
[12:50 14/7/2009 Bioinformatics-btp357.tex] Page: 2013 2013–2019

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 16 2009, pages 2013–2019
doi:10.1093/bioinformatics/btp357

Gene expression

PROMISE: a tool to identify genomic features with a specific
biologically interesting pattern of associations with multiple
endpoint variables
Stan Pounds1,∗, Cheng Cheng1, Xueyuan Cao1, Kristine R. Crews2, William Plunkett3,
Varsha Gandhi3, Jeffrey Rubnitz4, Raul C. Ribeiro4, James R. Downing5

and Jatinder Lamba6

1Department of Biostatistics, 2Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262
Danny Thomas Place, Memphis, TN 38105, 3Department of Experimental Therapeutics, M.D. Anderson Cancer
Center, 1515 Holcombe Blvd., Houston, TX 77030, 4Department of Oncology, 5Department of Pathology, St. Jude
Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 and 6Department of Experimental and
Clinical Pharmacology, University of Minnesota, 308 Harvard St. S.E., Minneapolis, MN 55455, USA

Received on January 30, 2009; revised on June 1, 2009; accepted on June 4, 2009

Advance Access publication June 15, 2009

Associate Editor: Olga Troyanskaya

ABSTRACT

Motivation: In some applications, prior biological knowledge can
be used to define a specific pattern of association of multiple
endpoint variables with a genomic variable that is biologically
most interesting. However, to our knowledge, there is no statistical
procedure designed to detect specific patterns of association with
multiple endpoint variables.
Results: Projection onto the most interesting statistical evidence
(PROMISE) is proposed as a general procedure to identify genomic
variables that exhibit a specific biologically interesting pattern of
association with multiple endpoint variables. Biological knowledge
of the endpoint variables is used to define a vector that represents
the biologically most interesting values for statistics that characterize
the associations of the endpoint variables with a genomic variable.
A test statistic is defined as the dot-product of the vector of
the observed association statistics and the vector of the most
interesting values of the association statistics. By definition, this
test statistic is proportional to the length of the projection of the
observed vector of correlations onto the vector of most interesting
associations. Statistical significance is determined via permutation.
In simulation studies and an example application, PROMISE shows
greater statistical power to identify genes with the interesting pattern
of associations than classical multivariate procedures, individual
endpoint analyses or listing genes that have the pattern of interest
and are significant in more than one individual endpoint analysis.
Availability: Documented R routines are freely available from
www.stjuderesearch.org/depts/biostats and will soon be available as
a Bioconductor package from www.bioconductor.org.
Contact: stanley.pounds@stjude.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

∗To whom correspondence should be addressed.

1 INTRODUCTION
Microarrays have opened exciting new possibilities for biological
research by enabling investigators to simultaneously measure
thousands or even millions of genomic features in a biological
specimen. Statistical analysis is used to identify features that are
associated with an endpoint of interest. The statistical analysis often
includes one or more hypothesis tests for each genomic feature
to explore the association with the endpoint of interest. Gene-set
enrichment analysis (GSEA; Jiang and Gentleman, 2007) can be
a useful complement to the feature-by-feature analysis. Given a
collection of predefined sets of genes that share a common biological
function or jointly participate in a specific biological process, GSEA
performs a statistical test for each gene set to determine whether
the member genes are ‘enriched’ among the most statistically
significant results. The feature-by-feature and GSEA each lead
to a multiple-testing problem, so that several false discoveries
may result even if very stringent P-value thresholds are applied.
Pounds (2006) reviewed several methods that address this multiple-
testing problem by estimating or controlling the false discovery rate
(FDR; Benjamini and Hochberg, 1995; Storey and Tibshirani 2003).
Nevertheless, after the statistical analyses are complete, the biologist
is still left with the problem of using the results to select the most
promising candidates for follow-up research.

One strategy to select the most promising leads from a list
of genes that show a statistically significant association with one
endpoint is to identify genes that show a biologically plausible
pattern of association with related endpoints. For example, Yang et
al. (2009) explored the association of the genotype of 600K single
nucleotide polymorphisms (SNPs) with the level of minimal residual
disease of acute lymphoblastic leukemia after initial treatment
with chemotherapy. To refine the list of SNPs identified in the
initial genome-wide analysis, they explored the association of the
genotypes of the significant SNPs with pharmacokinetics (PK)
endpoints that are associated with response to therapy. The SNPs
with the most biologically plausible pattern of association with the
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clinical and pharmacologic endpoints are now considered promising
candidates for future pharmacogenetic research in this field. In this
study, prior biological knowledge regarding the relationships of
endpoints to one another helps to define patterns of association for
genomic variables that are biologically most plausible.

However, to our knowledge, there is not a published statistical
procedure that is designed to identify genomic features that show a
specific pattern of association with multiple endpoint variables. In
general, it may be difficult to incorporate prior biological knowledge
regarding the relationships among multiple endpoint variables when
trying to interpret the results of several analyses that each explores
the association of genomic variables with an individual endpoint.
For example, how does one characterize the statistical significance
of a gene that has P=0.0001 for association with one endpoint,
but P=0.04 for association with another endpoint in the context of
multiple testing? If each individual endpoint analysis is corrected
for multiple testing, then there may not be any gene that meets
the stringent criteria for statistical significance in more than one
individual endpoint analysis. Thus, to identify genes with interesting
patterns of association, the P-value threshold must be made less
stringent, opening the possibility for a large number of false
discoveries.

Here, we propose projection onto the most interesting statistical
evidence (PROMISE) as a statistical procedure to identify genomic
features that show a specific pattern of association with multiple
endpoints that is biologically most plausible or biologically most
interesting. PROMISE performs one hypothesis test for the specified
pattern for each genomic variable, thus avoiding the inferential
problems described above. Additionally, PROMISE is a flexible
procedure that can accommodate various types of endpoints, which
classical multivariate procedures are not designed to manage. In
Section 2, we describe the PROMISE procedure. Section 3 describes
how PROMISE differs from other procedures. Section 4 presents
simulation studies, and Section 5 presents the results from an
example application. Finally, Section 6 provides the discussion and
concluding remarks.

2 THE PROMISE METHOD
Suppose that g=1,...,m genomic features are measured for i=
1,...,n subjects. Also, suppose that data on j=1,...,k endpoint
variables are available for these subjects. For i=1,...,n and g=
1,...,m, let yig represent the value of genomic feature g for subject
i. Additionally, let xij represent the value of endpoint variable j for
subject i. For j=1,...,k, let xj represent the vector (x1j,x2j,...,xnj)
of values of endpoint variable j for all subjects. Similarly, for
g=1,...,m, let yg represent the vector (y1g,y2g,...,yng) of values
for genomic variable g for all subjects. Let Y represent the set of all
yig and let X represent the set of all xij .

PROMISE is a general procedure to identify genomic variables
with the strongest statistical evidence for the biologically most
interesting pattern of associations with the endpoint variables. For
j=1,...,k, let Tjg(xj,yg) be a statistic measuring the association of
genomic feature yg (for any g) with endpoint variable xj . Now, define

Tg =(
T1g,T2g,...,Tkg

)
(1)

as the vector of the statistics measuring the association of genomic
feature g with the endpoint variables j=1,...,k.

In many applications, biological knowledge can be used to define
a vector d = (d1,...,dk) that corresponds to the biologically most
interesting values for Tg. For example, suppose that a set of subjects
is treated with a drug that inhibits DNA synthesis. Drug levels and
DNA synthesis rates after the treatment are measured as endpoint
variables on these subjects. Genomic data are also collected on the
same set of subjects. In this example, there are k =2 endpoints. Also,
for each genomic variable g we have Tg =(

T1g,T2g
)

where T1g and
T2g are the correlations of genomic variable g with drug level and
DNA synthesis rate, respectively. Conceptually, a biologically most
interesting result would be T1g =+1 and T2g =−1. Thus, the vector
d = (+1,−1) defines a biologically most interesting statistical result
for T.Additionally, the result −d would be another biologically most
interesting statistical result. Thus, d defines a vector in the space of
Tg that corresponds to the biologically most interesting result.

The dot-product of d and Tg,

Rg(X,yg)=d ·Tg =
k∑

j=1

djTjg (2)

is a statistic that measures the similarity of the vector Tg of observed
associations to the vector d of the biologically most interesting
statistical results. The sign of Rg indicates the direction of Tg relative
to d and the magnitude of Rg is proportional to the length of the
projection of Tg onto d. Thus, (2) defines the PROMISE statistic.

The significance (i.e. P-value) of the PROMISE statistic can
be determined via permutation. Let rg represent the value of Rg
computed from the observed data.Also, let X�

l , represent an endpoint
dataset obtained by l=1,...,b permutations of the subject indices
of X. Let R�

gl =R(X�
l ,yg) and let ρ0

g be a specified ‘null value’ of
Rg. Then, for g=1,...,m,

pg = 1

b

b∑

l=1

I
(∣∣∣R�

gl −ρ0
g

∣∣∣≥
∣∣∣rg −ρ0

g

∣∣∣
)
, (3)

where I(·) is the indicator function that equals 1 if the enclosed
statement is true and equals 0 otherwise. Note that (3) defines a two-

sided permutation P-value giving the probability that
∣∣∣Rg −ρ0

g

∣∣∣≥∣∣∣rg −ρ0
g

∣∣∣ under the complete (permutation) null.

Here, the null hypothesis is exchangeability of the assignments
of genomic data to endpoint data. Also, we note that the endpoint
data are permuted jointly; each endpoint variable is not permuted
individually. Permuting endpoint variables individually breaks the
correlation of the endpoints with one another and thus tests a
different null hypothesis than permuting the endpoint data jointly. As
a consequence, permuting endpoints individually is likely to yield
results that are very statistically significant, but not biologically
meaningful because the small P-values may indicate that the
endpoints are strongly correlated with one another instead of
indicating that the genomic variable has the interesting pattern of
association with the endpoint variables.

3 OTHER APPROACHES
There are other approaches that could be taken to identify genomic
variables that exhibit a specific pattern of association with multiple
endpoints. A seemingly straightforward approach would be to
screen the association of the genomic variables with each endpoint

2014



[12:50 14/7/2009 Bioinformatics-btp357.tex] Page: 2015 2013–2019

PROMISE

individually and then identify genes that are significant in each
analysis and have the desired pattern of association. This approach
is problematic because it lacks statistical power, and the results are
difficult to interpret statistically. The analysis for each endpoint
involves multiple testing. After adjusting each endpoint’s results
for multiple testing, it is quite likely that no gene will meet
the criteria for inclusion as a ‘significant’ result because it is
unlikely that a genomic variable could meet the stringent P-value
threshold for each endpoint. Additionally, with this approach, if any
genes are identified, it would be difficult to assign a meaningful
FDR estimate to the result. For example, what FDR estimate
should be ascribed to a set of genes that are inferred to have
the association pattern of interest if these genes are selected
because they meet a certain FDR or P-value threshold in several
single-endpoint analyses? PROMISE avoids these problems by
performing a single test for the pattern of association for each
gene. For each genomic variable, PROMISE performs one test
that directly addresses the question of whether a gene shows the
association pattern of interest. This improves the statistical power
and simplifies the interpretation, as seen in the example application
of Section 5.

Classical multivariate methods, such as principal components
(PC) or canonical correlation (CC), are other potential approaches to
the problem. For example, one could determine the first PC (PC1) for
the endpoint data and then test for the association of each genomic
variable with the PC. However, in general, there is no reason to
expect that the association of the genomic variable with the PC is
a measure of evidence for a specific pattern of association with the
endpoints. Clearly, a PC differs markedly from the definition of the
PROMISE statistic in (2). The first PC is the linear combination
of the endpoint variables that explains the greatest variation in the
set of endpoint variables. Unlike PCs, PROMISE does not define
a new endpoint variable by a linear combination of the individual
endpoint variables. Instead, the PROMISE statistic in (2) is a linear
combination of the statistics characterizing the associations of the
individual endpoints with the genomic variable.

Also, one could compute the CC of each gene with the endpoint
variables and test whether the CC is non-zero. However, CC also
differs from the definition of the PROMISE statistic in (2). The
CC of two sets of variables is the maximum possible correlation
of a linear combination of the first set of variables with a linear
combination of the second set of variables. The index selection
method of quantitative genetics (Falconer and Mackay, 1996, pp.
240–245) is similar to CC. These approaches do not measure a
specific pattern of association of one variable with a set of other
variables as in (2).

Furthermore, in many applications, classical multivariate methods
such as PCs and CC are not well suited to handle the endpoints of
interest. For example, in clinical studies, the endpoint of greatest
interest may be a censored time-to-event variable such as relapse-
free survival. A censored time-to-event variable is one that is only
partially observed in some subjects. For a subject of a clinical
trial, relapse-free survival is the duration of time between study
enrollment and death or relapse. Many subjects are living and remain
relapse-free at the conclusion of the study. For these subjects, it
is known that the relapse-free period is greater than the length of
time they were followed, but the full duration of the relapse-free
period is unknown. The relapse-free period for these subjects is
considered censored. This type of endpoint does not fit into the

classical multivariate normal framework. As seen in the example
application of Section 5, the definition of the PROMISE statistic
in (2) is flexible enough to accommodate censored time-to-event
variables and ordered categorical variables.

GSEA and other gene-set analysis approaches [such as that
of Nettleton et al. (2008)] could be used to determine whether
gene sets identified from the analysis of association with one
endpoint are associated with another endpoint. For example, one
could identify genes that are associated with one endpoint and
then explore whether the set of identified genes is associated with
another endpoint. While this exercise may provide useful biological
insights, it does not give results with the same interpretation as
PROMISE. PROMISE provides a P-value for each gene, whereas
gene-set methods give a P-value for each gene set. Additionally,
the interpretation of gene-set results may be difficult. For instance,
what if the list of genes associated with endpoint A are associated
with endpoint B, but the list of genes associated with endpoint
B are not associated with endpoint A? Such questions could
easily become quite frustrating when more than two endpoints are
involved. Nevertheless, permutation-based gene-set analyses can
be performed in conjunction with PROMISE to identify gene sets
that are enriched among genes that show the association pattern of
interest. Integrating gene-set methods with PROMISE may prove to
be a synergistic combination in terms of improving statistical power
to reveal important biological insights.

4 SIMULATIONS
Simulations were performed to compare the statistical power of
PROMISE to that of other approaches in a collection of simple
settings. Let (Y ,X1,X2) be a random vector corresponding to
a genomic variable and two endpoint variables. Suppose that
(Y ,X1,X2) follows a multivariate normal distribution with mean
(0,0,0) and that Y , X1 and X2 each have unit variance. Let ρx =
cor(X1,X2), ρ1 =cor(Y ,X1) and ρ2 =cor(Y ,X2). Suppose that the
interesting pattern of association is for Y to show the same direction
of association with X1 and X2. In terms of the framework above,
the test is performed using d = (+1,+1) in Equation (2). For the
PROMISE procedure, the statistic R is defined as the average of
Pearson’s correlation of Y with X1 and Pearson’s correlation of Y
with X2.

Several alternative approaches were considered in the simulation
study. The classical t-test for Pearson’s correlation coefficient was
used to test the association of Y with X1 and the association of Y with
X2. Also, Pearson’s correlation of Y with the PC1 of (X1,X2) was
computed. Additionally, the CC of Y with (X1,X2) was computed.
In each simulation, two-sided P-values for the PROMISE statistic,
the correlation of Y with PC1 and the CC statistic were determined
using the same set of 1000 permutations of Y . An overlap (OV)
analysis identified genes that were significant in each of the single-
endpoint analyses. A total of 1000 independent replications were
performed for each simulation setting defined by a unique set of
values for the sample size n, ρ1, ρ2 and ρx . Simulations were
performed for all combinations of ρ1 ={−0.4,−0.3,...,0.3,0.4},
ρ2 ={−0.4,−0.3,...,0.3,0.4}, ρx ={−0.1,0.0,0.1,0.2} and n=
10,20,50,100. The Supplementary Materials include tables and
contour plots with the results of all simulations.

PROMISE had the greatest probability to give a P-value less than
α=0.01 for values of (ρ1,ρ2) along the line ρ1 =ρ2 (Fig. 1A).
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A B

Fig. 1. Simulation results. Each plot gives simulation results for ρx =0 and
n=50. (A) The power of PROMISE, PC, CC, OV and individual endpoint
analyses (X1 only and X2 only) at the α=0.01 level along the line ρ1 =ρ2.
Note that the line ρ1 =ρ2 is perpendicular to the null line ρ1 +ρ2 =0 of
the PROMISE procedure. (B) The probability that the procedures reject
their respective null hypotheses along the null line |ρ1 +ρ2|=0 of the
PROMISE procedure. The Supplementary Materials provides the results of
all simulations.

Recall that the interesting pattern of association is for Y to have the
same direction of association with X1 and X2. The values of (ρ1,ρ2)
that match this pattern of interest are the bottom-left and upper-
right quadrants of the plots in the Supplementary Materials. The
line ρ1 =ρ2 passes through the center of this region of interesting
patterns of association. Simulations using other combinations of n
and ρx give qualitatively similar results regarding the performance
of PROMISE relative to that of other procedures (Supplementary
Materials).

Additionally, PROMISE maintains its level along the line H0 :
ρ1 +ρ2 =0 (Fig. 1B). For values of ρ1 and ρ2 along the line
|ρ1 +ρ2| = 0, other procedures test a different null hypothesis and
therefore have a greater than α=0.01 probability of giving a P-value
less than α=0.01 (Fig. 1B). For example, the X1-only analysis
tests H0 :ρ1 =0, and the CC analysis tests the null hypothesis that
the CC of Y with (X1,X2) is zero. However, the null hypothesis
H0 :ρ1 +ρ2 =0 is the null hypothesis of interest, and thus the high
probabilities of small P-values for values of (ρ1,ρ2) along this line
are undesirable in this setting.

It is quite interesting that PROMISE outperforms classical
multivariate procedures in this setting. The classical multivariate
procedures were developed for this type of setting and are known
to perform very well in this setting. The key observation here is
that the classical multivariate procedures were designed to detect
any non-zero correlations whereas PROMISE is designed to detect
a particular pre-specified pattern of correlations. The simulations
clearly show that PROMISE performs better for the latter purpose
than other methods.

5 EXAMPLE APPLICATION
The example application uses data from the St. Jude AML97 clinical
trial (Crews et al., 2002; Rubnitz et al. 2009). Ross et al. (2004) used
Affymetrix U133A microarrays to measure gene expression in the
leukemic cells of diagnostic bone marrow samples of 42 subjects

in this trial. Additionally, PK, pharmacodynamic (PD) and clinical
endpoint data were collected for these same subjects. Concentrations
of ara-CTP (the active form of the chemotherapy drug cytarabine;
ara-C) in leukemic cells of the bone marrow were obtained on the
first day (CTP1; after ara-C alone) and the second day (CTP2;
after combining cladribine with ara-C) of therapy. The rate of
DNA synthesis in leukemic cells from the marrow was measured
at diagnosis (baseline) and on days 1 and 2 of the therapy. From
these measurements of DNA synthesis rates, we computed the log-
ratio of the day 1 rate to the baseline rate (DNA1) and the log-ratio
of the day 2 rate to the baseline rate (DNA2). The white blood
count (WBC) in peripheral blood is a measure of tumor burden.
The log-ratio of the WBC after 48 h of therapy to the WBC at the
initiation of therapy was determined. Initial response (RESP) was
determined by morphologic examination of a bone marrow aspirate
collected after completion of the first course of chemotherapy and
categorized as no response (RESP = 0), partial response (RESP = 1)
or complete response (RESP = 2). Also, event-free survival (EFS)
was defined as zero and considered uncensored for patients who did
not achieve complete remission after two courses of therapy. For
the remaining patients, EFS was defined as the time elapsed from
study enrollment to relapse, development of a second malignancy
or death, with patients having experienced none of those events
censored at the date of last follow-up. For the purposes of PROMISE
analysis in this application, the gene expression data were considered
as genomic features and the other variables as endpoint variables.
All 22 215 probe sets represented on the microarray were included
in the analysis. We have previously noted that excluding probe sets
on the basis of present–absent calls may be of limited value (Pounds
and Cheng, 2005).

The correlation of gene expression with each endpoint can be
measured using published statistical methods. The association of
expression with CTP1, CTP2, DNA1, DNA2, WBC and RESP
is measured with Spearman’s correlation coefficient. For this
application, these statistics are denoted Tctp1, Tctp2, Tdna1, Tdna2,
Twbc and Tresp. The association of expression with the risk of relapse
and death (EFS) is measured using the rank-based statistic developed
by Jung et al. (2005) that accounts for follow-up and censoring. For
this application, this statistic is denoted Tefs. The statistic Tefs has
the form of a dot product and was scaled so that −1≤Tefs ≤1. For
each endpoint, the association statistics were computed using all
subjects with pairwise complete data (i.e. having gene expression
data and data for the specific endpoint). This technique for managing
missing data allows us to use all available data. The same approach
was used for computing permutation statistics.

AllAML97 subjects were randomly assigned to receive one of two
infusion schedules for ara-C during the initial course of therapy. An
amendment to the study protocol added one dose of intrathecally
delivered ara-C before the first course of intravenous chemotherapy.
Thus, each patient received one of four distinct therapies (short
infusion or continuous infusion of ara-C with or without intrathecal
ara-C). The statistical analyses of the association of gene expression
with the PK endpoints (CTP1 and CTP2), PD endpoints (DNA1,
DNA2 and WBC) and clinical endpoints (RESP and EFS) must
account for the different therapeutic strategies. Therefore, for each
endpoint and expression probe set, the correlation with expression
was computed separately for each of four therapy-defined groups
of subjects, and then the final correlation statistic was the sample-
size weighted average of the group-specific correlations. This type
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of adjustment for therapy is called a stratified analysis, and the
therapy-defined groups are called strata (or one group is called a
stratum).

In this application, prior biological and clinical knowledge was
used to define the most interesting result for the association of gene
expression with the seven endpoints. First, it is most interesting if the
correlation of expression with CTP1 and CTP2 are both equal to ±1.
For purposes of constructing the vector d, let dctp1 =dctp2 =1. Given
this selection for dctp1 and dctp2, the most interesting correlation of
expression with DNA1 and DNA2 is ddna1 =ddna2 =−1, because
the PD effect of ara-CTP is to interfere with DNA synthesis.
Interference with DNA synthesis results in cell death and therefore
leads to a reduction in WBC. Thus, dwbc =−1. Increased levels of
ara-C in leukemic blasts should reduce the amount of tumor in the
marrow (a better tumor response), and therefore dresp =1. Effective
therapy should reduce the risk of relapse and death, thus defs =−1.
Therefore, by (2), the PROMISE statistic for this application was
defined as

Rg(X,yg)=1

7

(
Tctp1 +Tctp2

)

− 1

7

(
Tdna1 +Tdna2 +Twbc

)

+ 1

7

(
Tresp −Tefs

)
.

(4)

The subscript g is omitted from the right-hand side of (4) for
simplicity of notation. The PROMISE statistic is scaled by 1/7
so that −1≤Rg ≤1. A positive Rg indicates that the expression of
probe set g shows a therapeutically beneficial pattern of correlation
with the endpoint variables, i.e. higher expression associates with
therapeutically desirable values of the endpoint variables. Similarly,
negative Rg indicates that the expression of probe set g shows a
therapeutically detrimental pattern of association with the endpoint
variables.

The statistical significance of each individual endpoint’s
association statistic and the PROMISE statistic were determined
using the same set of 10 000 permutations of the assignment of
expression data to endpoint data. The permutations were restricted
so that data reassignments were performed separately within each
therapy-defined stratum because the differences in therapy are
important factors for ara-C pharmacology and clinical outcome, as
previously described (Rubnitz et al., 2009). For each gene g, the
P-value was computed by letting ρ0

g =0 in Equation (3). Several
interesting biological findings will be reported in detail elsewhere.
Here, we describe a few results that illustrate the advantages of
PROMISE.

The results for the human equilibrative nucleoside transporter
1 (hENT1) gene (probe set 201802_at) clearly illustrate the
interpretative advantage of PROMISE. hENT1 is a solute carrier
that brings ara-C into the cell (Hubeek et al., 2005). Given this
role in ara-C metabolism, one would expect hENT1 to show a
therapeutically beneficial pattern of association. This was indeed
the case (Table 1 and Fig. 2). The expression of hENT1 was
positively associated with CTP1, positively associated with CTP2,
negatively associated with DNA1, negatively associated with
DNA2, negatively associated with WBC, positively associated with
RESP and negatively associated with the risk of an EFS event (Table
1). However, it is difficult to interpret the statistical significance
of the association pattern with the seven individual P-values.

Table 1. The association statistic, P-value and rank among 22 215 probe
sets (by P-value) for hENT1 from each individual endpoint analysis and the
PROMISE analysis

Analysis Corr P-value Rank

CTP1 (day 1 ara-CTP level) + 0.16 0.2579 6723
CTP2 (day 2 ara-CTP level) + 0.17 0.1890 4374
DNA1 (day 1 DNA synth.) −0.30 0.0082 1084
DNA2 (day 2 DNA synth.) −0.39 0.0214 726
WBC − 0.09 0.5662 13 485
RESP + 0.40 0.0091 343
EFS −0.07 0.2765 6874
PROMISE + 0.23 0.0033 225

A B

C D

Fig. 2. Beneficial pattern of association for hENT1. (A) The log-CTP1 value
versus the log-expression of hENT1. (B) The log-DNA1 value versus the log-
expression of hENT1. (C) A boxplot of hENT log-expression for subjects
with no response (NR), partial response (PR) and complete response (CR) to
the initial course of chemotherapy. (D) The Kaplan–Meier estimates of EFS
for subjects with hENT1 expression values greater than the median (black
line) and those with hENT1 expression less than the median (gray line).
Scatter plots illustrating the association of hENT1 expression with CTP2,
DNA2 and WBC are not shown. Unlike the statistical analysis reported in
Table 1, the above figures do not distinguish between subjects from different
therapy groups.

The PROMISE analysis indicated that the beneficial pattern of
association was very significant (Rg = 0.23, P = 0.0033, rank =
225). Thus, PROMISE identified this gene of known relevance
to ara-C metabolism and provided a straightforward interpretation
of statistical significance for the interesting pattern of associations
with the endpoint variables. The individual endpoint analyses also
provided insights that may be helpful for biological interpretation
of the results. The associations with DNA1, DNA2 and RESP were
strong contributors to the final value of the PROMISE statistic
(correlations from 0.30 to 0.40). The associations with CTP1
and CTP2 were moderate contributors, and the associations with
WBC and EFS were relatively weak contributors. Other genomic
features had similar PROMISE statistics as hENT1, but for some
of those features the associations with individual endpoints were
substantially different.

In our application, PROMISE clearly had greater power to
identify genes with interesting patterns of association. First,
PROMISE identified a substantially greater proportion of all genes
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A B

Fig. 3. Proportion of probe sets called significant as a function of P-value
threshold. In (A and B), the results for PROMISE are shown by the thick
black curve and the reference line y=x is shown by the thick gray line. In
(A), the results for pairwise overlap analyses are shown by the thin black
lines. In (B), the results for individual endpoint analyses are shown by the
thin black lines.

as significant than did any pairwise overlap analysis (Fig. 3A). In
the PROMISE analysis, 498 probe sets were significant at P=0.01
level. In contrast, only 92 probe sets were significant at P=0.01
for DNA1 and DNA2, the greatest number of overlapping probe
sets for any pair of individual endpoint analyses performed at the
P=0.01 level. By definition, overlap of three or more endpoints
detected fewer probe sets at the P=0.01 level. No probe set was
significant in all seven individual endpoint analyses at a P<0.15.
Second, PROMISE identified a greater proportion of genes with an
interesting pattern of association than did any individual endpoint
analysis (Fig. 3B). For 719 probe sets, the statistics measuring the
association of expression with the individual endpoints all had signs
matching (or all had signs mismatching) those of the interesting
result vector d. PROMISE identified 154 of these probe sets as
significant at P=0.01. The individual endpoint analysis for DNA2
detected 34 of the probe sets with an interesting pattern of association
at the P=0.01 level, the best among any individual endpoint
analysis.

A permutation-based GSEA was also performed for each
individual endpoint analysis and the PROMISE analysis. The
pathway column of the Affymetrix annotation dataset was used to
define 233 gene sets. For each gene set, the gene-set enrichment
statistic was defined as the average of the absolute value of the
member genes’ correlation statistics. PROMISE identified 42 of
these gene sets as significant at the P=0.05 level. Biologically
interesting gene sets with significant PROMISE results included the
DNA replication reactome gene set (P=0.0248) and the gene set
for the G1-to-S phase of the cell cycle (P=0.0113). These gene
sets are very interesting in this application because ara-C interferes
with DNA synthesis (or replication), and clearly the cell cycle is
very important in cancer. These two gene sets were significant at the
P=0.05 level in the individual endpoint analysis for DNA1, but not
in any other individual endpoint analysis. No gene set was significant
in all seven individual endpoint analyses at P<0.15. Thus, GSEA
based on PROMISE identified more gene sets than did searching
for overlap among the results of gene-set analyses for individual
endpoints.

6 DISCUSSION
PROMISE is a general procedure designed specifically to increase
statistical power to identify genomic features that show a
biologically most interesting pattern of association with multiple
endpoint variables. PROMISE defines a test statistic that measures
the evidence for the association pattern of interest by projecting
the observed vector of association statistics onto the vector of
conceptually most interesting values for those statistics. Permutation
is used to compute P-values. Unlike classical multivariate statistical
methods such as PC or CC, which are designed for data with a
multivariate normal distribution, PROMISE can manage ordinal and
censored time-to-event endpoints (Fig. 2). Furthermore, as observed
in the simulation study in Section 4, CC and PC are not designed
to detect a specific pattern of association and therefore do not
have as much statistical power to detect the association pattern
of interest as does PROMISE. PROMISE showed better power
to identify genes with an interesting pattern of association in our
example application than searching for such genes within lists of
significant genes identified by individual endpoint analyses. Finally,
GSEA can be incorporated into PROMISE so that the advantages of
both approaches may be simultaneously realized. In our example,
the PROMISE-based GSEA gave biologically interesting results
and showed much greater statistical power than identifying overlap
among the results of the individual-endpoint GSEAs.

Certainly, PROMISE is a very general procedure that must be
customized to specific applications. The general concept presented
here can be easily extended to accomodate stratified analyses
by incorporating a stratum variable into the statistics Tj(·) and
Rg(·) and restricting the permutations appropriately. As with other
permutation-based methods, defining too many strata for stratified
analysis may severely limit the statistical power of the analysis by
reducing the number of available permutations. Additionally, the
statistics Tj(·) and the most interesting results dj must be defined in
an application-appropriate manner. Also, PROMISE can be adapted
so that SNP genotypes can be used as the genomic variables.

Future research should explore how to modify or generalize the
correlation statistics and the way they are combined to form the
PROMISE statistic. In this work, we used a geometric interpretation
of the correlation vector to motivate the dot product as an objective
way to uniquely define the PROMISE statistic given sufficient prior
biological knowledge about the endpoint variables. Other ways to
define the PROMISE statistic may prove useful in practice as well.
Another approach to define the PROMISE statistic would be to
define a vector d that subjectively weighs the correlations according
to their practical relevance. For instance, in our example application,
one may wish to give more weight to EFS due to its obvious
importance for the patients. Additionally, it would be interesting to
develop methods to define interesting result vectors and test statistics
for applications with thousands of endpoint variables and thousands
of genomic variables.

However, great caution should be exercised when using
subjectively defined d because the statistical significance may
be exaggerated if d is not selected a priori or if PROMISE is
used as an exploratory procedure to perform many analyses with
different d vectors. Users should definitely avoid using the observed
correlations for specific genes to define d. If d is defined to maximize
the dot-product in (2) for a specific gene, the procedure will give
a very small P-value for that gene. In this case, the small P-value
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will greatly exaggerate statistical significance. In such a situation,
the small P-value reflects the fact that the coefficients d were
selected to maximize the statistic Rg instead of indicating that
the observed correlations did not arise by chance. If a search is
performed for d, the P-value should adjust for that search in some
manner. Nesting the search within each permutation round would
be one way to perform such an adjustment and give meaningful
P-values.

We do not recommend that the PROMISE procedure be used
for applications in which there is not adequate prior biological
knowledge about the endpoint variables to objectively define the
vector d. Our simulations suggest that canonical correlation is a
good method for such a setting if the variables are appropriate for
CC analysis.
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