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Protection of chromosome ends from DNA repair and

degradation activities is mediated by specialized protein

complexes bound to telomere repeats. Recently, it has

become apparent that epigenetic regulation of the

telomeric chromatin template critically impacts on

telomere function and telomere-length homeostasis from

yeast to man. Across all species, telomeric repeats as well

as the adjacent subtelomeric regions carry features of

repressive chromatin. Disruption of this silent chromatin

environment results in loss of telomere-length control

and increased telomere recombination. In turn, progres-

sive telomere loss reduces chromatin compaction at

telomeric and subtelomeric domains. The recent discov-

eries of telomere chromatin regulation during early mam-

malian development, as well as during nuclear

reprogramming, further highlights a central role of telo-

mere chromatin changes in ontogenesis. In addition,

telomeres were recently shown to generate long, non-

coding RNAs that remain associated to telomeric chroma-

tin and will provide new insights into the regulation of

telomere length and telomere chromatin. In this review,

we will discuss the epigenetic regulation of telomeres

across species, with special emphasis on mammalian

telomeres. We will also discuss the links between

epigenetic alterations at mammalian telomeres and

telomere-associated diseases.
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Introduction

Telomeres are nucleoprotein structures that protect the

ends of linear chromosomes from degradation and from

being detected as double-strand DNA breaks (Chan and

Blackburn, 2004; Palm and de Lange, 2008). A tri-partite

organization of telomeres is a canonical feature of chromo-

some termini in eukaryotes. Telomeres consist of (i) a

capping structure, which protects the end of chromosomes

from degradation and from eliciting a DNA damage response

(DDR), and also controls the extension of telomeric repeats;

(ii) a stretch of double-stranded repetitive and transcribed

DNA elements; and (iii) repetitive telomere-associated se-

quences (TAS) also referred to as subtelomeres (Riethman

et al, 2005; Blasco, 2007; Anderson et al, 2008). Whereas

yeast, vertebrate, and plant telomeres consist of short-tandem

repeats, Drosophila melanogaster chromosomes terminate in

arrays of telomere-specific non-long terminal-repeat (LTR)

retrotransposons (Pardue and DeBaryshe, 2003; Chan and

Blackburn, 2004; Zellinger and Riha, 2007). Telomere func-

tion depends on a minimal length of telomeric repeats and

the functionality of the associated protein complexes. In

addition, higher-order DNA conformations, such as the

T-loop, are thought to contribute to telomere function

(Griffith et al, 1999). In most species, telomeres are main-

tained by telomerase, a reverse transcriptase that adds telo-

meric repeats de novo after every cell division, thereby

counteracting incomplete DNA replication of telomeres

due to the so-called end-replication problem (Collins and

Mitchell, 2002; Chan and Blackburn, 2004). Drosophila

melanogaster compensates the lack of telomerase by trans-

posing telomere-specific LTR retrotransposons to chromo-

some ends (Pardue and Debaryshe, 2008). Alternative

pathways involving telomere recombination (ALT, alternative

lengthening of telomeres) have been also described in mam-

mals (Collins and Mitchell, 2002; Pardue and DeBaryshe,

2003; Muntoni and Reddel, 2005).

In adult mammalian tissues and adult stem cells, telomerase

activity is not sufficient to maintain telomeres during cell

division and tissue renewal (Collins and Mitchell, 2002; Flores

et al, 2005; Sarin et al, 2005). Progressive telomere shortening

leads to telomere dysfunction and elicitation of a DDR, which

result in cell cycle arrest/senescence or apoptosis (Harley et al,

1990; d’Adda di Fagagna et al, 2003). In vivo, critically short

telomeres result in stem cell dysfunction, premature loss of

tissue regeneration, and reduced life span, as shown in the

context of telomerase-deficient mice (Blasco et al, 1997; Herrera

et al, 1999; Rudolph et al, 1999; Gonzalez-Suarez et al, 2000;

Collins and Mitchell, 2002; Blasco, 2005; Garcia-Cao et al,

2006). In contrast, over-expression of telomerase is sufficient

to immortalize most human cell types in vitro and leads to a

significant extension of the median life span of Tert transgenic

mice with increased cancer resistance (Bodnar et al, 1998;

Gonzalez-Suarez et al, 2001; Artandi et al, 2002; Canela et al,

2004; Tomas-Loba et al, 2008).

Pioneer studies in yeast indicated the involvement of

chromatin modifications in the control of telomere function

and telomere length. In particular, reporter genes introduced
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in proximity to telomeres were found to be silenced, suggest-

ing a repressive chromatin environment at yeast telomeres,

which was later also reported for D. melanogaster and

mammals (Palladino et al, 1993; Cooper et al, 1997; Baur

et al, 2001; Koering et al, 2002; Biessmann et al, 2005; Mason

et al, 2008). Whereas telomeric repeats are devoid of histones

in yeast, the accumulation of repressive histone modifica-

tions at mammalian telomeric and subtelomeric repeats, as

well as the hypermethylation of subtelomeric DNA, has been

recently shown to have a central function in mammalian

telomere-length homeostasis (Blasco, 2007).

Recent discoveries of transcripts derived from yeast and

vertebrate telomeres, as well as rasiRNAs derived from

Drosophila melanogaster telomeric retrotransposons, sug-

gests the involvement of non-coding RNAs in telomere struc-

ture and telomere regulation across species (Savitsky et al,

2006; Azzalin et al, 2007; Schoeftner and Blasco, 2008).

Mammalian and yeast telomeric RNAs have been proposed

to control telomere structure as well as telomere elongation

by telomerase (Azzalin et al, 2007; Luke et al, 2008;

Schoeftner and Blasco, 2008).

In this review, we provide an overview on the epigenetic

regulation of yeast, D. melanogaster, and vertebrate telo-

meres, with a special emphasis on the regulation of mamma-

lian telomeric chromatin during development and in the

context of telomere-associated diseases.

The telomere-binding proteins

From yeast to man, telomeres are bound by specialized

protein complexes that regulate telomere length and telomere

capping. In Saccharomyces cerevisiae, Cdc13 binds to the

G-strand overhang and controls telomere elongation by

telomerase, whereas Rap1 (repressor–activator protein 1)

recruits the silent information regulator proteins Sir2, Sir3,

Sir4 and the telomere-length regulators Rif1 and Rif2 to

telomeres, forming the so-called ‘telosome’ (Wright et al,

1992; Tham and Zakian, 2002). Rap1–Rif1 complexes act as

a counting mechanism to negatively regulate telomere length

(Kyrion et al, 1992; Krauskopf and Blackburn, 1996; Marcand

et al, 1999; Levy and Blackburn, 2004). Homologues of S.

cerevisiae Rap1 and Rif1 have also been described in

Schyzosaccharomyces pombe. In S. pombe, Rap1 and Rif1

are recruited to double-stranded telomeric repeats through

association with the telomere repeat-binding protein Taz1,

thus regulating telomere length and telomeric silencing

(Kanoh and Ishikawa, 2001). The S. pombe G-strand over-

hang is protected by Pot1. Pot1 associates with Tpz1, Ccq1

and Poz1 and contacts the Taz1–Rap1 complex located at

double-stranded telomeric repeats (Miyoshi et al, 2008).

Telomere-binding proteins in S. pombe telomeres are highly

related to components of the mammalian shelterin complex.

In functional analogy to Taz1, the mammalian shelterin

components TRF1 and TRF2 bind to double-stranded telo-

meric repeats and recruit TPP1 (orthologue of S. pombe

Tpz1), RAP1, TIN2, and the poly(ADP)-ribosylases TANK1

and TANK2 to telomeres (Palm and de Lange, 2008). The

single-stranded 30overhang is bound by POT1, which contacts

with TRF1 and TRF2 at double-stranded telomere regions

through TPP1.

D. melanogaster lacks telomerase activity and maintains

arrays of telomere-specific LTR retrotransposons by retro-

transposition or gene conversion (Biessmann and Mason,

2003). In contrast to yeast and vertebrate telomeres, chromo-

some capping in D. melanogaster is mediated by an alter-

native mechanism, which is dependent on the ‘terminin’

protein complex containing the heterochromatin protein 1

(HP1), HOAP (HP1/ORC-associated protein), and the mod-

igliani (moi) gene product (Cenci et al, 2005). The depen-

dence of chromosome capping on HP1, a major component of

heterochromatin, shows the strong bias of Drosophila mela-

nogaster telomere regulation towards the use of general

chromatin regulators.

Epigenetic regulation of yeast telomeres

S. cerevisiae telomeres consist of 350±75 bp of C1–2A/TG1–3

histone-free DNA repeats that terminate in a single 30 over-

hang (Wright et al, 1992). Adjacent subtelomeric Y0 and X

repeats are assembled into nucleosomes and extend several

kilobases towards centromeres (Louis, 1995). The silencing

of reporter genes introduced into S. cerevisiae subtelomeric

regions, a phenomenon also referred to as ‘telomere position

effect’ (TPE), provided early evidence for a repressive chro-

matin environment at telomeres (Gottschling et al, 1990;

Tham and Zakian, 2002). As discussed above, histone-free

telomeric repeats are bound by Rap1, which recruits the

silent information regulator Sir4. Sir4 further attracts Sir2

and Sir3 to telomeres. The NAD-dependent deacetylase ac-

tivity of Sir2 is essential for telomere repression and the

spreading of silencing, whereas Sir3 and Sir4 act as structural

components. Sir2 de-acetylates the tails of histones H3 and

H4 with preference for acetylated lysine 16 on histone H4

(H4K16Ac), thereby creating a high-affinity-binding site for

Sir3 and Sir4 (Hecht et al, 1995; Tanny et al, 1999; Imai et al,

2000; Carmen et al, 2002). Mutations in residues K16–K20 of

histone H4, as well as loss of Sir2, result in loss of telomeric

repression (Johnson et al, 1990; Aparicio et al, 1991; Tanny

et al, 1999). Binding of Sir3 and Sir4 is further enhanced by

the production of 20-O-acetyl-ADP-ribose (O-AADPR), a side

product of the NADþ hydrolysis by Sir2 (Liou et al, 2005;

Martino et al, 2009). Thus, a positive-feedback loop based on

cycles of histone H3 and H4 de-acetylation, Sir protein

recruitment and O-AADPR-mediated stabilization allows the

Sir complex to spread along subtelomeric nucleosomes and

silence promoters kilobases away from Rap1-determined

silencing nucleation. Silencing is further enhanced by the

formation of a telomeric fold-back structure and the associa-

tion of telomeres with the Sir-rich nuclear periphery (Maillet

et al, 1996; Strahl-Bolsinger et al, 1997; de Bruin et al, 2000).

Spreading of telomeric silencing is antagonized by Sas2, a

specific MYST-type family acetylase of the SAS complex that

competes with Sir2 in controlling the acetylation status of

H4K16 (Osada et al, 2001; Kimura et al, 2002; Suka et al,

2002; Shia et al, 2005). H4K16 acetylation by Sas2 is

important for the subsequent incorporation of H2A.Z that

forms a chromatin boundary preventing the propagation of

silencing (Meneghini et al, 2003; Shia et al, 2006).

Hyperacetylated H4K16 also drives Sir3 displacement and

allows binding of the histone methyltransferase Dot1 that

methylates the histone H3 lysine 79 residue, further antag-

onizing the spreading of Sir complexes (Park et al, 2002; van

Leeuwen and Gottschling, 2002; van Leeuwen et al, 2002; Ng

et al, 2002a; Altaf et al, 2007; Fingerman et al, 2007). In

A ‘higher order’ of telomere regulation
S Schoeftner and MA Blasco

The EMBO Journal VOL 28 | NO 16 | 2009 &2009 European Molecular Biology Organization2324



addition, the ubiquitination of lysine 123 of H2B by the

ubiquitin-ligating enzyme Rad6 is required for efficient

H3K79 methylation and the methylation of histone H3K4 by

Set1, another marker of telomeric chromatin (Briggs et al,

2002; Dover et al, 2002; Ng et al, 2002b; Sun and Allis, 2002;

Shahbazian et al, 2005). Together, this indicates the existence

of a network of trans-histone pathways to tune repression at

telomeres and subtelomeres.

The role of these epigenetic modifications in the regulation

of yeast telomere length is well documented. Several muta-

tions that disrupt telomeric silencing also decrease the length

of telomeres (Palladino et al, 1993; Greenwell et al, 1995;

Porter et al, 1996; Nislow et al, 1997). In addition, the Rap1

counting pathway seems to be indirectly regulated by the Sir

proteins (Marcand et al, 1997). Furthermore, anchoring of

telomeres to the nuclear periphery seems to regulate telomere

length in cells that are compromised for the Rap1 counting

pathway (Gartenberg et al, 2004; Berthiau et al, 2006;

Hediger et al, 2006). Notably, deletion of Rif2 can also lead

to recombination-dependent telomere elongation (Teng et al,

2000), suggesting a link between telomeric chromatin and

recombination. Recently, S. cerevisiae and vertebrate telo-

meres were shown to be transcribed by RNA Polymerase II,

giving rise to single-stranded telomeric repeat-containing

RNAs (TERRA/TelRNAs). Yeast TERRA was reported to

form RNA/DNA hybrids negatively regulating telomerase-

dependent telomere elongation; however, the possible role

of TelRNA/TERRA in defining telomeric silencing has not yet

been addressed (Azzalin et al, 2007; Luke et al, 2008).

Studying the involvement of TERRA in the regulation of

yeast telomeric chromatin will reveal novel pathways of

telomere control.

Epigenetic regulation of S. pombe
telomeres

Telomeres in fission yeast S. pombe share features with

S. cerevisiae and mammalian telomeres. Similar to budding

yeast, S. pombe telomeric repeats are devoid of nucleosomes;

however, telomere-binding proteins and the telomeric chro-

matin structure are highly related to that of mammals.

Mutations in telomere-binding proteins and telomere hetero-

chromatin regulators, such as Taz1, Rap1, Swi6, and Clr1-4,

are known to affect telomeric silencing (Thon and Klar, 1992;

Allshire et al, 1995; Cooper et al, 1997; Nimmo et al, 1998;

Chikashige and Hiraoka, 2001; Kanoh and Ishikawa, 2001;

Sugiyama et al, 2007). In addition, disruption of telomeric

heterochromatin results in increased subtelomeric recombi-

nation, which, similar to mammals, can impact on telomere-

length homeostasis (Kanoh et al, 2003; Bisht et al, 2008).

Fission yeast telomeric heterochromatin is enriched for Swi6,

the orthologue of D. melanogaster HP1. HP1 recruitment to

telomeres is dependent on H3K9 methylation by the SET

domain-containing histone methyltransferase Clr4 (ortholo-

gue of mammalian Suv39h HMTases) that methylates the

histone H3 lysine 9 residues at telomeres (Bannister et al,

2001; Nakayama et al, 2001). The chromatin structure of

S. pombe telomeres is similar to that found at centromeric

regions and the mating-type locus where H3K9 methylation

by Clr4 is dependent on the generation of small RNAs derived

from heterochromatic regions by Dcr1 (the homologue of

mammalian Dicer 1) (Ekwall et al, 1995, 1996; Nakayama

et al, 2000, 2001; Reinhart and Bartel, 2002; Motamedi et al,

2004; Noma et al, 2004; Verdel et al, 2004; Kato et al, 2005).

However, only the combined ablation of the telomeric repeat-

binding protein Taz1 and proteins involved RNAi-mediated

heterochromatin formation releases Swi6 from telomeres,

suggesting that telomeric heterochromatin is recruited by

Taz1 and components of the RNAi machinery (Kanoh et al,

2005). Recently, the multi-enzyme complex SHREC, which

mediates heterochromatic transcriptional gene silencing in S.

pombe, was shown to be recruited to telomeres by redundant

pathways involving Taz1 and Ccq1, as well as the RNAi

machinery (Sugiyama et al, 2007). SHREC contains the

histone deacetylase Clr3 and the chromatin remodelling

factor Mit1 and both activities are required to silence reporter

genes at subtelomeres (Sugiyama et al, 2007). Interestingly,

in addition to recruiting SHREC, Ccq1, which is functionally

linked to the telomeric single-stranded-binding protein Pot1,

also recruits telomerase and prevents telomeric recombina-

tion (Miyoshi et al, 2008; Tomita and Cooper, 2008). Finally,

absence of SpSet1p, a histone H3 lysine 4 methyltransferase

associated with transcriptional activation, also results in

impaired telomeric silencing and telomere elongation

(Kanoh et al, 2003). In summary, the regulation of telomeric

heterochromatin in S. pombe illustrates an interplay between

the telomere-binding proteins and general chromatin regula-

tors. Given the high similarity between S. pombe and mam-

malian telomeres, a role for shelterin in telomere chromatin

regulation can be anticipated. In this respect, altered nucleo-

some spacing in cells over-expressing TRF2 provides

evidence for such a connection (Benetti et al, 2008b).

The heterochromatin structure of
Drosophila telomeres

In contrast to short telomeric repeats in yeast and mammals,

D. melanogaster chromosome termini consist of up to 12 kb

of tandem arrays of telomere-specific HeT-A, TART and TAHR

LTR retrotransposons (Mason and Biessmann, 1995; Mason

et al, 2008). These arrays of HeT-A, TART, and TAHR (HTT)

retroelements are preferentially maintained by target-

primed reverse transcription-based retrotransposition to

chromosome ends, or alternatively, by gene conversion.

Transposition is dependent on HTT retroelements-encoded

reverse transcriptases and occurs to any chromosome end,

creating a high heterogeneity in array length (Biessmann

et al, 1993; Levis et al, 1993; Walter et al, 1995; Biessmann

and Mason, 2003; Abad et al, 2004; Pardue et al, 2005).

Telomere capping is mediated by the ‘terminin’ complex

comprising HP1, the telomere-specific HOAP (HP1/ORC-aso-

ciated protein), and the modigliani (moi) gene product

(Silva et al, 2004; Bi et al, 2005; Ciapponi et al, 2006;

Oikemus et al, 2006; Raffa et al, 2009). Interestingly, HP1,

encoded by Su(var)205, is recruited to chromosome ends

independently of the sequence content or presence of

H3K9me3 and spreads at lower density into adjacent HTT

arrays where HP1 uses its chromodomain to bind H3K9me3

(Fanti et al, 1998; Andreyeva et al, 2005; Frydrychova et al,

2008). Su(var)205 mutants display telomere fusions, in-

creased HeT-A transcript levels, and increased retroelement

addition leading to telomere elongation (Savitsky et al, 2002).

Thus, Drosophila telomere length is controlled by an interac-

tion of H3K9me3 and HP1 in silencing HTT arrays, whereas

A ‘higher order’ of telomere regulation
S Schoeftner and MA Blasco

&2009 European Molecular Biology Organization The EMBO Journal VOL 28 | NO 16 | 2009 2325



chromosome capping by HP1 controls the addition of retro-

elements to chromosome ends (Perrini et al, 2004). In addi-

tion to siRNAs and miRNAs, a third RNA silencing system

based on the Piwi subfamily of Argonaut proteins has

evolved that prevents the spreading of selfish DNA elements

such as telomeric retro-transposons in the germline (Hartig

et al, 2007). In the first step of the repeat-associated short-

interfering (rasi)RNA pathway, rasiRNAs are generated from

damaged inactive copies of transposable elements. These

antisense rasiRNAs then target transcripts of functional

transposons in a process that dependents on the action of

the Piwi proteins (Saito et al, 2006; Brennecke et al, 2007;

Gunawardane et al, 2007). Complementary relationships

of sense and antisense RNA populations indicate the exis-

tence of a positive-feedback loop, also described as ‘the

ping-pong model’ that ensures efficient elimination of tran-

scripts derived from active transposons (Brennecke et al,

2007). Consistent with this model, transcript levels from

functional telomere-specific retrotransposons are signifi-

cantly increased in germline mutants for components of the

rasiRNA pathway and the RNA helicase gene spn-E (Savitsky

et al, 2006; Klenov et al, 2007; Shpiz et al, 2007).

Furthermore, decreased rasiRNA production is accompanied

by reduced H3K9me3 and HP1 levels at HTTarrays and by an

abundant retrotransposition of HeT-A elements (Savitsky

et al, 2006; Klenov et al, 2007). In line with this,

Piwi is reported to localize to chromatin in a complex with

HP1a, providing further evidence for a role of the rasiRNA

pathway in telomere regulation (Brower-Toland et al, 2007;

Klenov et al, 2007).

Telomere-associated sequences (TAS) located adjacent to

HTT arrays sequences have been reported to have a role in

silencing (Mason et al, 2008). TAS are enriched for the

K3K27me3 mark and bound by Polycomb proteins, which

in turn impact on TPE (Boivin et al, 2003; Mason et al, 2004;

Andreyeva et al, 2005; Shanower et al, 2005; Doheny et al,

2008). Interestingly, TAS are also subjected to regulation by

the rasiRNA pathway. However, in contrast to HTT repeats

where mutations of the rasiRNA pathway result in loss of

telomeric heterochromatin, reduced TAS-originated rasiRNAs

are associated with a loss of euchromatic marks (Yin and Lin,

2007). This discrepancy in chromatin regulation indicates

that repetitive elements in HTT arrays and TAS sequences

underlie distinct mechanisms of epigenetic regulation. A

functional conservation of the rasiRNA pathway in telomere

regulation in the mammalian germline is not known to date.

Vertebrate telomeric heterochromatin

Similar to D. melanogaster and S. pombe, vertebrate telo-

meres are enriched for the H3K9m3 mark, imposed by the

Suv39h1 and Suv39h2 HMTases, the mammalian homolo-

gues of S. pombe Clr4 (Peters et al, 2001, 2003; Garcia-Cao

et al, 2004). H3K9me3 provides a high-affinity-binding site

for HP1 and promotes the imposition of the H4K20me3 mark

by the Suv4-20h1 and Suv4-20h2 HMTases (Bannister et al,

2001; Lachner et al, 2001; Nakayama et al, 2001; Schotta et al,

2004, 2008; Benetti et al, 2007b) (Figure 1). In addition to

these heterochromatic histone marks, telomeric repeats also

contain di-methyalted H3K79, which is mediated by the

Dot1L HMTase (San-Segundo and Roeder, 2000; Shanower

et al, 2005). Dot1L activity is also required for efficient

imposition of the H4K20me3 mark at telomeres, suggesting

that both Suv39h HMTases and Dot1L are acting upstream of

the Suv4-20h HMTases (Jones et al, 2008) (Figure 1)

Interestingly, although telomeres display normal H3K9me3

levels, the abundance of H3K9me2 is markedly reduced at

telomeric repeats in cells lacking Dot1L. This suggests that

additional H3K9-specific HMTases, such as G9a of ESET,

could be involved mediating H3K9me2 at telomeres (Jones

et al, 2008). In addition to repressive histone marks, telo-

meric H3 and H4 histones are under-acetylated (Benetti et al,

2007a). In this regard, lack of the histone deacetylase SIRT6

results in elevated H3K9-acetylation levels at human

telomeres and can lead to telomere dysfunction (Michishita

et al, 2008).

Importantly, repressive chromatin marks are also present

at subtelomeric repeats. In particular, subtelomeres are en-

riched for H3K9me3, HP1, H4K20me3, and contain under-

acetylated histone H3 and H4 (Benetti et al, 2007a, b)

(Figure 1). To this end, however, it is not clear whether

subtelomeric heterochromatin is a consequence of spreading

of a heterochromatic ‘island’ at telomeres or recruited

in cis because due to the presence of repetitive elements at

subtelomeres.

DNA methylation at subtelomeric repeats

DNA methylation is known to regulate mammalian develop-

ment and to specify silent chromatin regions in both eu-

and heterochromatin (Chen and Li, 2006). In contrast to

S. cerevisiae and D. melanogaster, which lack or display low

levels of DNA methylation, mammalian subtelomeric regions

are heavily methylated (Tommerup et al, 1994; van Overveld

et al, 2003; Steinert et al, 2004; Gonzalo et al, 2006)

(Figure 1). Importantly, TTAGGG repeats remain unmethy-

lated because of the lack of methylate-able cytosine. It has

been proposed that DNA methylation at subtelomeric repeats

acts as an additional mechanism in mammals that enforces

TPE (van Overveld et al, 2003; Pedram et al, 2006). DNA

methylation patterns in mammalian cells are established by

three main DNA metyltransferases (DNMTs). De novo methy-

lation patterns are established by DNMT3a and DNMT3b and

maintained by DNMT1, which copies parental-strand methy-

lation onto the de novo synthesized daughter strand after

DNA replication (Okano et al, 1998). DNA methylation is

enriched at repetitive elements such as the pericentric regions

and is regarded to prevent frequent recombination events

(Bender, 1998; Maloisel and Rossignol, 1998; Dominguez-

Bendala and McWhir, 2004; Gonzalo et al, 2006; Jaco et al,

2008). Consistent with this, deficiency of DNMT1 or

DNMT3ab causes a dramatic elongation of telomeres,

which is driven by increased homologous recombination

events between telomeric sister chromatids (Gonzalo et al,

2006). The mechanism of DNMT recruitment to subtelomeres

remains however unclear. Whereas DNA methylation at

pericentric repeats is reduced in the absence of Suv39h

HMTases and an interaction between HP1 and Suv39h1 had

been reported, loss of Suv39h HMTases does not affect

subtelomeric DNA methylation (Fuks et al, 2003; Lehnertz

et al, 2003; Benetti et al, 2007b). This suggests the existence

of an alternative pathway of DNMT recruitment to

subtelomeres.
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Rb family proteins regulate telomeric and
subtelomeric chromatin status

A major tumour suppressor pathway in mammals is centred

on the family of retinoblastoma (RB) proteins, consisting of

RB1, RBL1 and RBL2 (Weinberg, 1995; Lipinski and Jacks,

1999; Classon and Harlow, 2002). RB proteins are transcrip-

tional repressors that control cell cycle genes through inter-

action with E2F family of transcription factors, as well as by

direct recruitment of chromatin regulators to promoters

(Harbour and Dean, 2000a, b). In addition to their role at

specific promoters, RB family proteins also influence global

H4K20me3 and DNA methylation levels, impacting on the

epigenetic regulation of telomeres and centromeres (Gonzalo

et al, 2005). In particular, RB proteins promote the recruit-

ment of Suv4-20h HMTase and HP1 to telomeres, thereby

negatively regulating telomere length and telomere recombi-

nation (Gonzalo and Blasco, 2005). In addition, mouse Rbl2

acts as a transcriptional repressor of DNMTs, thereby influen-

cing telomere length and telomere recombination (Kimura

et al, 2003; Gonzalo and Blasco, 2005; McCabe et al, 2005;

Benetti et al, 2008a) (Figure 1). In particular, the lack of a

functional miR290 cluster targeting Rbl2 in embryonic stem

(ES) cells deficient for Dicer1 results in elevated levels of Rbl2

(Sinkkonen et al, 2008; Benetti et al, 2008a). In turn, in-

creased Rbl2 levels repress DNMT expression and result in

loss of global as well as subtelomeric DNA methylation,

which drives increased telomeric recombination and aberrant

telomere elongation (Benetti et al, 2008a). Indeed, Dicer1-null

ES cells phenocopy telomere defects of DNMT-deficient cells,

suggesting that Rbl2 and the miR290 cluster are major

determinants controlling DNA methylation in ES cells

(Gonzalo et al, 2006; Benetti et al, 2008a) (Figure 1).

Remarkably, Dicer deficiency does not result in a loss

of heterochromatic histone marks at telomeres, excluding

a direct involvement of Dicer1-dependent small RNAs in

the assembly of telomeric heterochromatin (Benetti et al,

2008a). The antagonistic role of Rbl2 on DNA methylation

is at first glance in contradiction to the reduced DNA

methylation levels observed in primary mouse embryonic

Figure 1 Assembly of mammalian telomeric and subtelomeric heterochromatin. Scheme showing a model for the assembly of telomeric and
subtelomeric heterochromatin. Suv39 h1 and h2 HMTases tri-methylate H3K9, which in turn generates a high-affinity site for HP1. HP1 can
recruit Suv4-20 h1 and h2 HMTases to telomeres and subtelomeres, thereby tri-methylating H4K20 at these regions. The Rb family proteins
(Rb1, Rbl1, and Rbl2) can directly interact with Suv420 HMTases and with HP1, thus influencing the levels of H4K20m3. Dicer is essential for
the maturation of miRNAs including the miR290 cluster. miR290 cluster expression in ES cells results in post-transcriptional repression of Rbl2
(p130), a transcriptional repressor of mammalian DNA methyltransferases (DNMTs). Low Rbl2 levels ensure the establishment of global and
subtelomeric DNA methylation patterns in ES cells. A lack of mature miRNA290 cluster results in repression of DNMTs by uncontrolled
expression of Rbl2. Consequently, a global decrease in DNA methylation unleashes recombination leading to telomere elongation and
increased chromatin compaction at telomeric and subtelomeric repeats mediated by Suv39h and Suv4-20h HMTases. Loss of heterochromatin
in cells lacking Dicer, DNMTs, Suv39h, or Suv4-20h HMTases results in increased telomeric recombination and telomere elongation.
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fibroblasts (MEFs) lacking Rb, Rbl1 and Rbl2 proteins;

however, this discrepancy can be explained by the fact that

Rbl2 is not expressed in MEFs (Gonzalo and Blasco, 2005).

In summary, loss of RB proteins results in improved

telomere maintenance due to a more relaxed telomeric

chromatin structure. Given the central role of RB proteins

as tumour suppressors, it will be very interesting to

investigate the contribution of improved telomere

maintenance to proliferative capacity of tumour cells lacking

RB proteins.

Telomere repeat-associated transcripts
(TERRA/TelRNAs)

On account of their compact heterochromatic structure, telo-

meres were not regarded to be permissive for transcription.

However, other heterochromatic domains in the genome,

such as mouse major satellite or human heterochromatic

satellite III repeats, were already shown to be efficiently

transcribed by RNA polymerase II, giving rise to non-coding

RNAs (Lehnertz et al, 2003; Jolly et al, 2004; Rizzi et al,

2004). Recently, two independent reports showed that the

telomeric C-rich strand is frequently transcribed by RNA

polymerase II, giving rise to UUAGGG-repeat containing

non-coding RNAs (TERRA or TelRNA) (Azzalin et al, 2007;

Schoeftner and Blasco, 2008). Although formal evidence is

still missing, the detection of subtelomeric sequences in

TelRNA/TERRA molecules strongly suggests the existence

of transcriptional control elements at subtelomeres (Azzalin

et al, 2007). Up to date, transcripts containing telomeric

repeats have been described in Mus musculus, Homo sapiens,

S. cerevisiae and Danio rerio (Azzalin et al, 2007; Luke et al,

2008; Schoeftner and Blasco, 2008). The fact that retrotran-

sposition events at HTT arrays of D. melanogaster also

depend on transcription suggests that transcription is a uni-

versal process occurring at the ends of linear, eukaryotic

chromosomes. Importantly, telomeric RNAs can be detected

at telomeres by RNA-FISH techniques, suggesting that

TERRA/TelRNAs can associate with telomeric chromatin

in cis, a feature reported earlier for the non-coding XIST

RNA that controls mammalian dosage compensation

(Azzalin et al, 2007; Payer and Lee, 2008; Schoeftner and

Blasco, 2008). Interestingly, in a panel of female mouse cell

lines, TERRA/TelRNA form accumulations (Tacs) in the im-

mediate vicinity of the territory of inactive X chromosome

(Xi), suggesting an involvement of TERRA/TelRNA in the

biology of X inactivation (Schoeftner and Blasco, 2008).

TERRA/TelRNA molecules range between ca 100 bp and

49 kb in length and were reported to form intermolecular

G-quadruplex structure with single-stranded telomeric DNA,

but can also fold into a compact repeated structure containing

G-quartets (Azzalin et al, 2007; Schoeftner and Blasco, 2008;

Xu et al, 2008; Martadinata and Phan, 2009; Randall and

Griffith, 2009). Several lines of evidence exist implicating

TelRNA/TERRA in the negative control of telomere length

(Schoeftner and Blasco, 2008). Increased TelRNA/TERRA

levels by interfering with TelRNA/TERRA decay, such as the

impairment of non-sense-mediated RNA decay in human

cells or by deletion of the 50–30exonuclease Rat1p in S.

cerevisiae, are associated with a loss of telomere reserve

(Azzalin et al, 2007; Luke et al, 2008). Current models

propose a role for TelRNA/TERRA in controlling telomerase

activity. In yeast, the formation of a DNA/RNA hybrid

between TelRNA/TERRA and telomeres is thought to inhibit

elongation by telomerase, whereas in mammals, TelRNA/

TERRA was shown to efficiently inhibit telomerase activity in

vitro, presumably by base pairing with the template region of

the RNA component of telomerase (TERC) (Luke et al, 2008;

Schoeftner and Blasco, 2008) (Figure 2). These working

models are supported by expression data showing low

TelRNA/TERRA levels during mouse embryogenesis and in

cancer cells—two biological conditions that are characterized

by rapid cell proliferation and dependence on high telomer-

ase activity (Schoeftner and Blasco, 2008). On the other

hand, accumulation of TelRNA/TERRA in adult tissues

could be coupled to telomerase inhibition and ageing

(Schoeftner and Blasco, 2008). Importantly, in immortal cell

lines, as well as during nuclear reprogramming, TelRNA/

TERRA levels correlate with the average telomere reserve

(Schoeftner and Blasco, 2008; Marion et al, 2009). Together

with the fact that TelRNA/TERRA can be localized to telo-

meric DNA repeats this suggests that TelRNA/TERRA could

locally control telomerase activity in cis, a mechanism that

could explain the preferential elongation of the shortest

telomere in yeast and mammals on the molecular level

(Marcand et al, 1999; Hemann et al, 2001; Samper et al,

2001; Teixeira et al, 2004; Schoeftner and Blasco, 2008). In

addition, this mechanism would also preclude excessive

telomere elongation by telomerase (i.e. telomere elongation

during nuclear reprogramming, Marion et al, 2009), a condi-

tion that was found to be associated with impaired female

fertility and fecundity in D. melanogaster (Walter et al, 2007).

However, until formal evidence for a direct role of TERRA in

telomerase inhibition has been presented, a speculative role

of telomerase recruitment by TelRNA/TERRA should be

considered (Figure 2).

Interestingly, long non-coding RNAs transcribed by RNA

Pol II have been shown earlier to be involved in the epige-

netic regulation of the genome (Bernstein and Allis, 2005). In

particular, XIST and rox RNAs are chromatin-associated non-

coding RNAs that regulate mammalian and Drosophila mel-

anogaster dosage compensation, respectively (Deng and

Meller, 2006; Payer and Lee, 2008). In addition, other non-

coding RNAs such as the Air or Kcnq1ot1 RNAs are involved

in genomic imprinting (Pauler et al, 2007; Pandey et al, 2008).

Functional evidence is still missing, but it is expected that

non-coding TelRNA/TERRA may also influence the chroma-

tin status at subtelomeres and telomeres. Although small

Dicer1-dependent double-stranded small RNAs are not in-

volved in the generation of telomeric heterochromatin

(Benetti et al, 2008a), a possible contribution of small sin-

gle-stranded TelRNA/TERRA molecules, processed from a

larger RNA precursor, has to be considered. In this respect,

it will be particularly interesting to explore a possible con-

nection between TelRNA/TERRA and the mammalian Piwi

proteins, which generate small single-stranded RNAs from

transcripts derived from repetitive elements (Aravin et al,

2007; Carmell et al, 2007; Kuramochi-Miyagawa et al, 2008).

Epigenetic regulation of telomere length
and telomere recombination

Heterochromatic marks at telomeres have been proposed to

act as negative regulators of telomere elongation (Blasco,
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2007). This is exemplified by a substantial elongation of

telomeres upon the loss of H3K9me3, HP1, and H4K20me3

marks in cells deficient for the Suv39h or Suv4-20h HMTases

(Garcia-Cao et al, 2004; Benetti et al, 2007b) (Figure 1). In

both settings, subtelomeric DNA methylation remains unaf-

fected, suggesting that DNMTs can be recruited to subtelo-

meric regions independently of the Su(var) HMTases. Loss of

subtelomeric DNA methylation in DNMT1, DNMT3ab or

Dicer deficient ES cells also results in a dramatic telomere

elongation, which is accompanied by increased abundance of

histone heterochromatic marks at telomeric repeats (Gonzalo

et al, 2006; Benetti et al, 2008a) (Figure 1). In both instances,

telomere recombination frequencies are increased, suggesting

that repressive marks at telomeric and subtelomeric chroma-

tin are essential to repress recombination events (Figure 1)

(Gonzalo et al, 2006; Benetti et al, 2007a, b). Consistent with

this notion, increased numbers of APB bodies (ALT-asso-

ciated PML bodies) have been detected in all models for

impaired telomeric chromatin (Garcia-Cao et al, 2004;

Gonzalo et al, 2006; Benetti et al, 2007a, b, 2008a). Of

interest, loss of heterochromatic marks at telomeres does

not seem to affect TRF1 and TRF2 binding, indicating that

shelterin recruitment is uncoupled from telomeric chromatin

regulation (Garcia-Cao et al, 2004; Gonzalo et al, 2006;

Benetti et al, 2007a, b, 2008a). However, up to date it cannot

be excluded that an altered function of shelterin components

contributes to ALT.

TPE experiments suggest a model in which increasing

telomere-length augments silencing and thus chromatin

compaction (Baur et al, 2001; Koering et al, 2002; Tham

and Zakian, 2002). In agreement with this model, progressive

telomere shortening in telomerase-deficient MEFs was asso-

ciated with a continuous loss of H3K9me3, H4K20me3, and

HP1 heterochromatic marks at telomeres and subtelomeres,

which was accompanied by increased histone H3 and H4

acetylation at these regions (Benetti et al, 2007a). Moreover,

subtelomeric DNA methylation was significantly reduced

upon telomere shortening (Benetti et al, 2007a). Similarly,

telomere shortening in mice over-expressing negative regu-

lators of telomere length, such as TRF2 transgenic mice, also

results in the loss of telomeric and subtelomeric heterochro-

matic features and altered nucleosome spacing (Benetti et al,

2008b). On the other hand, aberrant telomere elongation in

the context of DNMTor Dicer1 deficiencies leads to increased

density of heterochromatic marks at telomeres (Gonzalo et al,

2006; Benetti et al, 2007a, 2008a). These findings support a

model in which the number of TTAGGG repeats at telomeres

directs the epigenetic status of heterochromatin in cis and

exerts a trans-acting effect on chromatin structure at sub-

telomeric regions. Telomere shortening, as observed during

organismal ageing, causes a switch from a repressive to a

more open telomeric chromatin status and favour telomere

elongation by telomerase or by unleashing telomere recom-

bination (Benetti et al, 2007a) (Figure 1). In this regard,

recombination-based ALT pathways are activated in telomer-

ase-deficient mice (Blasco et al, 1997; Hande et al, 1999;

Rudolph et al, 1999; Herrera et al, 2000; Niida et al, 2000;

Chang et al, 2003). More recently, an impact of telomere

chromatin on telomerase-dependent telomere elongation has

been also shown in the context of nuclear reprogramming

(see below).

Telomeric chromatin during differentiation
and reprogramming

Telomere length is a major regulator of telomeric chromatin

status in a given cell type and is assumed to change over the

lifetime of organisms due to progressive loss of telomere

reserve (Benetti et al, 2007a). In mouse embryos, telomere

length is reset to a maximum length until the blastocyst stage

in a telomerase-independent manner (Liu et al, 2007). In

particular, increased recombination events at telomeres of

mouse zygotes and two-cell embryos suggest that ALT is the

driving force for the resetting of telomere length at early

cleavage embryos (Schaetzlein et al, 2004; Liu et al, 2007).

These data suggest that (sub-)telomeres are organized into a

relatively open chromatin structure that favours telomeric

recombination until the blastocyst stage. Resetting of telo-

mere length can be recapitulated by nuclear cloning using

terminally differentiated cells. Animals derived from differ-

Figure 2 TERRA/TelRNAs associate to telomeric chromatin and may be involved in regulation of telomere length. Model for a role of telomeric
RNAs in the regulation of telomere length. TERRA/TelRNA acts as a potent inhibitor of telomerase activity in vitro, possibly by formation of
RNA:RNA hybrids with the template region of the telomerase RNA component.
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entiated cells with short telomeres were shown to display

normal telomere length even after several cycles of nuclear

transfer (Lanza et al, 2000; Wakayama et al, 2000). More

recently, nuclear reprogramming has been achieved in vitro.

Retroviral transduction of pluripotency factors into primary

MEF, gives rise to induced pluripotent stem cells (iPSC),

which are functional equivalents of mouse ES cells

(Takahashi and Yamanaka, 2006; Maherali et al, 2007;

Takahashi et al, 2007; Nakagawa et al, 2008; Stadtfeld et al,

2008; Wernig et al, 2008). This reprogramming event is

accompanied by a dramatic telomerase-dependent telomere

elongation that continues post-reprogramming until reaching

the length of ES cell telomeres (Marion et al, 2009). During

this process, high densities of H3K9m3 and H4K20me3 at

telomeres of primary MEF are converted into a more open—

ES cell-like—chromatin structure at iPSC telomeres (Marion

et al, 2009). In parallel with telomere elongation, TERRA

levels are efficiently upregulated in iPSC compared with MEF,

a phenomenon that may serve to negatively regulate telomer-

ase activity once iPSC reach the ES cell-like telomere length

(Marion et al, 2009) (Figure 3). The reprogramming of

telomeres during iPSC generation provides formal evidence

that telomeric chromatin structure is defined by cell-type-

specific epigenetic programmes that can be reversed by

reprogramming. In line with the need for sufficient telomere

reserve for stem cell functionality, reprogramming efficacy of

telomerase-deficient MEF is dramatically reduced due to the

appearance increased chromosome end-to-end fusions

(Allsopp et al, 2003; Flores et al, 2005, 2008; Marion et al,

2009). Together, this indicates a complex regulation of telo-

meric heterochromatin during development and cellular dif-

ferentiation, which is expected to impact on human disease.

Implications of telomere chromatin
regulation for human disease

Telomere maintenance is essential for tumour cells to escape

cell arrest/senescence and apoptosis. Tumour formation

often occurs in the context of altered DNA methylation, loss

of H4K20me3, and altered expression of Suv4-20h and

Suv39h HMTases (Fraga et al, 2005; Gonzalo and Blasco,

2005; Pogribny et al, 2006; Ting et al, 2006; Tryndyak et al,

2006). Furthermore, loss of H3K9me2 and H3K9me3 in

Suv39h HMTase double null-mice results in an increased

incidence of B cell lymphomas (Peters et al, 2001). Along

this line, it has been recently shown that the methylation

status of subtelomeric DNA repeats negatively correlates with

telomere length and telomere recombination in a large panel

of human cancer cell lines (Vera et al, 2008). This suggests

that telomeres suffer epigenetic alterations during tumouri-

genesis, which in turn are important drivers of telomere

length changes in cancer cells. These epigenetic alterations

are also expected to impact on the telomeric chromatin

structure, improving telomere maintenance by ALTor provid-

ing improved access for telomerase to the G-strand overhang

(Blasco, 2007). It is not known, however, whether increasing

telomere compaction can affect the proliferative potential of

cancer cells and impact on telomere homeostasis during

organismal ageing.

Figure 3 Reprogramming of telomeres upon induction of plutipotency in differentiated cells. Telomeres in primary MEFs are shorter than in ES
cells and are organized into a highly compact chromatin structure with low TelRNA/TERRA expression. Induction of pluripotency by retroviral
transduction of Oct4, Sox2, Kfl4, (c-myc), results in nuclear reprogramming and the generation of pluripotent iPS cells, which are functionally
equivalent to ES cells. Reprogramming results in a dramatic upregulation of telomerase activity concomitant with a reduction of H3K9me3,
H4K20me3, HP1, and DNA methylation at telomeres and subtelomeres as well as an increase in TelRNA/TERRA expression. Telomerase
efficiently elongates telomeres until the natural limit of telomere length of pluripotent mouse ES cells has been reached.
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Some severe premature ageing syndromes are caused by

mutations in telomerase components giving rise to human

syndromes such as Aplastic anaemia (TERC, TERT)

(Yamaguchi et al, 2005), Dyskeratosis congenita (DKC1,

TERC) and idiopatic pulmonary fibrosis (Tsakiri et al,

2007), or by mutations in various DNA repair genes such as

Ataxia telangiectasia (ATM), Werner (WRN) and Bloom

syndromes (BLM), Fanconi anaemia (Fanc genes), and

Nijmegen breakage syndrome (NBN) (reviewed in Blasco,

2005). These patients display a substantially increased risk of

developing disease states characterized by a premature loss

of tissue renewal; however, the possible contribution of

epigenetic defects at telomeres is still unclear (Mason et al,

2005). Similarly, accelerated telomere shortening can also

occur due to environmental influences. In this regard, human

population studies recently linked environmental influences

(smoking, obesity, or stress) to an accelerated rate of telo-

mere shortening (Cawthon et al, 2003; Epel et al, 2004; Valdes

et al, 2005). Given the important role of epigenetic regulators

during organismal ageing, it is tempting to speculate that

these factors could also impact on chromatin structure

leading to telomere-length abnormalities and disease

(Oberdoerffer et al, 2008; Dang et al, 2009).

The recent discovery of TelRNA/TERRA allows making a

new link between disease and telomeres. Increased TelRNA/

TERRA transcription is linked to telomere shortening in

humans and yeast. The fact that TelRNA/TERRA can antag-

onize telomere maintenance by telomerase, and the presence

of decreased TERRA levels in human cancer samples,

could point towards a relevant role of TelRNA/TERRA

in limiting telomerase-dependent telomere elongation in

cancer cells (Schoeftner and Blasco, 2008). This pinpoints

TelRNA/TERRA as a candidate for cancer therapies based on

the inhibition of telomerase (Harley, 2008). Another interest-

ing line of evidence for a role of TelRNA/TERRA in disease

comes from patients suffering from autosomal-recessive

ICF (immunodeficiency, centromeric region instability,

facial anomalies) syndrome. These patients display subtelo-

meric DNA methylation defects and abnormally short and

or undetectable telomeres on some chromosome arms.

Increased TelRNA/TERRA transcription in these patients

points towards a role of telomeric transcripts in ICF

(Yehezkel et al, 2008).

We are just beginning to understand the complex regula-

tion of telomeric chromatin and the regulation of telomeric

transcripts. The detailed investigation of function of RNAs

derived from telomeres and the epigenetic control of telo-

meres will foster our understanding of general telomere

regulation. This line of research is also expected to provide

important insight into the roles of telomeres during develop-

ment, ageing, and a panel of important telomere associated

human diseases.
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