for the PreRanked scoring method

within the Gene Set Enrichment Analysis (GSEA). Gene sets

collection included 880 gene sets compiled from MSigDB C2,

Biocarta, Kyoto Encyclopedia of Genes and Genomes (KEGG)

and GenMAPP databases as well as the expert curated gene sets.

Detailed information about gene sets used for GSEA analysis,

including source websites is available upon request. Gene set size

filter (min = 15, max = 500) resulted in filtering out 405 of 880

gene sets. The number of permutations for was set to 1000. Gene

sets are considered significantly enriched at false discovery rate

(FDR) smaller than 10% (q-value,0.1). In total, 314 gene sets are

identified as significantly enriched in at least 1 of 16 comparisons

(HFBT vs. chow and HFP vs. chow per time-point). Normalized

enrichment scores (NES) of significantly enriched pathways and

the corresponding FDR q-values across all experimental condi-

tions are available upon request.

Hierarchical clustering and data visualization
Hierarchical clustering and visualization of gene expression

changes in Figures 1C, 2 and 6 were performed in GeneSpring

GX 7.3.1 software (Agilent), using average gene expression values

under HFBT and HFP conditions divided by the median of chow

gene expression, per time-point. Hierarchical clustering and

visualization of NES values in Figure 3 were performed using

HierarchicalClusteringViewer and HeatmapViewer modules with-

in the GenePattern analysis suite [81–83].

Analysis of gene expression profiles of HF-responsive
genes

Temporal analysis of the gene expression profiles where each of HF

groups is compared to chow per time point (Figure S2, S3, S4 and S5)

was performed using Smoothing Spline Clustering algorithm [28]

through the R computing environment [76], applying the settings

nchain = 5 and nclust = 24. Setting the number of clusters to 24 yielded
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Bayesian information criterion (BIC) values that were at the bottom of

the U-shaped BIC curve (i.e. closely approaching the optimum), while

resulting in images of reasonable complexity. As input values, average

log2 ratios of 1663 high-fat responsive genes were used (HFBT and

HFP divided by median of chow per time point). To facilitate

visualization of temporal trends, the starting time point (t = 0, only

chow fed mice) was also included in the analysis.

Overrepresentation analysis of functional categories
Identification of overrepresented functional categories among

1663 high-fat responsive genes and their grouping into function-

ally related clusters was performed using DAVID Functional

Annotation Clustering tool [29]. The analysis was performed using

Gene Ontology, Protein domains, Pathways and Functional

categories according to the default settings (Table S3, version

date July 2007). Representative functional categories from the

most statistically significant clusters are manually selected and

listed in Figure 2. Equivalent analysis is performed using separately

upregulated (922 genes) and downregulated (786 genes) high-fat

responsive genes (Table S3, version date June 2009).

Network analysis
The network analysis was generated through the use of Ingenuity

Pathways Analysis (version date March 2008) [31]. The data set

containing gene identifiers and corresponding expression values for

1663 high-fat responsive genes was uploaded into the application.

Of 1663 gene identifiers, 1660 were successfully mapped to its

corresponding gene objects in the Ingenuity Pathways Knowledge

Base and 1303 were identified as network eligible. These genes were

overlaid onto a global molecular network developed from

information contained in the Ingenuity Pathways Knowledge Base.

Networks were then algorithmically generated and graphically

represented based on connectivity of genes. The Functional Analysis

of the network identified the biological functions and/or diseases

that were most significant to the genes in the network (version date

June 2009). Fischer’s exact test was used to calculate a p-value

determining the probability that each biological function and/or

disease assigned to that network is due to chance alone. Genes or

gene products are represented as nodes, and the biological

relationship between two nodes is represented as an edge (line).

The node color indicates up- (red) or down- (green) regulation. The

direction of average expression changes in HFBT vs. chow

comparisons (Table S2) at day 3 and week 12 was used for color

coding in Figure 4 and Figure 5, respectively.

Accession numbers
For the microarray experiments described in this study,

MIAME compliant protocols and datasets in Tab2MAGE are

accessible from ArrayExpress microarray data repository [75] with

the accession number E-TABM-553.

Plasma proteins and hepatic triglyceride content analysis
Plasma proteins were quantified by multiplex immunoassay

measurements at Rules Based Medicine (Rules Based Medicine,

Inc., Austin, Texas, USA). Plasma antigens immunoassay panel

included in the Rodent Multi-Analyte Profile was used for

measurement of expression levels of 58 proteins (RodentMAP

version 2 antigen panel). Of these, 47 proteins had sufficient

detectability of the expression signals and were included in the

further analysis. Statistical significance of protein expression in

HFBT and HFP fed mice compared to chow fed mice per time-point

(marked with asterisk and hash symbol, respectively) was assessed by

t-test. The p value of 0.05 was used as a threshold for significance.

Liver lipid content was defined as total triglyceride content (mmol)

per mg of protein. Extraction was performed using a modified Bligh

and Dyer extraction protocol, optimized for steatotic liver material.

Triglyceride content was measured enzymatically using the Roche

TG kit (Roche, cat. No. 11488872216). Protein content was

measured by BCA analysis (BCA protein Assay Kit, Pierce, cat.

No. 23225). Statistical significance of hepatic triglyceride content in

HFBT and HFP fed mice compared to chow fed mice per time-point

(marked with asterisk and hash symbol, respectively) was assessed by

t-test. The p value of 0.01 was used as a threshold for significance.

Regression analysis of gene expression and hepatic
triglyceride content

To determine the relation between gene expression data and

triglyceride levels in the liver tissue, Random Forests regression

was used through randomForest package of R statistical

computing environment [48,49,76,84]. The gene expression

values of 1663 high-fat responsive genes and the hepatic

triglyceride levels of the matching animals at each time-point

were used as an input for the analysis. In Random Forests

regression, a group of regression trees is used for the model. In

every individual regression tree, the data are split at each node

until all objects are in a single leaf. For each tree only a subset of

the data is used and at each node only a subset of the variables is

used to make the split. By intentionally incorporating only part of

the data for each tree, the data which are not used to generate the

tree can be used to assess its performance. The term used for this

measure is the Out Of Box (OOB) error. Besides the OOB

measure for the overall model, it is possible to asses the importance

of individual variables in the model. Here we used the increase of

Mean Squared Error (MSE). The Mean Squared Error is a

general measure for the overall fit of a model and its increase

measures the importance of individual variables (in this case genes)

when they are excluded from the analyses. The higher the increase

of the MSE when a gene is excluded from the analysis, the more

important that particular gene is for the fit of the model (and for

the prediction of triglyceride levels in liver). The MSE of the

Random Forests regression model presented here is 49.9 percent.

The top 30 genes that have the highest increase of MSE and

therefore provide best prediction of triglyceride levels are shown in

Figure 8B. The term prediction is used here to refer to the ability

to predict the triglyceride levels as they were measured on the basis

of gene expression, rather than in the sense of prognostic for the

future progress of steatosis in time.

Random Forests is an improved Classification and Regression

Trees (CART) method. It grows many classification trees or

regression trees, hence the name ‘Forests’. For quantitative

outcomes the forest is made of regression trees, where the tree

predictor is the mean value of the training set observations in each

terminal leaf. In our application of random forests the outcomes are

quantitative, therefore the regression algorithm and not classifica-

tion was used. Every tree is built using a deterministic algorithm and

the trees are different owing to two factors. First, at each node, a best

split is chosen from a random subset of the predictors rather than all

of them. Second, every tree is built using a bootstrap sample of the

observations. The out-of-bag (OOB) data, one-third of the

observations, are then used to estimate the prediction accuracy.

Unlike other tree algorithms, no pruning, trimming of the fully

grown tree, is involved. Each observation is assigned to a leaf, the

terminal node of a tree, according to the order and values of the

predictor variables. For a particular tree, the predictions for

observations are given only for the OOB data. The Random Forest

predictor is computed by averaging the tree predictors over trees for

which the given observation was OOB. Because the prediction for
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an observation is based on trees grown without the observation, an

idea akin to cross-validation, the estimated errors are unbiased and

the data were not divided in test and training sets.

Supporting Information

Figure S1 Temporal changes in gene expression for HFBT,

HFP and chow diet over the 16-week period compared to day 0.

The number of statistically significant differentially expressed

genes (DEG) identified by pairwise comparison of each time-point

versus day 0 (limma, FDR,0.1) in chow, HFBT and HFP dietary

conditions. Venn diagram shows overlap of total (in any of time

points) number of DEGs in the three diets.

Found at: doi:10.1371/journal.pone.0006646.s001 (0.37 MB

PDF)

Figure S2 Temporal gene expression profiles (HFBT, raw

curves). The results of Smoothing Spline Clustering analysis [25]

for 1663 high-fat responsive genes. The genes are grouped into 24

clusters according to their temporal expression profiles. The

vertical axis represents the expression ratios and the horizontal

axis the time points 1 to 9 (day 0, day 1, day 3, week 1, week 2,

week 4, week 8, week 12 and week 16). Figure S2 corresponds to

the HFBT experimental conditions and raw expression ratio

values.

Found at: doi:10.1371/journal.pone.0006646.s002 (0.07 MB

PDF)

Figure S3 Temporal gene expression profiles (HFBT, mean

curves). The results of Smoothing Spline Clustering analysis [25]

for 1663 high-fat responsive genes. The genes are grouped into 24

clusters according to their temporal expression profiles. The

vertical axis represents the expression ratios and the horizontal

axis the time points 1 to 9 (day 0, day 1, day 3, week 1, week 2,

week 4, week 8, week 12 and week 16). Figure S3 corresponds to

the HFBT experimental conditions and mean expression ratio

values (and their confidence intervals, in red) of the genes in each

cluster.

Found at: doi:10.1371/journal.pone.0006646.s003 (0.02 MB

PDF)

Figure S4 Temporal gene expression profiles (HFP, raw curves).

The results of Smoothing Spline Clustering analysis [25] for 1663

high-fat responsive genes. The genes are grouped into 24 clusters

according to their temporal expression profiles. The vertical axis

represents the expression ratios and the horizontal axis the time

points 1 to 9 (day 0, day 1, day 3, week 1, week 2, week 4, week 8,

week 12 and week 16). Figure S4 corresponds to the HFP

experimental conditions and raw expression ratio values.

Found at: doi:10.1371/journal.pone.0006646.s004 (0.07 MB

PDF)

Figure S5 Temporal gene expression profiles (HFP, mean

curves). The results of Smoothing Spline Clustering analysis [25]

for 1663 high-fat responsive genes. The genes are grouped into 24

clusters according to their temporal expression profiles. The

vertical axis represents the expression ratios and the horizontal

axis the time points 1 to 9 (day 0, day 1, day 3, week 1, week 2,

week 4, week 8, week 12 and week 16). Figure S5 corresponds to

the HFP experimental conditions and mean expression ratio

values (and their confidence intervals, in red) of the genes in each

cluster.

Found at: doi:10.1371/journal.pone.0006646.s005 (0.02 MB

PDF)

Table S1 Detailed overview of numbers of differentially

expressed genes in HFBT vs. chow and HFP vs. chow

comparisons (limma, FDR,0.1). The information summarized

in Table 1 is extended to a detail to include: (1) number of

upregulated genes per diet and time point, (2) number of

downregulated genes per diet and time point, (3) total (both up-

and downregulated) number of differentially expressed genes per

diet and time point, (4) number of overlapping genes between

HFBT and HFP diets for each of categories (1)–(3), (5) number of

genes in union of HFBT and HFP diets for each of categories (1)–

(3) and (6) total (in all time-points) number of differentially

expressed genes for categories (1)–(5).

Found at: doi:10.1371/journal.pone.0006646.s006 (0.05 MB

DOC)

Table S2 Annotation and statistics for 1663 high-fat responsive

genes. The list of 1663 genes differentially expressed under the

high-fat conditions (false discovery rate q-value,0.1 in either of

HFBT versus chow and HFP versus chow comparisons per time-

point), including detailed annotation of these genes, expression

ratios and the statistics (as determined by limma package) in each

of the experimental conditions.

Found at: doi:10.1371/journal.pone.0006646.s007 (3.10 MB

XLS)

Table S3 Overrepresentation analysis of functional categories

among all, upregulated and downregulated HF-responsive genes.

The complete results of functional categories overrepresentation

analyses and their grouping into functionally related clusters generated

using DAVID Functional Annotation Clustering tool [29]. The

analyses were performed using (1) all (n = 1663), (2) upregulated

(n = 922) and (3) downregulated (n = 786) high-fat responsive genes.

Found at: doi:10.1371/journal.pone.0006646.s008 (1.89 MB

XLS)

Table S4 The macronutrient content and the fatty acid

composition of chow and high-fat diets. The macronutrient

content and the fatty acid composition of chow, HFBT and

HFP diets.

Found at: doi:10.1371/journal.pone.0006646.s009 (0.04 MB

DOC)
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