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Abstract
In the past decade, tools derived from DNA transposons have made major contributions to vertebrate genetic
studies from gene delivery to gene discovery. Multiple, highly complementary systems have been developed, and
many more are in the pipeline. Judging which DNA transposon element will work the best in diverse uses from
zebrafish genetic manipulation to human gene therapy is currently a complex task.We have summarized the major
transposon vector systems active in vertebrates, comparing and contrasting known critical biochemical and in vivo
properties, for future tool design and new genetic applications.
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INTRODUCTION
DNA transposons are mobile genetic elements that

move or transpose using a ‘cut and paste’ mechanism.

Use of transposons in vertebrates was effectively

launched with the high profile publication of the

Sleeping Beauty (SB) transposon system [1]. In this

study, a molecularly reconstructed system was

developed, with the transposase catalyst provided in
trans with the key DNA cargo tagged by flanking

transposon end sequences. Based in part on the rich

array of prior work with transposon elements from

invertebrates and plants, this paradigm is still the

primary transposon approach deployed today.

In the past decade, DNA transposons from many

different gene families have now been shown to

work well in diverse species. This review focuses on

activities in vertebrate organisms or tissues, as such

studies will benefit development and application of

DNA transposon tools in gene discovery and gene

delivery. With advantages of easy production,

simpler handling and without pathogenicity, it is

worthwhile to generate and optimize non-viral

transposon vectors over the current preferentially

used viral vectors [2]. As the biochemical properties

of elements within a family can be very similar, we

have organized current tools accordingly, with each

element (Table 1) and transposon family (Table 2)

summarized and compared.

Genetic applications can differentially leverage

biochemical diversity in these transposon systems.

‘Transposition efficiency’ has been a limitation for

DNA transposon elements compared to highly active

viral methods. To generate transposon systems with

improved activity is a constant effort in this field.

‘Integration site preference’ is an important con-

sideration, as gene discovery applications can be

enhanced by intragenic insertional preference,

whereas such preference would be a perceived

weakness for gene therapy uses. The DNA ‘foot-

print’ left behind after transposon integration and

remobilization differentially impacts the use of these

elements. For gene discovery work, a small DNA tag

can be valuable to distinguish an engineered

chromosome from an otherwise wild-type allele in

that study. However, gene therapy applications

would prefer as little disruption in the genome

should an element hop more than once before

landing in the final locus. High ‘cargo capacity’ is

generally preferred, and transposon systems show

robust differences in this key area. ‘Host origin’ is

also an important constraint, as transposon vectors are

normally used in heterologous organisms to avoid
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mobilizing related endogenous transposon

sequences. With 10 transposons from four different

superfamilies, genetic researchers have a rich array of

diverse options at their disposal for vertebrate

applications.

Tc1/Mariner FAMILYMEMBERS
The Tc1/mariner superfamily represents the most

widespread DNA transposon family in nature,

members having been described for all kingdoms of

life [3]. Canonical representatives of this family were

isolated from nematodes (Tc1 [4]) and arthropods

(mariner [5]). Since that time, numerous members of

this family have been isolated, some having been

harnessed for gene transfer in numerous species.

However, only a selected few are able to efficiently

transfer genes in vertebrate cells or embryos (see

Minos [6] and Himar [7] subsequently), leading to the

search for related family members in vertebrate

genomes. Despite their being widespread, often at

thousands of copies per genome, nearly all of the

elements that have been characterized and recovered

have been ‘evolutionarily inactivated’ [5]. Phylogen-

etically informed reconstruction of an inactive

piscine element resulted in the isolation of the first

active vertebrate Tc1/mariner element, SB [1]. From

that time, multiple members of the Tc1/mariner family

from vertebrates have been reconstructed using simi-

lar approaches, including Frog Prince [8] and Hsmar1

Table 1: Current DNA transposons for vertebrate gene transfer applications

Superfamilya Species
of originb

Vertebrate
transpositionc

Insertion site
preferenced

Excision footprinte

Tc1/Mariner
SB salmonidf Zebrafish, Xenopus, mouse germ-

line, embryonic stem cell, liver
and lung gene therapy and human
cell culture

TA Canonical: TACAGTA;TACTGTA
Non-canonical, with deletions

FP R. pipiensf Human, hamster, Xenopus, fathead
minnow and zebrafish cell lines

TA Imprecise excision, generallyþ5
TACA/TGTA

Hsmar1 Homo sapiensf HeLa and zebrafishg TA Imprecise excision, generallyþ5
TATA/TATA

Minos D. hydei Human cell lines and mouse lympha-
tic tissues

TA Drosophila: precise excison or
canonical footprints (TcgagT
or ActcgT); more heteroge-
neous in mammalians

Himar1 H. irritans Human cell line TA Not determined
Passport P. platessa Human (HeLa, HT1080), monkey

(vero), hamster (CHO), turkey
(TT), chicken (DF1) and pig
(PEGE) cell lines

TA Not determined

hAT
Tol2 O. latipe Zebrafish, Xenopus, chicken, mouse

and human cell lines
The 8bp insertion site

duplication
Imprecise deletion of 8bp target
site duplication

Tol1 O. latipe Zebrafish, mouse cell line, human
cell line and C. elegans

The 8bp insertion site
duplication

Imprecise

Ac/Ds Z. mays Zebrafish and human cell line The 8bp insertion site
duplication

Imprecise

PIF/Harbinger
Harbinger3-DR D. reriof HeLa and zebrafishg CWG No footprint

piggyBac
piggyBac Trichoplusia ni Mouse germ line, human cell lines

and pig
TTAA No footprint

aElements are organizedby genetic relationshipwithin known transposon families.
bOrganism of origin for the specified element.The salmonid origin for SB reflects its reconstructed origin using genomic DNA from multiple fish
species.
cLists some of themost notable experimental systems a particular element has been shown to exhibit transposition activity.
dObservations of the transposition insertion site sequence preference in native species and vertebrate organisms are noted.
eAfter remobilization from the donor site andrepair of the double-strandbreak, traces ofDNA sequences that are different from thewild-type loci
could be left behind, termed ‘excision footprint’. Excision footprints from each transposon are listedwhere known.
fReconstructed/reanimated transposon.
gExcision data only were documented.
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[9] transposons. In addition, intact endogenous ele-

ments have been discovered by comparative genome

sequence analysis, one of which is widely represented

in pleuronectid fish and was recently demonstrated as

functionally competent for gene transfer in mamma-

lian cells [10].

Tc1/mariner elements are �1300–2400 bp in

length and contain a single gene encoding a trans-

posase enzyme that is flanked by terminal inverted

repeats (IRs) [3]. Shared biochemical features of the

Tc1/mariner family include a transposase that contains a

‘DDE’ motif [11]. This motif (two aspartic acid

residues and a glutamic acid residue, the latter two

separated by 35 residues) was first identified in ret-

roviral integrases and bacterial IS (insertion sequence)

transposases [12, 13]. This acidic amino acid triad has

been inferred to be critical to the catalytic active site

and involved in contacting divalent ions [14]. In the

Tc1/mariner family, the second aspartic acid residue

and the glutamic acid residue are separated by only

34 residues, and an aspartic acid residue is found

at the position of the glutamic acid residue in the

mariner-like elements.

These transposons are bracketed by inverted

terminal repeats that bind the transposase. The

length of these repeats vary; the simplest being

<100 bp with a single transposase binding site per

repeat [7, 15]. Tc3 elements have IRs of >400 bp in

length, each of which contains two binding sites,

although the internal pair is not required for

transposition [16]. A third group referred to as

‘IR–DR’ have a pair of binding sites containing short

15–20 bp direct repeats (DRs located at the ends of

IRs that are 200–250 bp long, including Minos and

S elements in flies [6, 17], Quetzal elements in

mosquitos [18], Txr elements in frogs [19] and at

least four Tc1-like transposon subfamilies in fish

[10, 20]. Tc1/mariner elements invariably integrate

into TA dinucleotides in a manner that has been

generally described as random, although local

sequence context and deformation apparently plays

some role in target site selection [21, 22], and at least

one family member displays some proclivity for

landing in genes [10].

There is conflicting data regarding the sensitivity

of transposition for various Tc1/mariner family mem-

bers to cargo size. In vitro (cell free) and in vivo
transposition of Tc1 was decreased by 10- to

15-fold by simply increasing cargo size from �2 kb

to �8 kb [16]. This limitation in cargo has also been

observed for Himar1 [23] and for the SB transposon.Ta
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Transfection of cultured mouse and human cells

with SB transposons with different sized cargos has

revealed a dramatic inverse relationship between

transposon size and transposition [24, 25], although

total plasmid size, not cargo size, has been hypothe-

sized as responsible [26]. Interpretation of these

experiments is in part confounded by size-

dependent, differential transfection and resulting

gene expression as described by Yin W et al., 2005.

In addition, transposition from genome-resident SB
transposons [27, 28], or from DNA injected into

the mouse pronucleus (S. Fahrenkrug, submitted

for publication) does not seem to be as constrained

by cargo size. Although the reason for these

differences is unknown, it may be that nuclear

localization of transposon–transposase complexes is

size limiting, a barrier not experienced by transpo-

sons already resident in, or physically introduced to

the nucleus.

Where it has been examined, members of this

superfamily have commonly been found to be

sensitive to a phenomenon referred to as ‘over-

production-’ or ‘overexpression inhibition’, first

described for the mariner element [29], wherein

excessive transposase expression was found to inhibit

transpositional transgenesis. The same phenomenon

has been described for the Himar1 [23], SB [10] and

Passport [10] transposons, although Izsvak et al. [26]

found the frequency of SB transposition to be directly

proportional to the level of transposase expression.

The mechanism of ‘overproduction inhibition’ is still

poorly understood. One working model suggests that

an optimal ratio of transposase molecule to its binding

terminals in an effective complex falls into a small

concentration window and excess transposase will

quench the formation of the complex [30]. In

numerous studies, the optimal concentration and

molar ratio of transposon and transposase has been

found to vary between cell types, suggesting either

differing abundance of co-factors, or a difference in

the expression or stability, of the transposase. Thus,

application of these transposons as gene delivery

vehicles requires a careful assessment of the condi-

tions best suited for the particular application and

cell type.

Sleeping Beauty
SB was the first widely deployed transposon for

vertebrate applications and was molecularly recon-

structed from ancient inactivated mariner-like ele-

ments [1]. SB has become the de facto reference

system and has been used for diverse applications,

including: cellular transgenesis (piscine, avian and

mammalian), animal transgenesis (fish, frogs, mice,

rats and pigs) and gene therapy, with over 175

publications describing its use at the time of this

publication.

Some milestones of SB applications are high-

lighted here. SB was the first DNA transposon with

high efficiency gene transfer into human cells [1], the

first non-viral integrating gene therapy vector [31],

used for the first non-viral somatic mutagenesis

system [32], and deployed for the first transposon-

based transgenic mammal [33]. SB was the first

effective transposon-based system for trangenic fish

[34] and insertional mutants [35] in zebrafish. Finally,

SB was the basic system for the initial attempts

at generating a chimeric transposase for targeting

transposon integration [36].

Components of the SB system have undergone

extensive engineering with the resulting elements

showing increased activity from improvements to

the transposon [37–39] and to the transposase

([25, 39–41]). Most assays for these hyperactive

elements are focused on measurements using a HeLa

tissue culture gene transfer method [1]. SB activity,

like other Tc1/mariner family members, is subject to

overexpression inhibition; as a result, the selection

of transposase dose for maximal gene transfer is a

critical consideration in using SB for best gene

transfer results.

Methylation studies have demonstrated that

chemical modification of SB transposons by cyto-

sine-phosphodiester-guanidine (CpG) hypermethy-

lation can significantly enhance their transposition

rates [42]. The mechanism for this enhancement of

transposition is currently unknown. Identifying the

experimental scenarios where methylation can make

a significant improvement in gene transfer by SB is

an ongoing research area for this element and will

potentially have implications for work in other

transposons.

In a series of yet-unexplained observations in

Xenopus, two research groups have noted a positive

gene transfer rate for SB that did not appear to be

due to standard transposition reactions, instead

displaying non-canonical footprints [43, 44]. Given

the abundance of related Tc1/mariner transposons in

frog genomes, this may reflect interference by

endogenous transposable elements, or this may be

due to some other aspect of SB biology that is

limited in frogs.

Transposon hopping in vertebrates 447



Frog Prince
The FrogPrince (FP) transposon was ‘kissed’ to life by

Csaba Miskey in the laboratories of Zsuzsanna Izsvak

and Zoltan Ivics [8] using the approach deployed for

SB. For generating the FP transposon system, 10

inactive putative elements with complete open

reading frames were identified from the frog Rana
pipiens and used to produce a consensus transposase

sequence. A single element with two amino acid

substitutions different than the consensus (mFP) was

used to produce a consensus transposase (FP).

Interestingly, the mFP version of the transposase

was inactive until correction to the consensus in FP
[8]. FP is closely related to Txr elements found

within Xenopus but differs significantly from other

members of the Tc1 family, notablySB. FP is capable

of mobilizing Txr elements albeit at a reduced rate to

FP transposons. In a limited analysis, the FP IRs

allowed splicing to internal splice-acceptors suggest-

ing the 214 bp IRs do not significantly interfere with

splicing, making FP a potential transposon for gene

discovery using gene-trapping technologies [8].

Like SB, FP appears to be active in a wide range

of vertebrate cells, including HeLa, Cho-KI (ham-

ster), A6 (Xenopus laevis), FHM (fat-head minnow)

and PAC2 (zebrafish). The level of transposition in

these cell lines was comparable or slightly improved

relative to transposition of the original SB system.

Hsmar1
Miskey et al. [9] reactivated the human mariner 1

transposon (Hsmar1) from about 200 copies of full-

length transposons that contained inactivating muta-

tions. The consensus Hsmar1 transposase sequence

was not capable of promoting transposition in

human cells. Therefore, 51 sequences from the

human genome as well as mariner sequences from

the cecropia transposase subfamily were aligned to

determine the likely ancestral protein sequence for

site-specific mutagenesis. An additional four amino

acid substitutions were needed to make the Hsmar1

reconstructed ancestral protein (HsMar1-Ra).
HsMar1-Ra was capable of excising transposons in

HeLa cells and zebrafish embryos. Integration was

shown by colony formation as well as examination of

the integration sites in HeLa cells. Hsmar1 integrates

into TA dinucleotides and appears to distribute

randomly throughout the genome. The levels of

excision or transposition of Hsmar1-Ra was not

directly compared to any other transposon during

this study, although there was an �20-fold increase

in stable colony formation in HeLa cells.

Hsmar1-Ra is unlikely to be used for human

applications like gene therapy because of its ability to

mobilize both non-autonomous full HsMar1 ele-

ments as well as the more prevalent (approximately

2500) Hsmar1-related mini-inverted repeat trans-

posable elements (MITEs) found within the human

genome [9]. How valuable HsMar1 will be in non-

human work is still unclear. It seems likely that

Hsmar1 will function in other systems including the

zebrafish (where Miskey et al. demonstrated the

ability of Hsmar1-Ra to cut or excise Hsmar1 elements

after injection into zebrafish embryos), but whether

the transposition achieved is at a high enough rate for

practical use remains to be tested. One advantage of

Hsmar1-Ra is the short IRs of this class of mariner-type

elements, as their relatively simple sequence require-

ments may facilitate the production of transposon

vectors through the addition of IR sequences to a

particular genetic cargo via a PCR reaction.

Minos
Minos, named after the legendary Greek King, is a

DNA transposon belonging to the Tc1/mariner super-

family [6]. Minos elements isolated from Drosophila
hydei show high sequence homogeneity with

characteristic features: about 1.8 kb in length; perfect

inverted terminal repeats (IRs) of 254 bp; encode a

putative single transposase gene with two exons and

a 60 bp intron in between, which has been shown to

be spliced out in the D. melanogaster germline.

Southern blot analyses of various D. hydei strains

strongly suggested that Minos transposons are active

in the germline [45] and that Minos-like elements are

widely spread among Drosophila species [46].

In Drosophila, the P-element is the most widely

used transposon and has generated thousands of

valuable insertion lines for various research purposes.

However, P-element activity is very host-restricted

and appears to be inactive in non-Drosophilids [47].

In contrast, Minos elements have demonstrated a

much wider host spectrum, including Drosophila and

non-Drosophilid insects (for review, see [48]).

In human HeLa cells, researchers were able to

achieve high frequency of Minos transposition in

stably transformed cells. They proposed that Minos
can be used to potentially tag all genes of the

human genome [49]. Minos elements are active in

mouse lymphatic tissues and embryonic fibroblast

cell lines [50]. Minos transposase was effective in
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mediating marker gene transposition in the mouse

germline [44].

Minos does not prefer any sequence beyond the

di-nucleotide TA and tends to insert more frequently

into introns than exons in both fly and mouse [49].

In the fruit fly, the excision of Minos could leave

precise conversion at the insertion sites or 6 bp

characteristic footprints [48]. However, in mamma-

lian systems, the footprints appear more complex,

potentially due to differences in the host chromatid-

repair machinery in these organisms [49, 51].

Himar1
Himar1 is a natural element of the Tc1/mariner
superfamily from the horn fly, Haematobia irritans.
This element has been shown to be active in a

number of animals, including mammals [52, 53].

Hyperactive variants have been developed as well

[54]. How this element quantitatively compares to

other members of this family in vertebrate applica-

tions is still largely unknown.

Passport
The Passport transposon was initially identified within

the plaice (Pleuronectesplatessa) genome by Leaver etal.
in 2001 [55]. In that study, a complete transposase

open reading frame was described from within the

plaice genome with a high degree of similarity

among isolated transposon sequences. This poten-

tially active transposon was dubbed PPTN.

Recently, Clark et al. [56, 10] dissected

the transposase and transposon IRs of the PPTN

transposon and showed that it was a functional

transposase active with native IR and transposase

sequences in human cells. The transposon system was

renamed Passport referring to its ability to give the

right or privilege of passage, entry or acceptance—in

this case into the genome. Passport is a Tc1-type

element, but it differs significantly from both SB and

FP in IR and transposase sequence. Like other Tc1-
type elements, Passport has IRs of around 200 bp and

exhibits transposition into a wide variety of cell types,

including human, hamster, pig, monkey, turkey and

chicken. Passport was directly compared to SB in

human cells through a range of transposase activity.

Passport was about 40% as active as an improved SB at

their respective peaks. Passport was shown to exhibit

overexpression inhibition dynamics that were shaped

similar to SB; delivery of too little or too much

transposase results in 40% or less peak activity.

As compared to other Tc1 elements used in

vertebrates, early data suggests that target-site selec-

tion is less random with a preference for integration

into transcription units (�60%) and 6 of 27 integ-

rations into human chromosome 12 (distributed) and

0 of 27 integrations into human chromosome 1. This

is unexpected since the size of human chromosome 1

is nearly twice as long as chromosome 12. Passport
could likely function as a new transposon system for

the manipulation of vertebrate genomes.

hAT FAMILYMEMBERS
Transposition from hAT family members in maize

was the first visible mobile genetic element activity

noted in science [57]. Diverse active native elements

have been identified in vertebrates, including two

from the fish medaka (Tol1 andTol2; [58, 59]). Unlike

studies with reconstructed SB, most hAT family

work to date has been with autonomously active

elements. Native hAT transposons are about 5 kbp in

size, and common shared properties include high

cargo capacity, no obvious primary sequence inser-

tion site requirement and less influence of over-

expression inhibition compared to SB and related

Tc1/mariner elements. A common 8 bp duplication is

noted at the insertion site for each of these elements,

with no primary sequence constraint for integration.

Tol2
Most hAT transposon family work in vertebrates to

date has been with derivatives of the native element

from the medaka fish (Oryzias latipe), Tol2 [58, 60].

The native Tol2 transposon is �5 kbp in size and

encodes an hAT family transposase [61]. Minimized

Tol2 IR transposon ends sufficient for full transposi-

tion in vivo have been developed (called ‘miniTol2’;

[61–63]). Good cargo capacity has been described for

Tol2, with little or no major decrease in activity with

transposons >10 kbp compared to smaller, 2 kbp

elements [62, 63]; larger elements can be robustly

mobilized with Tol2 in zebrafish (S. Ekker, submitted

for publication). Tol2 demonstrates perhaps the least

functional constraint due to overexpression inhibi-

tion of the elements describe here, with a large range

of the transposase resulting in near peak gene transfer

activity due to transposition [62].

Tol2 is active in all vertebrates tested to date,

including robust activity in zebrafish [64], Xenopus
[65], mice and human tissue culture cells [66].

Favorable kinetics over SB makes this a current
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favorite element for the generation of transgenic

zebrafish [62], and notably a range of excellent pre-

assembled vectors for work in this model organism

(called the ‘Tol2kit’) is freely available [67, 68]. Tol2
represents the current standard for hAT transposon

family functionality and utility in vertebrates.

Tol1
Tol1 was identified as an active DNA transposon from

the medaka genome [58, 69]. The autonomous Tol1
element is �4.4 kbp, encoding a transposase gene

with three exons. The transcribed mRNA is

�2.9 kbp coding for a putative functional transposase

of 851 amino acids with sequence similarity to hAT
superfamily [70].

The activity of Tol1 transposase to deliver cargos

flanking by Tol1 IRs has been analyzed in detail.

Minimized Tol1 IRs with 157 bp from the left and

106 bp from the right termini maintain full transpo-

sition efficiency [71]. Cargo capacity was also tested,

with DNA fragments up to 22.1 kbp in size were

transposed without internal deletion or aberration

[71], consistent with previous observation that trans-

posons from hAT family have demonstrated large

cargo delivery capacity in general compared to those

from other families [62]. Tol1, like Tol2, has a wide

range of activity in a variety of host species, including

good activity in human (HeLa) and mouse cells

(NIH/3T3) [71] and Caenorhabditis elegans [59].

Excision activity of Tol1 has been reported in the

frog X.laevis [72]. Most recently,Tol1-derived vectors

have been shown to actively transpose in zebrafish

germline and pass to the next generation [73].

So far, Tol1 biochemistry parallels work with the

widely used Tol2 transposon in zebrafish. Tol1 andTol2
do not cross react to the cis-sequences of each other,

indicating Tol1 as a good candidate for developing

genetic tools in vertebrates and further mutagenesis

of insertional mutants generated by Tol2 [73].

Activator/Dissociation
Over 50 years ago, the first transposable system

Ac/Ds (Activator/Dissociation) was discovered by

Barbara McClintock from Zea mays (maize) [57].

Being one of the founding members of the hAT
superfamily, the Ac element is 4.5 kb in length and

displays all the common molecular features of this

family, including short terminal IRs (11 bp), encod-

ing a putative DDE-domain containing transposase

and causing 8 bp host duplication upon insertion

[74]. Ds elements are the natural non-autonomous

versions of Ac, containing the IRs and cis-required

sequences but lacking the ability to produce a

functional transposase [75]. Their transpositions

depend on the presence of the Ac element or Ac
transposase.

The transposition of Ac/Ds system in heterologous

plants has been demonstrated in both dicot and

monocot (for review see [76]). Later, Saccharomyces
cerevisiae became an even more distant species that

can host Ac/Ds ‘cut and paste’ activity [77]. Most

recently, the possibility of employing a plant

transposon in a vertebrate was exploited. A chimeric

Ac transposase (NLS-Tpase), composed of an animal-

origin nuclear localization signal (NLS) fused to the

N-terminal of the truncated maize Ac lacking the fist

102 amino acids (Tpase 103–807), demonstrated Ds
element transposition in zebrafish in both somatic

and germline cells [78]. This modified Ac (NLS

K5E-Tpase) effectively inserts Ds element DNA in a

human embryonic kidney cell line as well [78].

The Ac transposase behaves similarly in zebrafish

and plant species in various transposition assays

[76, 78]. However, it is unknown whether the regu-

lation of Ac observed in the plant kingdom still holds

in vertebrates, such as different dosage effects in dif-

ferent species [79, 80], methylation of transposase

binding sites [81, 82] and certain host factors effects

[83]. More careful analysis of Ac activity in more

diverse vertebrates should provide more information

on the mechanisms of transposition of the hAT family.

PIF/Harbinger FAMILY
The PIF/Harbinger transposon family includes ele-

ments from plants and animals, and the

Harbinger3_DR is a molecularly reconstructed element

of this family from the zebrafish (Danio rerio) genome

[84]. Besides containing a gene encoding transposase,

Harbinger_DR has a second gene encoding a Myb-like

protein involved in either DNA binding or protein–

protein interactions. This transposon has short 12 bp

IRs. Insertion site preference indicates a strong

requirement for CAG or CTG trinucleotides, with

an even larger, 15 bp total consensus sequence noted

[84]. This element does not appear to leave a

footprint upon excision [84].

piggyBac FAMILY
piggyBac [85] is the founding member of its class

of transposon and was first described as a DNA
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hitchhiker in an invertebrate culture system. This

element has been effectively harnessed, with mini-

mized sequences identified [86]. piggyBac is active in

many vertebrates tested to date [87–90]. Key

biochemical properties include a sequence require-

ment at integration (‘TTAA’; [85]), and an apparent

preference for integration into transcriptionally active

genomic DNA [90]. Remobilization of this element

often results in a chromosome with no residual

genetic change yielding no observable footprint [85].

A more modest overexpression inhibition profile

compared to SB has been described [89].

CONCLUSION
DNA transposons are extremely effective tools for

genetic modifications of vertebrates. With molecular

engineering skills activating evolutionarily quiescent

genes, or minimizing autonomously active elements,

we now have an array of vectors from diverse orga-

nisms showing robust activity in a variety of model

systems. The complementary biochemical properties

encoded by these vector systems open the door to

many new vertebrate gene discovery and gene

transfer applications. Table 2 has summarized the

positive and negative features of each transposon

superfamily for prospective applications.
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