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Many viruses use programmed –1 ribosomal frameshifting to
express defined ratios of structural and enzymatic proteins.
Pseudoknot structures in messenger RNAs stimulate frameshifting
in upstream slippery sequences. The detailed molecular determi-
nants of pseudoknot mechanical stability and frameshifting effi-
ciency are not well understood. Here we use single-molecule
unfolding studies by optical tweezers, and frameshifting assays to
elucidate how mechanical stability of a pseudoknot and its frame-
shifting efficiency are regulated by tertiary stem-loop interactions.
Mechanical unfolding of a model pseudoknot and mutants de-
signed to dissect specific interactions reveals that mechanical
stability depends strongly on triplex structures formed by stem-
loop interactions. Combining single-molecule and mutational stud-
ies facilitates the identification of pseudoknot folding intermedi-
ates. Average unfolding forces of the pseudoknot and mutants
ranging from 50 to 22 picoNewtons correlated with frameshifting
efficiencies ranging from 53% to 0%. Formation of major-groove
and minor-groove triplex structures enhances pseudoknot stem
stability and torsional resistance, and may thereby stimulate
frameshifting. Better understanding of the molecular determi-
nants of frameshifting efficiency may facilitate the development of
anti-virus therapeutics targeting frameshifting.

optical tweezers � RNA triplexes � single-molecule � RNA folding

Messenger RNAs (mRNAs) designate proteins by sequences
of codons consisting of 3 nucleotides each. The reading

frame is defined by a start codon (AUG) and is usually main-
tained by ribosomes (with an error rate less than 3 � 10�5) (1).
Programmed –1 ribosomal frameshifting (FS) has been found to
express defined ratios of structural and enzymatic proteins in
many viruses including HIV (2–6). Programmed FS has also
been found during expression of cellular genes (6–8). Highly
efficient FS at an mRNA slippery sequence from X XXY YYZ (0
frame) to XXX YYY Z (–1 frame) is often stimulated by a
downstream pseudoknot structure (Fig. 1A). X can be any 3
identical nucleotides, Y can be either AAA or UUU, and Z is
usually not G (6, 9–11). The slippery sequence and pseudoknot
structure are typically separated by a single-stranded linker of
5–10 nucleotides. The natural high-efficiency FS stimulatory
structure is often a hairpin (H)-type pseudoknot, which involves
base pairing between nucleotides in a hairpin loop and nucleo-
tides outside of the hairpin loop. It has been shown that tertiary
minor-groove interactions between stem 1 and loop 2 (base
triples) of pseudoknots are critical for programmed FS in certain
viruses (12–16).

All of the secondary and tertiary structures in coding regions
of mRNA have to be unfolded for translation. With the mRNA
slippery sequence at the aminoacyl (A) and peptidyl (P) sites of
the ribosome, the downstream pseudoknot structure is believed
to be in contact with the helicase domain of the ribosome and
provides mechanical resistance to ribosomal translocation (17–
23). The detailed molecular determinants of pseudoknot me-
chanical stability and FS efficiency are not well understood.

Here we used an H-type pseudoknot derived from human
telomerase RNA (�U177), which has a well-defined structure
with extensive major-groove and minor-groove stem-loop inter-
actions (24) as a model system to investigate the correlation
among structure, mechanical stability, and FS efficiency. Mu-
tants were designed to dissect the contributions of specific
interactions of the major-groove base triples on mechanical
stability and FS efficiency. Furthermore, the structural features
of the folding intermediate states were mapped by combining
single-molecule unfolding using optical tweezers and mutational
studies.

Results
Bulk FS Assay In Vitro. The high-resolution structure of
pseudoknot �U177 with unusual 3 consecutive major-groove
base triples (Fig. 1B and D) (24) allows for the elucidation of the
contributions of major-groove interactions to FS. The FS effi-
ciency ranges from 53% for �U177 to essentially 0% for mutant
CCCGU with all 5 base triples disrupted (Fig. 1C). Disruption
of either 2 base triples in the minor groove (mutant GU) or 3
base triples in the major groove (mutant CCC) results in FS
efficiency lower than 5%. Upon disruption of only 1 major-
groove base triple, mutant 101C and mutant 102C have FS
efficiencies of 11% and 33%, respectively. Upon substituting a
major-groove U�A-U with a C��G-C base triple (Fig. S1), the FS
efficiencies of mutant 101C114C175G and mutant
100C115C174G remain above 40%. Clearly, all of the major-
groove and minor-groove base triples are required for high-
efficiency (�40%) FS.

Single-Molecule Mechanical Unfolding and Folding Using Optical
Tweezers. The pseudoknots (Fig. 1B) were also used to probe the
effect of base triples on mechanical stability using optical
tweezers (Fig. 1D, see Methods) (25, 26). The folding transitions
are typically observed below 10 picoNewtons (pN) presumably
due to the slow folding rate (Fig. 2 A–G). Three classes of �U177
unfolding reactions were observed: (1) 1-step unfolding at
approximately 50 pN with extension increase of 19 nm (Fig. 2 A);
(2) 1-step unfolding at approximately 18 pN with extension
increase of 15 nm (Fig. 2 C and D); and (3) 2-step unfolding with
the second step unfolding force at approximately 18 pN with
extension increase of 11 nm (Fig. 2 B and J). Three classes of
unfolding reactions were also observed for mutant CCC (Fig. 2
E–G) and other pseudoknots (Fig. S2). The extension increase
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values for the 1-step reactions are well predicted by the Worm-
Like-Chain model (27, 28) for the unfolding of the native
pseudoknot. Presence of 3 classes of unfolding reactions is
evident in the plots of unfolding force-versus-extension change
(Fig. 2 H and I, and Fig. S3).

Stem 1 Forms Before Stem 2. Equilibrium thermal unfolding/
folding studies by UV absorbance-versus-temperature melting
experiments, by slowly varying temperature (0.3–0.5 °C/minute
from 5–98 °C), have suggested that stem 1 forms first followed
by formation of stem 2 (24). To test if stem 1 forms before stem
2 in the mechanical folding of �U177, we made isolated stem 1
and stem 2 hairpins, using extended RNA/DNA handles to
hybridize the 3� and 5� parts of �U177, respectively (Fig. S4). The
unfolding force comparison (Fig. 2 J–O) clearly shows that the
second step of �U177 unfolding (17.5 � 1.0 pN) is similar to that
of isolated stem 1 hairpin unfolding (16.8 � 1.4 pN), not the
isolated stem 2 hairpin unfolding (14.2 � 1.2 pN). Thus, the sec-
ond step of low-force 2-step unfolding corresponds to the
disruption of stem 1 hairpin, that is, stem 1 is fully formed in
the folding intermediate structure of �U177 (Fig. 3B) and other
pseudoknots (see Fig. S5). The first step of low-force 2-step
unfolding corresponds to the disruption of partially formed stem
2 (see below).

Pseudoknots with Mutations in Loop 1 and Loop 2. Fitting the
unfolding forces of most of the pseudoknots with 2 Gaussian
distributions (Fig. 4) suggests that base triples significantly affect
the higher unfolding forces, but the lower unfolding forces are
relatively independent of the mutations. Thus, the lower unfold-
ing forces correspond to folding intermediate structures with no

base triples formed and the higher unfolding forces correspond
to native pseudoknots.

With the entire 5 base triples disrupted, mutant CCCGU still
has 2 clusters of unfolding forces for 1-step unfolding corre-
sponding to a folding intermediate structure (19.4 � 1.2 pN) and
native structure (22.2 � 5.4 pN), respectively (Fig. 4F). Thus, in
the folding intermediate structure stem 1 is fully formed, stem
2 is only partially formed, and base triples are not formed. Fig.
3B shows a possible folding intermediate structure with molec-
ular extension similar to the native pseudoknot structure, which
was proposed previously by modeling studies in the absence of
force (29, 30), although it was not resolved by bulk thermal
unfolding/folding experiments (24, 31). Presumably, the low-
force apparent 1-step and 2-step unfolding trajectories corre-
spond to the same folding intermediate structure, with partially
formed stem 2 and no base triples formed.

The fact that the unfolding force distribution of �U177 is not
a combination of those of mutant CCC and mutant GU (Fig. 4
A, D, and E) suggests that major-groove and minor-groove base
triples form cooperatively. Slow kinetics of native pseudoknot
folding from the folding intermediates is due to 2 intrinsically
slow transitions. First, full formation of stem 2 in the native
pseudoknot involves disruption of the preformed Watson-Crick
base pairs (U102-A111 and C104-G110) and loop structures in
stem 1 hairpin (Fig. 3). Second, the kinetics for the formation of
non-Watson-Crick U99�A173 pair and triplex structures in native
pseudoknot may be intrinsically slow. Slow kinetics of
pseudoknot formation involving disruption of preformed struc-
ture in stem 1 hairpin (32) and intramolecular triplex formation
(33) was previously observed in bulk experiments. In addition,
the applied force parallel to the helical axis may restrict the
conformational changes such as rotation required for formation
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of stem 2, non-Watson-Crick U99�A173 pair, and triplex struc-
tures (Figs. 1D and 3).

Pseudoknots with Mutations in Stem 2. Upon substituting the
U�A-U with a C��G-C base triple (Fig. S1), the native structures
of mutant 100C115C174G and mutant 101C114C175G have
unfolding forces of 49.9 pN and 49.8 pN, respectively, close to
that of the native structure of �U177 (Fig. 4 A, G, and I). A
protonated C��G-C base triple with 2 hydrogen bonds in the
Hoogsteen C��G pair is thermodynamically more stable than an
unprotonated C�G-C base triple with 1 hydrogen bond in the
Hoogsteen C�G pair. Remarkably, we found the native
pseudoknot unfolding force for mutant 100C115C174G de-
creases from 49.9 to 43.4 pN upon increasing pH from 7.3 to 8.3
(Fig. 4 G and H). The pKa of residue C100 of mutant
100C115C174G was measured to be 7.8 (24). Instead, the
relatively pH independent lower unfolding forces suggest that
the major-groove triplex is not formed in the folding interme-
diate of mutant 100C115C174G.

An additional cluster of unfolding forces ranging between 20

and 35 pN appears for the pseudoknots with mutations in stem
2 (labeled with arrows in Fig. 4 G–K), with the exception of
mutant 115C174G. The cluster of unfolding forces may corre-
spond to a folding intermediate structure with complete forma-
tion of stem 1 and stem 2, but without base triples formed.
Hopping between the folding intermediate structures and stem
1 hairpin at 10–20 pN becomes less frequent by destabilizing
stem 1 hairpin and/or stabilizing stem 2 (Fig. 2 A–G and J and
Figs. S2, S5, and S6). Thus, a U-A to C-G mutation destabilizes
the preformed stem 1 hairpin and stabilizes stem 2 thereby
facilitating complete formation of stem 2 in the folding inter-
mediate structure.

Recent NMR studies of TeloWT (with U177 bulge) (Fig. 1B)
revealed that all of the base triples are formed in the presence of
the U177 bulge, and that the Watson-Crick A-U pairs in stem 2
become less stable than the Hoogsteen U�A pairs (31). Consistently,
TeloWT has a broad distribution of unfolding forces (between 15
and 35 pN) for the low-force 1-step unfolding (Fig. 4K) probably
due to the formation of multiple folding intermediate structures.
Limited unfolding trajectories (Fig. 4K and Table S1) were obtained
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for the native structure of TeloWT (45.0 � 4.3 pN) because it rarely
formed after it was first mechanically unfolded even with waiting
times of 30 s at approximately 3 pN. The results further suggest that
the lower unfolding forces correspond to the folding intermediate
structures.

Native Pseudoknot Mechanical Stability and –1 Frameshifting Effi-
ciency. A single exponential function fits well the FS efficiency-
versus-average unfolding force of native pseudoknots (Fig. 5).
Extrapolation of the single exponential function indicates that
the FS efficiency is 0.2% with an unfolding force of 0 pN, and
100% FS corresponds to an average unfolding force of 57 pN.
Previous mechanical unfolding studies of RNA using optical
tweezers, including a pseudoknot with lengthened 12-bp stem 1
and 29-nucleotide (nt) loop 2 compared to �U177 (25), have
shown that the highest unfolding force is below 60 pN (21, 22,
34). Thus, it is reasonable to interpret the fitting function only
for forces below 60 pN. It is likely that ribosomes would be stalled
by a pseudoknot with an unfolding force of 60 pN or higher,
resulting in abortive translation.

Relatively weak correlation was observed between FS effi-
ciency and native pseudoknot unfolding free energy (Fig. S7).

Discussion
Frameshifting may be determined by multiple factors including
thermodynamic stability and length of stem and loop, torsional
resistance, and specific 3-dimensional structures. For example,
higher unfolding forces and FS efficiency were observed for the
infectious bronchitis virus (IBV) pseudoknot with an 11-bp stem 1
compared with a 10-bp stem 1 (22). Reverse correlation was
observed between the rate of mechanical unfolding and FS effi-
ciency in a specific narrow range of forces for similar pseudoknots

derived from IBV, but with a much shorter loop 2 (8 nt vs. 32 nt)
and varying compositions of G-C versus A-U pairs and length of
stem 1 (21). Bulk FS assays revealed that a specific interaction
between stem 1 and loop 2 is required for high-efficiency FS for the
IBV pseudoknots with a shorter loop 2 (15). Similarly, minor-
groove (stem 1-loop 2) triplexes were revealed by a crystal structure
and shown to be critical for high-efficiency FS in the beet western
yellows virus (BWYV) (13, 14). Our results suggest that formation
of both major-groove (loop 1-stem 2) and minor-groove (stem

Fig. 3. Possible folding intermediate structures of pseudoknot �U177. The
positions and directions of applied force are indicated with black arrows. The
unfolding transitions are indicated with the same colors as those in Fig. 2. (A)
Stem 1 hairpin. In a force-ramp experiment, stem 1 hairpin typically folds from
single strand when force is below 10 pN. Stem 1 hairpin unfolds to single
strand at 15–20 pN. (B) A folding intermediate with stem 2 partially formed.
In a force-ramp experiment, the folding intermediate rapidly forms after stem
1 hairpin is formed when force is below 10 pN. Upon increasing force to
between 10 and 20 pN, the folding intermediate is in equilibrium with stem 1
hairpin and hopping between the 2 structures were observed. The folding
intermediate may unfold apparently in 1 step or 2 steps at 15–20 pN. (C) Native
pseudoknot. Folding transition from the folding intermediate to native
pseudoknot is slow even at 3 pN as indicated by subsequent unfolding
trajectories (see Fig. 2). Native pseudoknot unfolds to single strand in 1 step at
approximately 50 pN.
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1-loop 2) triplex structures enhance mechanical stability of the
stems thereby stimulating FS.

For the pseudoknots studied here with short stems (6-bp stem
1 and 9-bp stem 2), initial breaking of several base pairs in stem
1 and/or stem 2 may result in cooperative unfolding of the
pseudoknot structures with applied mechanical stretching force
�20 pN. Initiation of pseudoknot unfolding by disruption of
terminal base pairs in stem 1 may mimic the directional 5� to 3�
helicase activity of ribosomes (35, 36). The triplex structures may
enhance local stability of the terminal stem 1 base pairs and thus,
increase the FS efficiency.

Unwinding of stem 1 requires rotation of the rest of the
structure; formation of stable stem 2 with extensive loop 1-stem
2 interactions (Fig. 1D) prevents this rotation. The torsional
resistance of the pseudoknot is enhanced, thereby stimulating
frameshifting (19). Indeed, we found that destabilization of
major-groove triplex structures formed between loop 1 and stem
2 significantly decreases FS efficiency, presumably due to lower
global torsional resistance of the pseudoknot. Initiation of
cooperative pseudoknot unfolding by disruption of stem 2 by
force may mimic the helicase activity of ribosomes.

Triplex structures in a pseudoknot may also have specific
interactions with ribosomes and thus facilitate high-efficiency FS
(12, 13). Structural and functional studies have revealed that
tertiary interactions such as minor-groove triplexes and a base
quadruplex in several viral mRNA pseudoknots are important
(12–16), but may not be sufficient (37) in stimulating high-
efficiency FS. Single-molecule studies may reveal the correlation
between tertiary structure and programmed FS efficiency for
these viral pseudoknots. FS efficiency may also be affected by
folding kinetics of native pseudoknots, with multiple ribosomes
(polysomes) translating 1 mRNA. It was shown that increasing
the distance between elongating ribosomes allowed pseudoknot
folding, resulting in a 2-fold increase in FS efficiency (38).
Combined single-molecule mechanical unfolding/folding and
bulk FS assays will provide further insight into reading-frame
regulation (e.g., �1 and –1 frameshifting, and stop codon
readthrough) by cis-acting mRNA pseudoknot structures and
provide benchmarks for modeling of pseudoknot unfolding by
mechanical force and by ribosomes.

Methods
Bulk FS Assay. The plasmid p2luc developed by Gesteland, Atkins, and coworkers
(39) was used as the reporter system for studying FS. Synthetic DNAs containing
the slippery sequence (T TTA AAC), single-stranded linker (GGGTT), and the
pseudoknot sequences were cloned into p2luc, and the FS elements containing
reporter was then transcribed into mRNA by T7 RNA polymerase. The transcribed
RNA was then capped in the 5�-end using mMESSAGE mMACHINE kit (Ambion).
Acommerciallyavailablerabbit reticulocyte lysate(Promega)wasusedfor invitro
bulk FS assays following the recommendation of manufacturer with an incuba-
tion time of 90 min at 30 °C. Each reaction contains 250 ng capped mRNA and 2.5
�Lreticulocyte lysate.Witha0framestopcodon(UGA,residues109–111) located
at the 5� side of stem 2 of the pseudoknot, a protein product of 37.4 kDa is
released. If FS occurs, translation continues and terminates at a downstream –1
frame stop codon with a fusion protein product of 40.1 kDa. A shorter –1 frame
fusion protein (40.1 kDa instead of 100 kDa) was designed to minimize ribosome
fall-off events. The translated protein products labeled with [35S]methionine
were separated by 12% SDS/PAGE. The efficiency of FS was calculated by the ratio
of –1 frame product to both –1 and 0 frame products with correction for the
difference in methionine content of the proteins.

Mechanical Unfolding and Folding Using Optical Tweezers. The RNA molecules
used for single-molecule studies were made by PCR amplification of the same
plasmids used for FS assays followed by in vitro transcription by T7 polymerase.
The constructs for single-molecule experiments were made, as described
previously (28), by annealing the RNA with 2 PCR products to form 5� and 3�
RNA/DNA handles with 592 and 543 base pairs, respectively. Two-nucleotide
single strand linkers were used to separate the pseudoknot and RNA/DNA
handles. The terminal ends of the RNA/DNA handles were labeled with biotin
or digoxigenin to form attachment with streptavidin- and antidigoxigenin-
coated polystyrene beads, respectively. The antidigoxigenin-coated bead was
trapped in an optical trap and the streptavidin-coated bead was held on a
micro pipette by suction (26). The pipette was connected to a piezoelectric
stage (MCL). In a force-ramp experiment, the force was changed by approx-
imately 10 pN/s (with an approximately constant stiffness of 0.1 pN/nm) by
moving the stage at 100 nm/s with data acquisition rate at 100 Hz. In force-
jump and force-drop experiments, the force was maintained by an electronic
force feedback. All of the single-molecule experiments were done at 200 mM
NaCl, 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.3 or 8.3, and 22 � 1 °C.
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