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Abstract
Individuals’ dependence on nicotine, primarily through cigarette smoking, is a major source of
morbidity and mortality worldwide. Many smokers attempt but fail to quit smoking, motivating
researchers to identify the origins of this dependence. Because of the known heritability of nicotine-
dependence phenotypes, considerable interest has been focused on discovering the genetic factors
underpinning the trait. This goal, however, is not easily attained: no single factor is likely to explain
any great proportion of dependence because nicotine dependence is thought to be a complex trait
(i.e., the result of many interacting factors). Genomewide association studies are powerful tools in
the search for the genomic bases of complex traits, and in this context, novel candidate genes have
been identified through single nucleotide polymorphism (SNP) association analyses. Beyond
association, however, genetic data can be used to generate predictive models of nicotine dependence.
As expected in the context of a complex trait, individual SNPs fail to accurately predict nicotine
dependence, demanding the use of multivariate models. Standard approaches, such as logistic
regression, are unable to consider large numbers of SNPs given existing sample sizes. However,
using Bayesian networks, one can overcome these limitations to generate a multivariate predictive
model, which has markedly enhanced predictive accuracy on fitted values relative to that of individual
SNPs. This approach, combined with the data being generated by genomewide association studies,
promises to shed new light on the common, complex trait nicotine dependence.
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Cigarette smoking is the most prevalent form of tobacco use and is a major contributor to
worldwide morbidity and mortality (DHHS, 2004), including being the single largest
preventable cause of lung cancer (Murray, 2006). Nevertheless, 21.6% of adult Americans
smoke (Centers for Disease Control and Prevention, 2005). Many want to stop smoking, as
evidenced by the finding that 42.5% of American smokers reported having quit for at least 1
day in the previous year (Centers for Disease Control and Prevention, 2006). Most of these
attempts fail: A meta-analysis of clinical trials demonstrated that an average of only 10% of
individuals achieve abstinence for 6 months or more (Hughes et al., 2007). Nicotine
dependence contributes to the failure rate, with more highly dependent smokers having greater
difficulty in attaining abstinence (John et al., 2004; Xian et al., 2007). It has been established
that nicotine dependence and associated characteristics are highly heritable phenotypes
(Agrawal et al., 2006; Broms et al., 2007; Broms et al., 2006; Haberstick et al., 2007; Lessov
et al., 2004; Maes et al., 2004; Pergadia et al., 2006; True et al., 1999; Vink et al., 2005; Xian
et al., 2003, 2005). Despite its clear heritability, the search for the genetic variations underlying
this trait is challenging. There have been issues with consistent replication of findings of
association (Lerman & Swan, 2002; Vandenbergh et al., 2002), and no individual single-
nucleotide polymorphism (SNP) is a sound predictor of nicotine dependence. This paper will
address the challenges to identifying accurate genomic prognostic models of nicotine
dependence and will review Bayesian networks, a novel proposed solution.

NICOTINE DEPENDENCE AS A COMPLEX PHENOTYPE
Despite the established heritability of nicotine-dependence phenotypes (Lessov-Schlaggar et
al., 2008; M. R. Munafo & Johnstone, 2008), identifying replicable underlying genetic
variations has proven difficult. Genomewide association studies (GWASs) hold promise and,
indeed, novel associations have already been identified from using this approach. However,
even the most strongly associated SNPs identified in these studies fail to predict nicotine
dependence. This is likely due to the fact that nicotine dependence is a complex and potentially
multidimensional trait, that is, a result of complicated interactions of multiple genetic and
environmental factors (Cardon & Bell, 2001; M. R. Munafo & Johnstone, 2008; Rice et al.,
2001; Risch, 2000).

Defining Nicotine Dependence
Careful phenotype definition is essential to achieving the phenotypic clarity required to identify
valid, meaningful genetic predictors of complex human disorders (Rice et al., 2001). Several
measures exist for defining nicotine dependence, the predominant measures being (1)
diagnostic nicotine dependence as defined by the Diagnostic and Statistical Manual for Mental
Disorders, 3rd edition Revised and 4th edition (DSM-III-R and DSM-IV) (APA, 1987,
1994) and (2) the Fagerström Tolerance Questionnaire (FTQ) and the Fagerström Test for
Nicotine Dependence (FTND). Because of its widespread use (Hatsukami et al., 2008) and
pertinence to the analyses presented, this report will focus on the FTND; in-depth descriptions
of the other instrument can be found in the review articles (Piper et al., 2006; Lessov-Schlaggar
et al., 2008).

The FTND is a revision of the FTQ, designed to improve the psychometric properties of the
scale (Heatherton et al., 1991; Payne et al., 1994). The FTND (Figure 1) is a six-question
instrument, with a minimum score of 0 and a maximum score of 10. This scale focuses primarily
on physiological dependence (Bierut et al., 2007), as opposed to other behavioral and
psychological dimensions of dependence, for example, the subjective view of nicotine use
being a “problem” in some way (Lessov-Schlaggar et al., 2008).
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Heritability of Nicotine-Dependence Phenotypes
Studies of twins have shown that a substantial proportion of the phenotypic variance in nicotine
dependence is heritable. Indeed, studies of the FTND score, in particular, have shown it to be
markedly heritable, with estimates ranging from 40 to 75% (Broms et al., 2006; Maes et al.,
2004; Vink et al., 2005). Further, component measures of the FTND are substantially heritable.
The daily cigarette quantity and time to first cigarette have been estimated to be 45.0–70.0%
heritable (Broms et al., 2006; Carmelli et al., 1990; Haberstick et al., 2007; Hettema et al.,
1999; Lessov et al., 2004; Pergadia et al., 2006; Prescott & Kendler, 1995; Swan et al., 1996,
1997; Swan et al., 1990) and 55.0–68.0% heritable (Haberstick et al., 2007; Lessov et al.,
2004), respectively. Although the nicotine-dependence phenotype has a clear genetic
component, it has been difficult to identify the causative variations, or even consistently
associated variations, because of the complex nature of the phenotype (Lerman & Swan,
2002; M. R. Munafo et al., 2004; M. R. Munafo & Johnstone, 2008; Vandenbergh et al.,
2002).

Genomewide Association Studies of Nicotine Dependence
It is thought that complex traits are influenced by multiple loci across the genome (Cardon &
Bell, 2001; Risch, 2000). Thus, to identify the set of variations that contribute to vulnerability
to nicotine dependence, GWASs have been conducted.

Bierut and colleagues first performed a pooled analysis of smokers who were nicotine
dependent and smokers who were not nicotine dependent at over 2.4 million SNPs and, on this
basis, selected 31,960 SNPs for genotyping in individuals (Bierut et al., 2007). Both cases and
controls reported having smoked at least 100 cigarettes in their lifetime. Cases were individuals
who had a FTND score of 4 or more when smoking the most, which is a commonly employed
definition of nicotine dependence. Controls’ status was defined as having a lifetime FTND of
0. Although none of the individual findings was statistically significant after correcting for
multiple tests, they identified 35 SNPs with P-values less than 10−4. Some of these SNPs were
in intergenic regions and the β3 nicotinic receptor (CHRNB3), a known candidate gene, but
many SNPs were in genes not previously associated with nicotine dependence. The novel genes
have been associated with the following biological processes: protein transport (CLCA1 and
VPS13A), protein catabolism (RNF5, FBXL17), regulation of transcription (PBX2), signal
transduction (GPSM3), ion transport (TRPC7), lipid metabolism (FTO, AGPAT1), cell
adhesion (NRXN1, AGER, CTNNA3), and developmental processes (NOTCH4) (Lessov-
Schlaggar et al., 2008). In the same case-control sample, a targeted analysis of 348 known
candidate genes was conducted (S. F. Saccone et al., 2007). The authors identified 39 SNPs
with the greatest evidence for association with nicotine dependence, based upon the false
discovery rate. One of these SNPs (rs6474413, CHRNB3) was shared with the 35 reported by
the Bierut study. The majority of these SNPs were in cholinergic nicotinic receptor genes,
including CHRNB3 and CHRNA5, the α5 nicotinic receptor subunit gene.

Uhl and colleagues (Uhl et al., 2007) conducted a case-control study at 520,000 SNPs in pools
of DNA, with a special interest in SNPs in genes that have overlap with dependence on other
substances. To identify variants associated with nicotine dependence, cases were European-
American active smokers (mean FTND = 6.4, average carbon monoxide = 34.7) recruited into
a smoking cessation study, and controls were European-American people with no substantial
lifetime histories of use of any addictive substance. The authors identified SNPs in 32 genes
that were both: (1) significant at P<0.0005 between cases and controls in their study and (2)
had been significantly associated with polysubstance abuse, alcohol dependence, and
methamphetamine dependence in previous studies. Like the study by Bierut and colleagues
(Bierut et al., 2007), this investigation identified genes involved in cell adhesion, signal
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transduction, and transport functions, revealing convergence in the findings of these studies,
despite the difference in their study populations and methods (Lessov-Schlaggar et al., 2008).

More recently, the associations reported by (Saccone et al., 2007) between nicotine dependence
and variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster have been replicated in several
additional samples studying smoking quantity and nicotine dependence (Berrettini et al.,
2008; Bierut et al., 2008; Thorgeirsson et al., 2008). Further, the nonsynonymous CHRNA5
SNP, rs16969968, or its r2 proxies (SNPs highly correlated with it) have now been associated
with lung cancer (Amos et al., 2008; Hung et al., 2008; Thorgeirsson et al., 2008). These
findings provide strong confirmation of the association between these SNPs and nicotine
dependence. However, the challenge of moving beyond individual SNP associations to identify
predictive models of phenotype remains.

Association with versus Prediction of Nicotine Dependence
The genomewide data that have been and will be collected hold the promise for uncovering
the genetic origins of nicotine dependence, and the association analyses of individual SNPs
have revealed new possible suspects. In addition, these analyses help to define overall risk
classes, for example, a man with the G allele at SNP rs2791480 in CLCA1 may be at higher
risk for being nicotine dependent (Bierut et al., 2007). Beyond association, the genomewide
data can be used to identify predictors of complex traits such as nicotine dependence. Predictive
modeling is a logical complement to the association-based approach, because predictive
measures are both amenable to translation into clinical practice and are able to address some
of the challenges of the analysis and interpretation of genomewide data. In particular, measures
of predictive accuracy can address the issues of replication and generalizability of genetic
association studies (Heidema et al., 2006; M. R. Munafo et al., 2004; M. R. Munafo &
Johnstone, 2008). Even when the basis for the predictive measure is a multivariate model, the
predictive accuracy can be used as a single, comprehensive measure of the extent of the
generalizability of the model among different studies. Further, measuring the predictive
accuracy is directly responsive to concerns that genetic tests will have a poor disease-predictive
ability (Holtzman, 1992; Khoury et al., 1985). Indeed, couching results in the language of
prediction poises them for translation into clinical practice, where they can be used in risk
communication and counseling.

Predictive Accuracy of Individual SNPs and Demographic Factors
Because of the utility of predictive measures, the predictive accuracies of the 73 SNPs identified
by Bierut (Bierut et al., 2007) and Saccone (S. F. Saccone et al., 2007), as well as the
demographic factors, age and gender, were calculated. The predictive accuracy of the single-
SNP model was computed as the area under the receiver-operator characteristic curve
(AUROC) (DeLong et al., 1988) of the prediction of the fitted values. The probability of
nicotine dependence, given the genotype of an individual subject, was calculated by using the
clique algorithm (S. L. Lauritzen, & Spiegelhalter, 1988).

As shown in AUROC: area under the receiver operator characteristic curve, the highest
predictive accuracy demonstrated by an individual SNP was 54.4% (P = 0.002), while gender
and quartiles of age achieved predictive accuracies of 54.5 (P = 0.001) and 54.7% (P = 0.001),
respectively. In these and the following cases, the P-value tests the hypothesis that the AUROC
is significantly better than random (i.e., AUROC = 50%). The highest AUROC attained by an
SNP in CHRNB3, a known candidate gene that was identified as highly associated in both the
Bierut (Bierut et al., 2007) and Saccone (S. F. Saccone et al., 2007) papers, was 51.9% (P =
0.093), a performance not significantly better than random assignment. Because of the complex
nature of nicotine dependence, the low predictive accuracies of individuals SNPs are perhaps
not surprising, given that the effect of any single SNP on the trait is likely to be very small
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(Lerman & Swan, 2002). This issue can be addressed only by considering the polygenic nature
of nicotine dependence (Lerman & Swan, 2002). Additional benefits accrue via the multivariate
approach, including responsiveness to the issues of confounding (Cardon & Bell, 2001),
linkage disequilibrium (Cardon & Bell, 2001), and genetic heterogeneity (Heidema et al.,
2006). It has been noted, however, that a significant obstacle to accomplishing this goal is the
large sample sizes required by standard multivariate methods such as logistic regression
(Heidema et al., 2006; Lerman & Swan, 2002; M. R. Munafo & Johnstone, 2008). There has,
therefore, been an interest in exploring alternative analytical methods that are more efficient.
One such approach with a demonstrated track record in the analysis of complex phenotypes is
the Bayesian network.

USING BAYESIAN NETWORKS TO BUILD PREDICTIVE MODELS OF
COMPLEX PHENOTYPES

Bayesian networks are multivariate dependency models that account for simultaneous
associations and interactions among multiple SNPs. A Bayesian network is a directed acyclic
graph in which nodes represent random variables and arcs (arrows) define directed stochastic
dependencies quantified by probability distributions. When an arc connects two nodes, the
node at the point of the arrow is called a “child” of the “parent” node at the end of the arrow.
Figure 2 depicts two Bayesian networks, starting with a simple network describing the
dependency of a phenotype P on a single SNP G (Figure 2A). The graph decomposes the joint
probability distribution of the two variables, P and G, into the product of the marginal
distribution of G (the parent node) and the conditional distribution of P (the child node) given
G. The marginal and conditional probability distributions are sufficient to define the association
between P and G because their product determines the joint probability distribution. The
property persists when we invert the direction of the arc in the graph, and when we expand the
graphical structure to include several variables (Figure 2B): the overall association is measured
by the joint probability distribution that is still defined by the product of each child-parent
conditional distribution. This modular nature of a Bayesian network is due to the conditional
independences among the variables encoded by the directed acyclic graph (Cowell et al.,
1999): each node is independent of its predecessors given its parent nodes. This modular
representation captures complex dependency models that are able to integrate associations
between SNPs and phenotype; associations between SNPs due to linkage disequilibrium or
evolutionary patterns (Chakravarti, 1999); and interaction processes linking SNPs, phenotypes,
and modulating factors (Hoh & Ott, 2003) with a small number of parameters. Reducing the
number of parameters allows us to “learn” large dependency networks from comparatively
small datasets, and well-established techniques exist to develop Bayesian networks from data
in an almost automated manner (Cowell et al., 1999).

The Bayesian network approach has been used to analyze several types of genomic data,
including gene expression (Friedman, 2004; Friedman et al., 2000; Sebastiani et al., 2004),
protein-protein interactions (Jansen et al., 2003), and pedigree analysis (S. L. Lauritzen &
Sheehan, 2004). In the context of SNP data, Bayesian networks have been used to model the
multigenic risk of stroke in sickle cell anemia (Sebastiani et al., 2005). While sickle cell anemia
is a paradigmatic monogenic disease, the occurrence of stroke in individuals with the disorder
is, like nicotine dependence, complex. This study demonstrated that Bayesian networks can
generate a model of a complex trait that has a high predictive accuracy. Indeed, the stroke in
the sickle cell anemia model demonstrated a predictive accuracy of 98.2% in an independent
population.
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APPLICATION OF BAYESIAN NETWORKS TO NICOTINE-DEPENDENCE
PREDICTION

Bayesian networks are able to generate SNP-based models of complex traits by using relatively
small sample sizes. Combining this method with the existing large-scale genotyping data
affords a powerful, prognostic vantage on nicotine dependence.

Study Population
This study was based upon the genetic data and FTND phenotype definitions of the
Collaborative Genetic Study of Nicotine Dependence (COGEND) (Bierut et al., 2007; S. F.
Saccone et al., 2007). The 73 SNPs reported as associated to nicotine dependence in this
population were subjected to Bayesian network analysis.

Statistical Analysis
All of the SNPs considered in the Bayesian network analysis were tested for deviation from
the Hardy-Weinberg equilibrium (as described in Bierut et al., 2007; S. F. Saccone et al.,
2007). The analysis was conducted by using Bayesware Discoverer (Bayesware, Boston,
Massachusets, USA). The dependencies in the model of CASE (nicotine dependent) status were
identified by calculating the Bayes Factors corresponding to the ratio of the marginal log
likelihood of the statusdetermining genotype to the marginal log likelihood of status being
independent of genotype. In the absence of an independent validation set, we assessed the
goodness-of-fit of the model by calculating the AUROC of the prediction of the fitted values.
The probability of nicotine dependence given the genotype of an individual subject was
calculated by using the clique algorithm implemented in Bayesware Discoverer; the predictive
accuracy of the model was estimated as the AUROC curve convex hull, using the trapezoidal
rule (DeLong et al., 1988).

Predictive Accuracy of the Multivariate Model
The multivariate model generated by the Bayesian network analysis is shown in Figure 3. Out
of the original 73 SNPs, 60 were incorporated into the model, along with the two demographic
factors (SEX and AGE). However, to predict nicotine-dependence status, it is not always
necessary to have information about all 60 SNPs. If one has information on all of the nodes
that are children of CASE, as well as any other parents of these nodes, one does not need any
information about any other nodes. This subset of nodes is called the Markov blanket of
CASE. In this network shown in Figure 3, there are 20 nodes in the Markov blanket: 18 SNPs
and both demographic factors. The SNPs directly connected to CASE are in genes CHRNA3,
CHRNB3, CLCA1, CLTCL1, CTNNA3, FBXL17, FTO, GABRA4, KCNJ6, NRXN1, OPRM1,
and VPS13A, with the remaining SNPs being in intergenic regions. Individually, the best-per-
forming of these SNPs, rs2836823, had a predictive accuracy on fitted values of 54.4% (P =
0.002; Table 1). While this is statistically significantly different from randomness, such a low
AUROC indicates a lack of predictive ability. By contrast, the network as a whole (Figure 4)
was able to achieve a predictive accuracy on fitted values of 75.0% (P<0.0001), as shown in
Figure 4.

An interesting result revealed by the topology of the network in Figure 3 is the role of the SNP,
rs16969968 (labeled CHRNA5_2 in the network), which is connected to the phenotype through
CHRNA5 (rs578776 labeled as CHRNA5_1). This finding is of particular note given that
several recent studies have shown the associations of SNPs in the CHRNA5-CHRNA3-
CHRNB4 cluster to both nicotine dependence and lung cancer (Amos et al., 2008;Berrettini et
al., 2008;Bierut et al., 2008;Hung et al., 2008;Thorgeirsson et al., 2008). Further, an in-depth
study in the COGEND population of the complete family of 16 nicotinic receptor subunits
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identified both rs578776 and rs16969968 as statistically significantly associated with nicotine
dependence even though the correlation between these SNPs is low (N. L. Saccone et al., in
press).

SUMMARY AND FUTURE DIRECTIONS
Nicotine dependence has been shown to have a heritable component, and therefore, large-scale
genetic studies hold tremendous promise for revealing the genetic bases for nicotine
dependence. Single-SNP association analyses have yielded novel findings that shed light on
the biological underpinnings of the trait. However, none of even the most highly associated
SNPs alone has been shown to predict nicotine dependence better than at random, which is a
result that might be anticipated given the complex nature of the trait. While standard analytical
approaches, such as logistic regression, require prohibitively large sample sizes to consider
multiple interacting SNPs, the Bayesian network approach has been shown to be well-suited
to this type of analysis in the context of existing sample sizes. Indeed, when applied to nicotine
dependence, the multivariate Bayesian network analysis demonstrated markedly enhanced
prediction on fitted values relative to individual SNPs. This work is an important first step in
discovering predictors of nicotine dependence. An accurate predictive model would give the
research community a new vantage point from which to consider the causes of this trait, and
such a model would have the further advantage of being framed in the language of diagnostic
accuracy and risk communication.

The next steps toward the goal of generating a valid prognostic model of nicotine dependence
should be to seek to improve the predictive accuracy by building a model drawing upon all
SNPs in the genomewide analysis and incorporating environmental exposures. Further, the
models generated should be validated in independent populations, rather than upon fitted
values. In preference of a retrospective case-control design, the ideal study for such a validation
would be prospective to allow for true prediction of nicotine dependence status, as opposed to
correct classification. The distinction between prediction and correct classification is smaller
in the context of SNPs, because they are fixed over a person’s entire lifetime, but is of great
importance when modeling the effect of mutable environmental exposures. Moreover, such an
approach would allow for the prospective determination of phenotype.

In addition to identifying predictors of nicotine dependence, developing predictive models of
the trait should help refine the phenotype definitions of “being a smoker” and nicotine
dependence themselves. Proper phenotype definition is fundamental to any search for the
origins of complex traits, and phenotyping has been identified as an issue in need of additional
attention and clarification by a number of researchers (Lerman & Swan, 2002; Lessov et al.,
2004; M. R. Munafo & Johnstone, 2008; Robert, 2006). The nature of the disorder will become
clearer as the molecular bases of the trait subtypes become better understood. Along these lines,
Cardon and Bell have envisioned an iterative process of developing an understanding of the
genetic bases of complex traits, in which weak associations are successively improved upon
by generating hypotheses on the basis of subgroups and assessing them in new cohorts (Cardon
& Bell, 2001). Through these efforts, the nicotine-dependence research community will
develop a deeper knowledge of the causes of nicotine-dependence phenotypes. This knowledge
promises to define etiology-driven definitions of disease (Piper et al., 2006) and to reveal new
therapeutic avenues.

Finally, the ability to develop a prognostic model of the complex trait nicotine dependence
highlights the feasibility of identifying predictors of another complex trait: response to smoking
cessation therapy. Currently, the untargeted assignment of existing therapies suffers from
disappointing relapse rates. Through pharmacogenetic targeting, success rates could be
enhanced by assigning people who want to quit smoking to the therapy that is most likely to
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work for them. A small number of studies have highlighted the promise of the approach, but
as with nicotine dependence, a lack of replication has plagued these investigations (M. Munafo
& Lerman, 2006). An efficient multivariate solution, such as the Bayesian network approach,
may help address the challenge of finding translatable pharmacogenetic solutions for the
treatment of nicotine dependence.
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Figure 1.
The Fagerström Test for Nicotine Dependence.
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Figure 2.
Examples of Bayesian network structures. (A) A simple Bayesian network with two nodes,
representing a SNP (G) and a phenotype (P). The probability distribution of G represents the
genotype distribution in the population, and the conditional probability distribution of P
describes the distribution of each phenotype given each genotype. The direction of the
association between G and P can be reversed by using Bayes theorem. (B) A Bayesian network
linking four SNPs (G1–G4) to a phenotype P. The phenotype is independent of G1 and G2
given G3 and G4. The joint probability distribution of the network is fully specified by the five
distributions representing the distribution of G1 (two parameters), of G2 given G1 (six
parameters), of G3 given G2 (six parameters), of G4 given G2 (six parameters), and of P given
G3 and G4 (nine parameters). The full probability distribution requires 81 × 2 − 1 = 161
parameters, while this network requires only 29.
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Figure 3.
Bayesian network of nicotine dependence. The Bayesian network describing the joint
association of 60 SNPs (blue) and two demographic factors (pink) with nicotine dependence.
CASE represents nicotine-dependence status. The RS numbers corresponding to the codes in
the nodes are shown in Table 1.
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Figure 4.
ROC curve representing the predictive accuracy of the Bayesian network in Figure 3 on the
fitted values. The curve emanating from the origin has an area under the ROC curve (AURCO)
of 50%, which represents random classification. The red ROC curve corresponds to the
Bayesian network (AUROC = 75.0%), the 95% confidence interval of which is bounded by
the green curves.
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Table 1
Predictive Accuracies (AUROC) of Individual SNPs and Demographic Factors on the Fitted Values.

Factor AUROC p-value

Age* 54.7% 0.001

Gender* 54.5% 0.001

Gene Label SNP AUROC p-value

AVPR1A AVPR1A_1 3021529 47.10% 0.98

CHRNA5/3 CHRNA5_1* 578776 54.00% 0.01

CHRNA5 CHRNA5_2* 16969968 50.30% 0.40

CHRNA5_3* 1051730 49.60% 0.62

CHRNA5_4* 637137 48.90% 0.79

CHRNA5_5* 684513 49.20% 0.72

CHRNA5_6* 3743078 48.40% 0.89

CHRNA6 CHRNA6_1* 2304297 47.10% 0.98

CHRNB3 CHRNB3_1* 13277254 51.90% 0.09

CHRNB3_2* 6474413 48.10% 0.91

CHRNB3_3* 4953 48.80% 0.82

CHRNB3_5* 4952 47.90% 0.93

CHRNB4 CHRNB4_1* 3813567 47.70% 0.95

CHRND CHRNG_1 2767 47.00% 0.98

CHRNG_2 3791729 47.60% 0.96

CLCA1 CLCA1_1* 2791480 54.20% 0.00

CLTCL1 CLTCL1_1* 1206549 52.20% 0.06

CTNNA3 CTNNA3_1* 4142041 53.10% 0.02

CTNNA3_2* 9332406 49.00% 0.75

CYP2B6 CYP2B6_1* 4802100 47.90% 0.93

CYP2B6_2* 3760657 48.50% 0.86

DAO DAO_1 17041074 47.10% 0.98

DBH DBH_1* 4531 49.30% 0.68

DBH_2* 3025382 47.10% 0.98

DOCK3(GRM2) DOCK3_1* 6772197 44.80% 1.00

CHRNG EIF4E2_1 6749955 48.80% 0.82

FBXL17 FBXL17_1* 10793832 52.50% 0.04

FMO1 FMO1_1* 7877 48.30% 0.89

FMO1_2* 742350 47.10% 0.98

FMO1_3* 7517376 47.20% 0.98

FMO4_1* 16864387 48.10% 0.92

FTO FTO_1* 2302673 52.60% 0.03
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Gene Label SNP AUROC p-value

GABRA4 GABRA4_1* 3762611 50.70% 0.30

GABRA4_2 3762607 48.30% 0.89

GPSM3, AGER_1* 999 47.50% 0.97

AGPAT1,

NOTCH4,

RNF5,

AGER,

PBX2,

AGER

HTR5A HTR5A_1 6320 47.90% 0.93

HTR5A_2 1657273 48.60% 0.85

KCNJ6 KCNJ6_1* 6517442 54.10% 0.01

NRXN1 NRXN1_1* 12623467 51.20% 0.20

NRXN1_2* 10490162 47.60% 0.95

NRXN1_3* 12467557 47.10% 0.98

OPRM1 OPRM1_1* 510769 53.60% 0.01

PDYN PDYN_1 6045733 48.50% 0.86

PIP5K2A PIP5K2A_1* 10508649 46.00% 1.00

TRPC7 TRPC7_1 2673931 47.70% 0.95

TRPC7_2 2546657 47.10% 0.98

VPS13A VPS13A_1* 12380218 53.10% 0.01

VPS13A_2* 2022443 47.00% 0.98

VPS13A_3* 11145381 48.30% 0.88

Intergenic 10049135 48.00% 0.93

1031006* 52.20% 0.06

10958726* 47.40% 0.97

11157219* 46.20% 1.00

11694463* 51.70% 0.12

1612945* 48.50% 0.86

17602038* 47.40% 0.97

17633211* 47.40% 0.97

17633258* 45.80% 1.00

17706299* 46.90% 0.99

17706334* 49.50% 0.65

1782134* 47.10% 0.98

1782141* 47.00% 0.98

1782144* 47.90% 0.93

1782145* 47.90% 0.93

1782159* 52.80% 0.03

1782182* 47.10% 0.98
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Gene Label SNP AUROC p-value

2276560 45.90% 1.00

2798983* 48.60% 0.84

2836823* 54.40% 0.00

4142603* 48.20% 0.90

4245150* 48.70% 0.83

4859365* 53.60% 0.01

AUROC: area under the receiver operator characteristic curve

Label: label used in Figure 3

*
included in the model shown in Figure 3

bold: in the Markov blanket of CASE in the network shown in Figure 3
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