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Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This
technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical
analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex
pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect
cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization.
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1. Introduction

Heterologous expression involves identification of genes
and transfer of the corresponding DNA fragments to hosts
other than the original source for synthesis of the encoded
proteins. Protein isolation, especially from plant sources,
can be costly, cumbersome and lengthy, and heterologous
expression provides a convenient alternative. This method-
ology allows large-scale production of plant proteins in
microorganisms to study their biochemical and biophysical
features. Foreign hosts may also provide a simpler system for
studies on functions of proteins and for elucidation of their
roles in complex mechanisms such as metabolic reactions
and membrane transport. Recombinant plant proteins and
peptides produced by heterologous expression are also used
in industrial applications. Examples are provided by the
synthesis of a medicinal peptide from ginseng as potential
drug against diabetes [1] or production of plant lectins [2] in
both cases in yeast.

The present review covers the recent literature on
plant gene expression in bacteria, yeast, insect cells and
Xenopus oocytes and presents the comparative advantages
and disadvantages of each system. It also provides a survey
of recent examples of application of heterologous expression
technology to plant proteins. A comprehensive list of plant
proteins expressed heterologously is given in Table 1. Factors
influencing the choice of hosts, including the stability
and folding characteristics of the protein, requirement for

posttranslational modifications, efficiency of the expression
system, as well as simplicity and cost are discussed in the
following sections.

2. Principal Components of
Heterologous Expression

Basic principles of heterologous cloning and expression
are summarized in Figure 1. Major parameters that affect
choices at different stages are also indicated. The choice of
the expression system and vector is a critical step in this
procedure and, as indicated, advantages and disadvantages
of several factors have to be considered. Expression systems
are selected depending on whether the purpose of study is
production of large quantities of protein or investigation of
functional features of the cloned protein. The physicochem-
ical properties of the investigated protein also play a role in
this choice. A general review of frequently used expression
systems is provided by Yin et al. [3].

A comprehensive survey of commercially available
expression vectors has recently been published [4]. The
most commonly used vectors are fusion systems that link
additional amino acid sequences (tags) to the protein
through a recognition site for a specific protease. Tags may
consist of a short peptide sequence or a full protein which
can be cleaved from the protein when desired. Presence
of tag sequences facilitates solubility, purification, quan-
tification, identification, localization, and assaying of the
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Figure 1: Flow chart for heterologous expression.

expressed protein. Frequently used fusion partners include
glutathione-S-transferease (GST), his-tag (poly-histidines),
maltose binding protein (MBP), thioredoxin (TrxA), FLAG
epitope-tag, c-Myc epitope-tag, disulfide isomerase I (DsbA),
polyarginine-tag (Arg-tag), calmodulin-binding peptide,
cellulose-binding domain, poly-histidine affinity tag (HAT-
tag), N-utilizing substance-A (NusA), S-tag, streptavidin-
binding peptide (SBP-tag), strep-tag, fluorescent proteins
(e.g., green fluorescent protein (GFP)) and ubiquitin [4].
MBP and NusA are specifically used to increase the solubility.
MBP is considered to be much more effective for enhancing
solubility than GST and thioredoxin [5]. The major dis-
advantages of fusion protein systems are the requirement
of expensive proteases for cleavage from the recombinant
protein and the low yield of cleavage reactions [6].

Depending on the host system, vectors for transient or
stable expression can be chosen as indicated below.

3. Expression Hosts

3.1. Prokaryotic Expression Systems

3.1.1. Escherichia Coli. Escherichia coli (E. coli) is the first
and most extensively used prokaryotic expression system for
heterologous protein production [7]. It remains generally
the first choice due to its simplicity, rapid growth rate,

and relatively low cost. Almost all commercially available
inducible cloning vectors are compatible with E. coli and
extensive biochemical and genetic information is available.

One of the disadvantages of using E. coli as an expression
host arises from its inability to perform post-translational
modifications, which are often required for correct fold-
ing and functional activity of the recombinant protein.
This applies particularly to some membrane proteins and
enzymes [3]. Another disadvantage is that E. coli is generally
not suitable for proteins which contain many disulfide
bonds or require glycosylation, proline cis/trans isomer-
ization, disulfide isomerization, lipidation, sulphation, or
phosphorylation [8]. Some eukaryotic proteins that retain
their full biological activity in the nonglycosylated form
have, however, been produced in E. coli. The unglycosylated
human growth hormone (hGH) binding protein secreted
from E.coli retains the same binding affinity and specificity
as the wild-type hGH binding protein suggesting that
recombinant protein is properly folded and glycosylation is
not required for binding [9].

Production of proteins that are stabilized by disulfide
bonds in E.coli often results in proteolytic degradation or
misfolding and formation of inclusion bodies [6]. One
strategy developed to improve this situation is to target
these proteins to the periplasm where the nonreducing
environment allows formation of disulfide bonds [10, 11]. In
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addition, the E.coli periplasm contains chaperone-like
disulfide-binding proteins (DsbA, DsbB, DsbC, and DsbD),
folding catalysts, and peptidyl-prolyl isomerases (SurA,
RotA, FklB, and FkpA) that support disulfide bond forma-
tion and are important for correct folding of periplasmic
proteins [12–14]. Disulfide bond formation is achieved
via fusion to DsbA or DsbC [15, 16] and periplasmic
secretion results in the functional production of a variety
of recombinant proteins [17]. In a recent study, the rescue
of unstable lipase B from Pseudozyma antarctica (PalB),
with periplasmic folding factors was demonstrated [18].
Another strategy involves the use of the trxB gor dou-
ble mutant lacking thioredoxin reductase and glutathione
reductase genes [19, 20]. This double mutant was used for
heterologous expression of barley oxalate oxidase (HvOXO)
in E.coli [21]. The gene for an osmotin-like cryoprotective
protein from Solanum dulcamara was expressed in E.coli
and directed to periplasmic localization using an expression
vector containing the pelB signal sequence [22]. This resulted
in high concentrations of soluble protein with cryoprotective
activity, whereas expression in the bacterial cytoplasm only
yielded large amounts of insoluble and aggregated protein.

Some of the plant proteins accumulated in insoluble
inclusion bodies in E.coli can be solubilized and refolded
to restore activity after purification from the host. Exam-
ples include Arabidopsis thaumatin-like protein (ATLP3)
which was purified from inclusion bodies and the refolded
form displayed activity against some pathogenic fungi [23].
To validate the potential antifungal activity of Solanum
nigrum osmotin-like protein (SnOLP) was overexpressed
in E.coli and the recombinant protein was refolded using
reduced:oxidized gluthatione redox buffer and its in vitro
activity was demonstrated [24]. The soybean RHG1-LRR
domain protein was solubilized from inclusion bodies using
urea and refolded by removing the urea in the presence of
arginine and reduced/oxidized glutathione [25].

Many plant enzymes are expressed in insoluble inclusion
bodies but it is still possible to obtain high yields of active
forms for structural studies [26]. The mature polypeptide of
FatB thioesterase from the developing seed tissues of Mad-
huca butyracea was characterized by heterologous expression
in E.coli [27]. The functionality of the MbFatB in the heterol-
ogous system was revealed by the altered growth behavior
and cell morphology of the bacteria due to the changes in
the fatty acid profile. The maize chloroplast transglutaminase
(TGZ) [26] and glutamatecysteine ligase (GCL) [28] were
efficiently overexpressed in E.coli. Recently, DELLA proteins
from both Arabidopsis and Malus domestica, which are
involved in regulation of plant growth in response to phyto-
hormonal signals, were isolated and expressed in E. coli [29].

Examples of functional expression of plant proteins in
E.coli are provided mostly by studies on membrane proteins.
A mutant with very low K+ uptake was used as host
for studies on the K+ transporters AKT2 [30], AtKUP1-
2 [31], AtHKT1 [32] from Arabidopsis and EcHKT1 and
EcHKT2 from Eucalyptus camaldulensis [33]. In another
example, E.coli C43 strain, which is suitable for expression of
membrane proteins was used for functional characterization
of chloroplast ATP/ADP transporter from Arabidopsis [34].
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Figure 2: UV-visible absorption spectrum of GSTdMT at 2.7
mg/mL concentration in 20 mM HEPES buffer at pH 8.0. The
charge transfer band between 240 and 260 nm due to Cd-S
interaction is indicated by the arrow. The Cd/protein ratio is given
in the inset.

The seagrass HAK K+ transporters, CnHAK1 and CnHAK2
were also overexpressed in E.coli and it was found that
CnHAK1, but not CnHAK2, mediated very rapid K+ or Rb+

influxes [35]. Using a dicarboxylate uptake-deficient E.coli
mutant, a peptide transporter, AgDCAT1 from alder, was
shown to be a dicarboxylate, including malate, succinate,
fumarate, and oxaloacetate, transporter [36].

E.coli has also been used for expression of small plant
proteins with a fusion partner. Metallothioneins (MTs),
which are difficult to purify from natural sources because
of their small molecular weight (7 kD), unusual amino acid
sequences containing a large number of cysteins and their
proteolytic susceptibility belong to this class. Several MTs
including a Cd2+ binding Type 1 durum wheat metalloth-
ionein (dMT) [37], fava bean Type 1 and Type 2 MTs [38],
Arabidopsis MT1, MT2 and MT3 proteins [39], Type 3 MT3-
A from the oil palm [40], Type 2 MT, QsMT from Quercus
suber [41] have been produced in E.coli mainly for structural
analyses. Since the fusion constructs of durum MT with
GST (GSTdMT) can be purified in well-defined oligomeric
states they are used as model systems for studies on metal-
binding and for structural analyses. Figure 2 illustrates that
Cd-binding to GSTdMT can be detected by UV-visible
spectroscopy. The metal content of GSTdMT was shown to
be the same as that expected from dMT alone. An example of
the shape models generated from X-ray solution scattering
data for GSTdMT is shown in Figure 3, together with the
fit to experimental data. The models support a fold for
dMT similar to that expected for the free molecule [42, 43].
These results are in agreement with earlier work suggesting
independent folding of GST and its fusion components [44]
and indicate that recombinant fusion complexes are useful as
model systems for structural studies.

3.2. Eukaryotic Expression Systems. Eukaryotic expression
systems offer the possibility of posttranslational modifi-
cations and are often used for investigations of protein
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Table 1: Heterologous expression of plant proteins grouped according to the host cells.

Protein expressed Plant Reference

Escherichia coli

Lipase B (PalB) Pseudozyma antarctica [18]

Oxalate oxidase
Hordeum vulgare, Triticum

aestivum
[21]

Osmotin-like
cryoprotective protein

Solanum dulcamara [22]

Thaumatin-like protein
(ATLP3)

Arabidopsis thaliana [23]

Osmotin-like protein
(SnOLP)

Solanum nigrum [24]

RHG1-LRR domain Glycine max [25]

Chloroplast
transglutaminase (TGZ)

Zea mays [26]

FatB thioesterase Madhuca butyracea [27]

Glutamatecysteine ligase
(GCL)

Arabidopsis thaliana [28]

DELLA proteins
Arabidopsis thaliana , Malus

domestica
[29]

K+ transporters; KAT1,
AKT2-3,
AtKUP1/AtKT1/AtPOT1,
AtKUP2/AtKT2/AtPOT2,
AtHKT1

Arabidopsis thaliana [30–32]

K+ transporters, EcHKT1,
EcHKT2

Eucalyptus globulus [33]

ATP/ADP transporter Arabidopsis thaliana [34]

HAK K+ transporters,
CnHAK1,CnHAK2

Cymodocea nodosa [35]

Peptide transporter family
member, AgDCAT1

Alnus glutinosa [36]

Type 1 MT, dMT Triticum durum [37]

Type 1 and Type 2 MTs Vicia faba [38]

MT1, MT2, and MT3 Arabidopsis thaliana [39]

Type 3 MT3-A Elaeis guineensis [40]

Type 2 MT, QsMT Quercus suber [41]

Soybean seed ferritin Glycine max [125]

Saccharomyces cerevisiae

H+-amino acid symporter
and K+ channel, KATl

Arabidopsis thaliana [47]

Phosphate transporters;
AtPT1 and AtPT2

Arabidopsis thaliana [48]

K+transporter, HvHAKI Hordeum vulgare [49]

K+ transporters, AtKT1,
and AtKT2, AtKUP1

Arabidopsis thaliana [50, 51]

K+ transporter, HKT1 Triticum aestivum [52, 53]

Sulfate transporters,
LeST1-1 and LeST1-2

Lycopersicon esculentum [54]

Copper transporters,
(COPT1–5)

Arabidopsis thaliana [55]

Peptide transporter,
AtPTR1

Arabidopsis thaliana [56]

K+/H+ antiporter, AtChx17 Arabidopsis thaliana [57]
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Table 1: Continued.

Protein expressed Plant Reference

Hexose transporters,
VvHT4 and VvHT5

Vitis vinifera [58]

Plasma
membrane-localized
H+/inositol symporter,
AtINT2

Arabidopsis thaliana [59]

High affinity
GABAtransporter, AtGAT1

Arabidopsis thaliana [60]

Tonoplast Intrinsic
Proteins, AtTIP2;1 and
AtTIP2;3

Arabidopsis thaliana [61]

Sorbitol transporters,
PmPLT1 and PmPLT2

Plantago major [62]

Pichia pastoris

Nitrate reductase Spinacia oleracea,Zea mays [69]

Invertase Ipomoea batatas [70]

α1,6-galactosyltransferase Trigonella foenum-graecum [71]

α1,6-xylosyltransferase Arabidopsis thaliana [72]

Glycosyltransferases

Arabidopsis thaliana Bos
taurus, Drosophila

melanogaster,
Caenorhabditis elegans,

Leucopersicon esculentum

[73]

β-D-fructofuranosidase Oryza sativa [74]

Apyrase Solanum tuberosum [75]

Oxalate oxidases, HvOXO,
TaOXO

Hordeum vulgare, Triticum
aestivum

[76, 77]

Lectin
Canavalia brasiliensis,

Nicotiana tabacum
[2, 79]

Low-affinity cation
transporter (LCT1)

Triticum aestivum [80]

2S albumin storage
proteins (AL1 and AL3)

Glycine max [126]

Baculovirus-mediated
insect cell

Patatin Solanum tuberosum [81]

Reductase isoforms, AR1
and AR2

Arabidopsis thaliana [82]

Peroxisomal short-chain
acyl-CoA oxidase A

Arabidopsis thaliana [83]

Cyclin-dependent kinase A
(CDKA)

Arabidopsis thaliana [84]

NADH-cytochrome (Cyt)
b5 reductase

Arabidopsis thaliana [85]

Geranylgeranyltransferase-I
(GGT-I)

Arabidopsis thaliana [86]

Acyl-CoA synthetase Arabidopsis thaliana [87]

Homogentisate
phytyltransferase

Arabidopsis thaliana [88]

(+)-Abscisic Acid
8’-Hydroxylase

Arabidopsis thaliana [89]

β1,2-xylosyltransferase Arabidopsis thaliana [90]

Ethylene-inducing xylanase Nicotiana tabacum [91]
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Table 1: Continued.

Protein expressed Plant Reference

ADP-glucose
pyrophoshorylase
(AGPase)

Hordeum vulgare [92]

K+ channels, AKT1, KAT1,
and KCO1

Arabidopsis thaliana [93–95]

K+ channels KST1, SKT1,
and KST1

Solanum tuberosum [96, 97]

Transporter AUX1 Arabidopsis thaliana [98]

β-phaseolin polypeptides Phaseolus vulgaris [127]

Ac-specific ORFa protein, Zea mays [128]

Cysteine protease papain Carica papaya [129]

Mitochondrial protein
URF13

Zea mays [130]

LAT52 protein Lycopersicon esculentum [131]

Auxin-binding protein
(ABP1)

Zea mays, Nicotiana
tabacum

[132, 133]

Calreticulin and auxin
binding protein

Zea mays [134]

Cinnamate 4-Hydroxylase Arabidopsis thaliana [135]

Cryptochrome-1 Arabidopsis thaliana [136]

Phototropin 2 Arabidopsis thaliana [137]

Histidinol dehydrogenase Brassica oleracea [138]

Putative soluble epoxide
hydrolase (sEH)

Solanum tuberosum [139]

lmidazoleglycerolphosphate
dehydratase

Arabidopsis thaliana [140]

Phytone synthase,
Phytoene desaturase

Narcissus pseudonarcissus [141, 142]

4-coumarate:coenzyme A
ligase (4Cl)

Populus trichocarpa,
Populusdeltoides

[143]

Xenopuslaevisoocytes

Na+ − K+ cotransporter
HKT1

Arabidopsis thaliana [39]

AgDCAT1 nodule-specific
transporter

Alnus glutinosa [43]

AtNAR2.1/AtNRT2 Nitrate
Transport System

Arabidopsis thaliana [102]

HKT Constructs,
AtHKT1 HKT1 chimeras

Triticum aestivum,
Arabidopsis thaliana

[103]

HKT1 superfamily of
K+/Na+ transporters

Eucalyptus camaldulensis [104]

Ammonium transporter,
LeAMT1

Lycopersicon esculentum [105]

Ammonium transporter,
AtAMT1;2

Arabidopsis thaliana [106]

Sucrose transporters,
AtSUC2, AtSUC9, LjSUT4

Arabidopsis thaliana,Lotus
japonicus

[107–109]

Al-activated malate
transporter,
BnALMT1,BnALMT2,
ALMT1

Brassica napus, Triticum
aestivum

[110, 111]

Polyol transporters,
AtPLT5, PmPLT1

Arabidopsis thaliana,
Plantago major

[112, 113]



International Journal of Plant Genomics 7

Table 1: Continued.

Protein expressed Plant Reference

Inositol transporter2,
AtINT2, AtINT4

Arabidopsis thaliana [114, 115]

Amino acid transporter,
AtCAT6,

Arabidopsis thaliana [116]

Cation–Cl- cotransporter,
CCC

Arabidopsis thaliana [117]

Anion-selective
transporter, ZmALMT1

Zea mays [118]

K+channel, SIRK Vitis vinifera [144]

K+ channel, KZM1 Zea mays [145]

K+ channel, ZMK1 Zea mays [146]

K+ channels, SKT1 and
LKT1

Solanum tuberesum,
Lycopersicon esculentum

[147]

AKT2-KAT2 subunitits Arabidopsis thaliana [148]

K+ channel, KAT1 Arabidopsis thaliana [149]

Cyclic nucleotide-gated ion
channels AtCNGC2,
AtCNGC1, -2

Arabidopsis thaliana,
Nicotiana tobacum

[150, 151]

Putative transporter
(GmN70)

Glycine max [152]

Al-activated malate
transporter, TaALMT1

Triticum aestivum [153]

High affinity
γ-aminobutyric acid
transporter, AtGAT1

Arabidopsis thaliana [154]

Aquaporins, ZmPIP1a,
ZmPIP1b, ZmPIP2a, PIP1,
ZmPIP2;1

Zea mays [124, 155, 156]

Aquaporin, PIP1 Lycopersicon esculentum [157]

Aquaporin, PIP2 Juglans regia [158]

Tonoplast intrinsic protein,
AtTIP2;1

Arabidopsis thaliana [159, 160]

Aquaporin, McTIP1;2
Mesembryanthemum

crystallinum
[161]

Aquaporin, HvPIP1;6 Hordeum vulgare [162]

Tonoplast intrinsic protein,
PgTIP1

Panax ginseng [163]

Nodulin 26 intrinsic
protein, AtNIP2;1

Arabidopsis thaliana [164]

PIP-1-type; NtPIP1;1,
NtAQP1; PIP-2-type;
NtPIP2;1

Nicotiana tabacum [165]

CjMDR1, ATP-binding
cassette protein

Coptis japonica [166]

GlpF-like intrinsic protein
(GIP1;1),

Physcomitrella patens [167]

Metal tolerance protein1,
AtMTP1

Arabidopsis thaliana [159]

AtTPK4 tandem-pore
K+channel

Arabidopsis thaliana [168]

FRD3, multidrug and toxin
efflux (MATE)

Arabidopsis thaliana [169]
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Figure 3: A: a low resolution shape model for GSTdMT. The GST dimer (red and blue) is located at the center from which the dMT molecules
extend (green). B: the scattering curve expected from the model (−) agrees well with the experimental data (. . .). I(S) is the scattering intensity
and S the scattering vector given by S = 4πsinθ/λ, where 2θ is the scattering angle and λ= 1.5 Å is the wavelength of X-rays. The model and
the expected scattering pattern were calculated using the programs in the ATSAS package (EMBL Hamburg Outstation).

function. Processing reactions such as O-and N-linked gly-
cosylation, tyrosine, serine, and threonine phosphorylation,
addition of fatty acid chains, processing of signal sequences,
disulfide bond formation, and correct folding can all be
readily performed in eukaryotic hosts. The most commonly
used eukaryotic systems are yeast, insect, mammalian, and
plant cells.

3.2.1. Yeast. As a single cell eukaryotic organism, yeast has
molecular, genetic, and biochemical characteristics which
are similar to those of higher eukaryotes, and is useful for
heterelogous protein production. Yeast cells can grow rapidly
with high cell densities, and are easy to manipulate and yeast
cultures are cost effective. The two most commonly used
organisms are Saccharomyces cerevisiae (S. cerevisiae) and
Pichia pastoris (P. pastoris) [7].

Saccharomyces Cerevisiae. Baker’s yeast, S. cerevisiae, is
widely used as a host organism for heterologous expression
of proteins. Its genetics and physiology are well documented
and proteins are posttranslationally modified through the
mechanisms similar to those found in plants. The limitations
of this host system are low yields, cell stress due to the pres-
ence of the foreign gene and hyperglycosylation of secreted
foreign proteins. Lack of a strong inducible promoter can be
circumvented using P. pastoris [45].

Earlier work on heterelogous expression for screening of
plant cDNA libraries by complementation in S. cerevisiae
null mutants was reviewed by Frommer and Ninnemann
[7]. The S. cerevisiae mutants provide a convenient system
for functional and kinetic studies of transporters [46]. The
electrophysiological properties of membrane transporters,
H+-amino acid symporter and K+ channel, KAT1 [47] and
phosphate transporters; AtPT1 and AtPT2 of Arabidopsis
were characterized using S. cerevisiae [48]. Recently, func-
tional expression of transporters such as an HvHAKI from
barley [49], AtKT1 and AtKT2 [50], and AtKUP1 from Ara-

bidopsis [51] also utilized S. cerevisiae mutants. Another K+

transporter characterized in this system is HKT1 from wheat
[52, 53]. Kinetic uptake analyses of tomato sulfate trans-
porters, LeST1-1 and LeST1-2 were carried out using the S.
cerevisiae sulfate transporter mutant [54]. The five members
of the copper transporter family COPT1–5 from Arabidopsis
were characterized using a copper transport null mutant
[55]. A peptide transporter AtPTR1 gene from Arabidopsis
was isolated and complemented in a peptide transport-
deficient mutant [56]. A putative K+/H+ antiporter, AtChx17
was heterologously expressed and characterized in an S.
cerevisiae kha1 deletion mutant [57]. To test their functional
activity, the grapevine hexose transporters VvHT3, VvHT4,
and VvHT5 were expressed in the S. cerevisiae mutant
EBY.VW4000, which is deficient in glucose transport due
to concurrent knock-out of 20 endogenous transporter
genes [58]. Growth-based complementation assays were used
to demonstrate function of the transporters but resulted
in inadequate rates of glucose uptake. A more sensitive
assay based on direct measurement of radioactively labelled
glucose uptake revealed that this mutant expressing VvHT4
and VvHT5 accumulated labelled glucose at higher rates than
yeast transformed with the empty vector, demonstrating
the functionality of the glucose transporters. Although
VvHT3:GFP (green fluorescent protein) fusion protein was
targeted to the plasma membrane in plant cells, VvHT3 was
found not to be functional in the yeast system [58].Yeast
expression studies were, in several instances, complemented
by studies in other organisms to verify functional and kinetic
properties of recombinant proteins. The plasma membrane-
localized H+/inositol symporter AtINT2 of Arabidopsis was
studied by expression in an inositol uptake/inositol biosyn-
thesis double mutant in S. cerevisiae and in Xenopus oocytes
[59]. In this study, the amount of AtINT2 protein in yeast
plasma membrane was sufficient for complementation, but
not for functional and kinetic analyses. In oocytes, however,
it was possible to show that AtINT2 mediated the symport
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of H+ [59]. Expression and functional characterization of
Arabidopsis AtGAT1 in S. cerevisiae and Xenopus oocytes
revealed that AtGAT1 mediates H+-dependent, high affinity
transport of high affinity γ-aminobutyric acid (GABA)
and GABA-related compounds. Properties of this protein
could be examined in more detail in Xenopus oocytes [60].
Heterologous expression of AtTIP2;1 and AtTIP2;3 from
Arabidopsis in both ammonium uptake-defective yeast and
oocytes indicated that these TIPs transport both ammonium
and methyl-ammonium in addition to water and urea
[61]. The kinetic characteristics of the sorbitol transporters,
PmPLT1, and PmPLT2 from common plantain (Plantago
major) were investigated by functional expression in S.
cerevisiae and in Xenopus oocytess. In the yeast system,
both proteins were characterized as low-affinity and low-
specificity polyol symporters. These data were confirmed in
the Xenopus system, where PmPLT1 was analyzed in detail
and characterized as an H+ symporter [62].

The major disadvantages of using S. cerevisiae mutants
in transporter studies are the hyperpolarization of the mem-
brane, mislocalization of membrane proteins and recruit-
ment of non-K+-transporters into K+-transporters [63].

Pichia Pastoris. P. pastoris, methylotrophic yeast, is consid-
ered a valuable tool for high yield heterologous expression
of various proteins. The possibility of obtaining posttransla-
tional modifications, high level expression of foreign proteins
in either intracellular or extracellular forms, simplicity
of genetic manipulations, and availability of various P.
pastoris strains and vectors make this expression system
highly popular [64]. Molecular manipulations such as gene
targeting, high frequency DNA transformation, and cloning
for functional complementation are similar to those in S.
cerevisiae [64]. Tightly regulated promoters, easy integration
of heterologous DNA into the host chromosome and the
capacity to generate more posttranslational modifications
make P. pastoris the preferred system compared to S.
cerevisiae.

The wide use of P. pastoris expression system for reco-
mbinant plant proteins can be seen from recent reviews
[64, 65]. P. pastoris is particularly well suited for studying
plant enzymes since glycosylation of the foreign proteins
is expected to be closer to that in plants [66, 67] and
glycosylated proteins have shorter glycosyl chains in P.
pastoris than in S. cerevisiae [68]. This expression system has
the potential to produce high levels of recombinant proteins
[67], up to 400 mg/L of culture [69]. Several plant enzymes
have been produced in Pichia. Two examples are cytosolic
expression of nitrate reductase from spinach and corn at
high levels needed for detailed biochemical studies [69] and
expression of a sweet potato invertase in milligram quantities
[70]. Enzymatic activity of the membrane-bound α1,6-
galactosyltransferase was shown through overexpression in
P. pastoris [71]. The hypothesis that α-xylosyltransferase is
involved in xyloglucan biosynthesis was tested by overex-
pressing the corresponding genes and identifying the gene
product that displayed activity [72]. P. pastoris has been used
for production of a number of glycosyltransferases involved
in the biosynthesis of N- and O-linked oligosaccharides

[73]. To confirm that Osβfruct3 from rice encoded a vac-
uolar type β-D-fructofuranosidase, the Osβfruct3 cDNA was
expressed in this host [74]. A recombinant potato apyrase
was expressed and purified in the hyperglycosylated form at
1 mg/L protein concentration [75]. The catalytically active
barley oxalate oxidase, HvOXO was produced with a yield of
50 mg/L culture and biochemically characterized [76].

High-level expression of wheat germin/oxalate oxidase
was achieved in P. pastorisas an α-mating factor signal pep-
tide fusion to increase secretion of the protein of interest into
the culture medium. Approximately 1 g (4×104 U) of TaOXO
was produced in 5 L fermentation cultures following 8 days of
methanol induction, demonstrating the possibility of large-
scale production of oxalate oxidase for biotechnological
applications. Glycosylation of the recombinant protein was
evidenced by mass spectrometry [77]. Another application
using P. pastoris is the expression of the α-subunit of
heterotrimeric G-proteins, GPA1, from Arabidopsis. Several
attempts had previously failed to produce this protein in
E. coli, whereas in the yeast system the protein could be
expressed with a his6-tag and purified by affinity chromatog-
raphy with a yield up to 20 mg from 700 mL culture [78].

Several allergens including, Cyn d 1 from Bermuda grass,
Bla g 4 from German cockroach, Amb a 6 from Ambrosia
artemisiifolia, and Ole e 1 from Olea europaea have also been
produced in P. pastoris (see list in 64).

This system was also used for the expression of a number
of plant lectins such as Canavalia brasiliensis lectin (ConBr)
[2] and the Nicotiana tabacum lectin [79]. In a recent
study, the low-affinity cation transporter (LCT1) from wheat
was also expressed and functionally characterized using P.
pastoris [80].

3.2.2. Insect Cells. Baculoviruses have been used for the
synthesis of a wide variety of eukaryotic recombinant
proteins in insect cells. In this expression system one of
the nonessential viral genes is replaced with the target
protein through homologous recombination. The resulting
recombinant baculovirus is used to infect cultured insect
cells and the heterologous genes can be expressed under the
control of the extremely strong pPolh, polyhedron promoter
in the late phase of infection.

The most common baculovirus used for expression
studies is Autographa californica multiple capsid nucle-
opolyhedrovirus (AcMNPV) and the most frequently used
host insects are Spodoptera frugiperda and Trichoplusia ni.
This expression system produces high levels of recombinant
proteins which are soluble, post-translationally modified,
biologically active, and functional [81]. The virus is not
pathogenic to vertebrates or plants. The main drawback of
this system over the bacterial and yeast systems lies in the
noncontinuous expression of the heterologous gene; every
round of protein production needs reinfection [3].

This heterologous expression system is mainly used to
investigate enzymatic mechanisms in plants. The most recent
examples include the Arabidopsis reductase isoforms, AR1
and AR2 [82], peroxisomal short-chain acyl-CoA oxidase A
[83], cyclin-dependent kinase A [84], NADH-cytochrome
b5 reductase [85], geranylgeranyltransferase-I [86], acyl-CoA
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synthetase [87], homogentisate phytyltransferase [88], (+)-
abscisic acid 8’-hydroxylase [89], β1,2-xylosyltransferase
[90], tobacco ethylene-inducing xylanase [91], and barley
ADP-glucose pyrophoshorylase [92]. The overall yield of
heterelogous proteins obtained with this system is usually
lower than with P. pastoris.

Baculovirus-infected insect cells have been used as an
alternative system to Xenopus oocytes for expression and
characterization of plant channel proteins. Several channel
proteins which were not functional in oocytes could be
characterized in baculovirus-infected insect cells such as the
K+ channel proteins AKT1 [93], KAT1 [94], KCO1 [95] from
Arabidopsis, and KST1 [96] and SKT1 [97] from potato.

To investigate the interaction between AUX1 and its
transport substrate indole-3-acetic acid (IAA) from Ara-
bidopsis, an epitope-tagged version of AUX1 was expressed
at high levels in a baculovirus expression system and suitable
membrane fragments were prepared from baculovirus-
infected insect cells for direct measurement of IAA binding
to AUX1. AUX1-IAA interactions were determined using a
radio-ligand binding assay to confirm that AUX1 was able to
bind IAA with an affinity (Kd) of 2.6 mM, comparable with
estimates of the Km for IAA transport [98].

The main disadvantages of using baculovirus-infected
insect cells are difficulties in constructing the expression
vectors, requirements for more complex laboratory facilities
and skills, and the short expression periods after infection.

3.2.3. Xenopus Laevis Oocytes. The oocytes of the South
African clawed frog, Xenopus laevis, are also used for
heterelogous expression of eukaryotic genes. The mRNA for
the target protein, introduced by microinjection into the
cytoplasm, is translated and the protein is posttranslationally
modified by the oocyte [99]. Direct injections of DNA into
the nucleus are also possible, but the manipulations are
difficult as the nucleus can easily be damaged in the process.

Investigations on membrane transport proteins can be
readily performed on oocytes where techniques for electro-
physiological measurements are well established. Although,
a high proportion of cells express the foreign gene after
injection variations in the quality of oocytes and in the ability
of individual cells to produce the heterelogous protein can
cause problems. Oocytes are not suitable for preparing large
quantities of proteins and the short expression period often
leads to technical difficulties. The system can also not be
sustained over long periods of time and is not suitable for
stable expression [99, 100].

Xenopus oocytes have, however, provided a powerful
heterologous expression system for animal as well as plant
genes.The possibility of using Xenopus oocytes as heterol-
ogous expression systems for the identification of plant
transporters was first demonstrated by the expression of
the H+/glucose transporter STP1 from Arabidopsis [101]. It
has, since, been mainly used for production of transporters
including potassium channels, H+/hexose cotransporters,
aquaporins, and chloride channels [99]. In addition, func-
tional expression of a nitrate transporter [102], a K+/Na+

transporter [39, 103, 104], ammonium transporters [105,
106], sucrose transporters [107–109], Al-activated malate

transporters [110, 111], polyol transporters [112, 113], inos-
itol transporters [114, 115], an amino acid transporter [116],
a cation–Cl-cotransporter [117], and an anion-selective
transporter [118] in Xenopus oocytes were investigated.
Cases where channel proteins expressed in oocytes were not
functional have also been reported. These include the K+

channels AKT1 from Arabidopsis [93, 119, 120], TaAKT1
from wheat [121], DKT1 from carrot [122], and OsAKT1
from rice [123]. The causes for the lack of function of these
recombinant proteins are not clear.

Several studies have used expression of a wild type and
its mutant forms in Xenopus oocytes to confirm the in
vivo functions of plant proteins, especially transporters and
plasma membrane intrinsic proteins (PIPs or aquaporins).
To demonstrate whether or not the plant K+ channels form
multimers, the wild type and a mutant were coexpressed in
Xenopus oocytes [120]. Coexpression of tomato ammonium
transporter (LeAMT1;1) and its mutant in Xenopus oocytes
inhibited ammonium transport, suggesting homooligomer-
ization [105]. In another study, the role of phosphorylation
in the water channel activity of wild-type and mutant
ZmPIP2;1 was studied in Xenopus oocytes [124].

In recent studies, the Xenopus oocyte expression system
was used to investigate structure-function relationships. In
one example, differences in the function of two cation
transporters, wheat HKT1 and Arabidopsis AtHKT1, were
investigated using a series of AtHKT1/HKT1 chimeras with
point mutations [103].

4. Conclusions

Heterologous expression of plant genes in other host
organisms has two main applications: (1) overexpression
of the encoded protein, for biochemical and biophysical
characterization and (2) expression of foreign genes for
determination of the function of the encoded protein
by complementing in a mutant host. Overexpression of
recombinant proteins is usually carried out with a cleavable
tag to simplify purification in large quantities. In contrast,
complementation studies are carried out in null mutants to
restore a missing activity in vivo.

Decisions on which expression vectors to use and the
choice of the expression host depend on the particular
application. In general E.coli is the first choice as host because
of its simplicity, availability of expression vectors, cost effec-
tiveness, and availability of extensive genetic information on
this host. Alternative expression systems are used only if
the recombinant protein is inactive due to lack of essential
posttranslational modifications and when detailed studies
on the recombinant protein function are planned. Yeast
systems have the advantage of ease of manipulation and short
generation time. S. cerevisiae has been extensively used for
functional complementation, biochemical, and electrophysi-
olagical characterization of plant membrane and transporter
proteins. P. pastoris is the preferred host for overexpression
of several plant enzymes. Baculovirus-mediated insect cell
expression offers the possibility for detailed investigations of
plant enzymes and transporters. The oocyte from Xenopus
laevis is often used for monitoring activity and biochemical
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and electrophysiological characterization of plant plasma
membrane transporter and pump proteins.

Heterologous expression is a powerful tool for functional
and biochemical analyses of genes and gene families isolated
from various organisms. It is particularly important for
plants where the whole genome sequence is not available.
This system will also provide denovo analysis. Its limita-
tions, however, should be kept in mind, especially when
interpreting the results in terms of the native structure and
function of proteins. Major problems arise from misfolding
and mislocalization of recombinant proteins in foreign hosts.
Strategies developed to avoid misfolding of recombinant
proteins include expression in periplasmic space, expression
with a tag, and utilization of different hosts. Mislocalization,
on the other hand, may occur because the recombinant
protein may take over the function of the missing host
protein [170]. Conclusions on function need to be tested in
alternative hosts and eventually in the plant itself.
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Van Damme, “Expression of the nucleocytoplasmic tobacco
lectin in the yeast Pichia pastoris,” Protein Expression and
Purification, vol. 53, no. 2, pp. 275–282, 2007.

[80] E. Diatloff, B. G. Forde, and S. K. Roberts, “Expression and
transport characterisation of the wheat low-affinity cation
transporter (LCT1) in the methylotrophic yeast Pichia pas-
toris,” Biochemical and Biophysical Research Communications,
vol. 344, no. 3, pp. 807–813, 2006.

[81] D. L. Andrews, B. Beames, M. D. Summers, and W. D. Park,
“Characterization of the lipid acyl hydrolase activity of the
major potato (Solanum tuberosum) tuber protein, patatin, by
cloning and abundant expression in a baculovirus vector,”
Biochemical Journal, vol. 252, no. 1, pp. 199–206, 1988.

[82] M. Mizutani and D. Ohta, “Two isoforms of NAPDH:
cytochrome p450 reductase in Arabidopsis thaliana gene
structure, heterologous expression in insect cells, and differ-
ential regulation,” Plant Physiology, vol. 116, no. 1, pp. 357–
367, 1998.

[83] H. Hayashi, L. De Bellis, A. Ciurli, M. Kondo, M. Hayashi,
and M. Nishimura, “A novel Acyl-CoA oxidase that can
oxidize short-chain Acyl-CoA in plant peroxisomes,” The
Journal of Biological Chemistry, vol. 274, no. 18, pp. 12715–
12721, 1999.

[84] H. Harashima, A. Shinmyo, and M. Sekine, “Phosphoryla-
tion of threonine 161 in plant cyclin-dependent kinase A
is required for cell division by activation of its associated
kinase,” The Plant Journal, vol. 52, no. 3, pp. 435–448, 2007.

[85] M. Fukuchi-Mizutani, M. Mizutani, Y. Tanaka, T. Kusumi,
and D. Ohta, “Microsomal electron transfer in higher plants:
cloning and heterologous expression of NADH-cytochrome



14 International Journal of Plant Genomics

b5 reductase from Arabidopsis,” Plant Physiology, vol. 119, no.
1, pp. 353–361, 1999.

[86] D. Caldelari, H. Sternberg, M. Rodrı́guez-Concepción, W.
Gruissem, and S. Yalovsky, “Efficient prenylation by a plant
geranylgeranyltransferase-I requires a functional Caal box
motif and a proximal polybasic domain,” Plant Physiology,
vol. 126, no. 4, pp. 1416–1429, 2001.

[87] H. Hayashi, L. De Bellis, Y. Hayashi, et al., “Molecular char-
acterization of an Arabidopsis acyl-coenzyme a synthetase
localized on glyoxysomal membranes,” Plant Physiology, vol.
130, no. 4, pp. 2019–2026, 2002.

[88] B. Savidge, J. D. Weiss, Y.-H. H. Wong, et al., “Isolation and
characterization of homogentisate phytyltransferase genes
from Synechocystis sp. PCC 6803 and Arabidopsis,” Plant
Physiology, vol. 129, no. 1, pp. 321–332, 2002.

[89] S. Saito, N. Hirai, C. Matsumoto, et al., “Arabidopsis
CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key
enzyme in the oxidative catabolism of abscisic acid,” Plant
Physiology, vol. 134, no. 4, pp. 1439–1449, 2004.

[90] S. Pagny, F. Bouissonnie, M. Sarkar, et al., “Structural
requirements for Arabidopsis β1, 2-xylosyltransferase activ-
ity and targeting to the Golgi,” The Plant Journal, vol. 33, no.
1, pp. 189–203, 2003.

[91] N. Furman-Matarasso, E. Cohen, Q. Du, N. Chejanovsky, U.
Hanania, and A. Avni, “A point mutation in the ethylene-
inducing xylanase elicitor inhibits the β-1-4-endoxylanase
activity but not the elicitation activity,” Plant Physiology, vol.
121, no. 2, pp. 345–351, 1999.

[92] D. N. P. Doan, H. Rudi, and O.-A. Olsen, “The allosterically
unregulated isoform of ADP-glucose pyrophosphorylase
from barley endosperm is the most likely source of ADP-
glucose incorporated into endosperm starch,” Plant Physiol-
ogy, vol. 121, no. 3, pp. 965–975, 1999.

[93] F. Gaymard, M. Cerutti, C. Horeau, et al., “The bac-
ulovirus/insect cell system as an alternative to Xenopus
oocytes. First characterization of the AKT1 K+ channel from
Arabidopsis thaliana,” The Journal of Biological Chemistry, vol.
271, no. 37, pp. 22863–22870, 1996.

[94] I. Marten, F. Gaymard, G. Lemaillet, J.-B. Thibaud, H.
Sentenac, and R. Hedrich, “Functional expression of the
plant K+ channel KAT1 in insect cells,” FEBS Letters, vol. 380,
no. 3, pp. 229–232, 1996.

[95] K. Czempinski, S. Zimmermann, T. Ehrhardt, and B. Müller-
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