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ABSTRACT

Motivation: Quantitative mass spectrometry-based proteomics
requires protein-level estimates and associated confidence
measures. Challenges include the presence of low quality or
incorrectly identified peptides and informative missingness.
Furthermore, models are required for rolling peptide-level information
up to the protein level.
Results: We present a statistical model that carefully accounts for
informative missingness in peak intensities and allows unbiased,
model-based, protein-level estimation and inference. The model
is applicable to both label-based and label-free quantitation
experiments. We also provide automated, model-based, algorithms
for filtering of proteins and peptides as well as imputation of missing
values. Two LC/MS datasets are used to illustrate the methods. In
simulation studies, our methods are shown to achieve substantially
more discoveries than standard alternatives.
Availability: The software has been made available in the open-
source proteomics platform DAnTE (http://omics.pnl.gov/software/).
Contact: adabney@stat.tamu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In mass spectrometry-based, bottom-up, proteomics, protein
abundance measurements must be translated from MS peak heights
for constituent peptides (Nesvizhskii et al., 2007). However,
this translation is complicated by many factors. MS intensities
are derived from peak heights or areas but do not represent
absolute abundance levels. Intensities can vary greatly across
peptides from the same protein (Fig. 1), due to, for example,
differing ionization efficiencies or other chemical characteristics.
For ‘shotgun’ proteomics measurements (Aebersold and Mann,
2003), many peptides that are observed in some samples are not
observed in others, resulting in widespread missing values (Fig. 2).
Furthermore, the fact that a peak was not observed for a peptide is
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often due to that peptide’s presence at a lower abundance than the
instrument can detect. Because of this informative missingness, care
must be taken when handling the missing values to avoid biasing
abundance estimates. There will inevitably be some highly variable
peptides, as well as incorrect identifications in the list of peptides
used in an analysis, and these may greatly diminish the quality of
the data for the proteins to which they are assigned. Diagnostic tools
for finding and excluding such outlier peptides are needed.

Ideally, MS intensity would be a linear function of absolute
abundance. At the least, we would hope that relative intensities for
a single peptide under different conditions change monotonically
with actual abundance. There are several ways in which these
ideals might not be realized, including ion suppression effects,
ionization inefficiencies, peptide misidentification, etc. (Tang et al.,
2004). However, there is evidence that linear relationships between
intensity and abundance can be attained using microcapillary
liquid chromatography (µLC) separation coupled with electrospray
ionization (ESI) MS/MS, based on either stable isotope labeling
or label-free approaches (Gygi et al., 1999; Wang et al., 2003). In
this article, we focus on the label-free approach, basing abundance
estimates on peak areas or heights, although the methodology applies
equally well to labeled experiments.

Existing approaches to protein quantitation do not generally
address the information present in censored peak intensities. Instead,
analysis is either carried out on complete data, excluding the missing
values [Hill et al. (2008); Oberg et al. (2008); Wang et al. (2003);
also, commercial software like Agilent’s Spectrum Mill], or based
on imputed data using standard imputation routines like k-nearest
neighbors (KNN) (Troyanskaya et al., 2001) for filling in the missing
values. Both of these strategies are designed for the scenario in which
missingness is statistically independent of both its intensity, had it
been observed, and the intensities of other peaks (Little and Rubin,
2002). In the presence of censoring, missingness is not independent
of intensity, and these strategies can lead to extremely biased
estimates, especially in proteomics data where there is frequently
very high (≈50%) missingness (Fig. 2). Wang et al. (2006) discuss
this issue and propose a probability model for censoring that can be
used to impute censored values. However, their model is specific
to a single experimental design, in which replicate measurements
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are taken over a sequence of days and protein abundances are
expected to decrease systematically with time. Protein estimation
and inference is typically done by the ANOVA analysis of either
peptide- or protein-level peak intensities. Protein rollup is often
accomplished by averaging the intensities for a protein’s peptides,
after suitable scaling or normalization of the sibling peptides. The
DAnTE software (Polpitiya et al., 2008), for example, constructs
a median protein abundance profile across samples and scales all
other proteins to this profile.

We present here a comprehensive statistical model, applicable to
a wide range of experimental designs, for protein-level abundance in
mass spectrometry experiments that carefully accounts for expected
missingness mechanisms. A likelihood model is formulated that
expresses protein abundance in terms of peptide-level intensities.
The model accounts for the fact that many peptide measurements
will be unobserved. Two missingness mechanisms are modeled, one
completely random and the other abundance-dependent. Completely
random missingness occurs when the fact that a peptide was
unobserved in a sample has nothing to do with its abundance or
the abundance of any other peptides. This is expected to affect a
relatively small proportion of the peptides considered in an analysis.
Abundance-dependent missingness boils down to censoring, where
a peptide is either not present or is present at too low an abundance
to be detected by the instrument. In this case, we have partial
information for the peptide intensity, in that we know it must be
less than the detection limit of the instrument.

Model parameters are estimated by empirically maximizing the
likelihood function. We also use our model to derive an automated
filtering routine, where formal concepts of information content from
maximum likelihood theory guide the selection and exclusion of
proteins and peptides in an analysis (Fig. 1). Furthermore, we report
an imputation routine that uses our model to generate random values
for the missing intensities. We provide the evidence that using
the imputation routine followed by standard ANOVA or regression
analyses results in estimates and inferential decisions that are very
similar to those obtained by empirical maximization (Fig. 3). The
model and tools apply to a wide range of experimental designs and
allow inference on any protein or peptide contrast of interest. Finally,
in simulations, the model is shown to achieve substantially more
discoveries than standard alternatives (Fig. 3 and Table 1).

2 METHODS

2.1 Experiments
2.1.1 Diabetes Our samples consisted of frozen human serum samples
from the DASP (years 2000–2005), with 10 healthy control individuals
and 10 patients recently diagnosed with T1DM. Six high-abundant plasma
proteins that constitute ∼85% of the total protein mass of human plasma
were removed and the serum extracted. The samples were then analyzed
following the accurate mass and time tag (AMT) strategy (Pasa-Tolic et al.,
2004; Zimmer et al., 2006). The final LC-FTICR MS datasets were processed
using the PRISM Data Analysis system (Kiebel et al., 2006), a series of
software tools developed in-house.

2.1.2 Simulation We also created six synthetic datasets by computer
simulation, based on our model for peak intensities described in Section 2.2.
The structure of the data mimicked that of the diabetes data described above,
with the same number of proteins and the same numbers of peptides per
protein, similar effect sizes and similar residual errors. The simulations
differed in terms of (i) the proportion of missing data, (ii) the proportion

of proteins that are differentially expressed and (iii) the proportion of
missing values that are missing due to ‘completely random’ mechanisms
(Section 2.2). These simulated data allow us to evaluate the proposed method
in terms of precise performance measures such as sensitivity and specificity.
For full details of the simulations, see the Supplementary Material.

2.1.3 Salmonella virulence The goal of this experiment was to assess the
effects of deleting 13 transcriptional regulators essential for S.typhimurium
virulence (spvR, fruR, himD, phoP/Q, ssrA/B, slyA, hnr, rpoE, csrA, rpoS,
STM3120, crp and ompR/envZ) in mice by global proteomics profiling.
Bacteria were grown in a low-pH, low-Mg2+ minimal media (MgM)
designed to mimic the intracellular environment of the macrophage and
shown to induce the virulence program in S.typhimurium. Three biological
replicates for each mutant were grown, then pooled and partitioned into
a soluble and an insoluble fraction. Proteins were isolated and subjected to
LC/MS analysis with three technical replicates per sample analyzed using the
AMT tag approach; six technical replicates were also obtained for the wild-
type. This resulted in 90 individual datasets overall, representing different
regulator mutant/culture condition combinations. For the purposes of this
analysis, we only considered the 45 samples from the soluble fraction.

2.2 A model for protein-level abundance
We begin the model-building process by examining Figure 1, which shows
the observed log2-intensity profiles for two proteins from the diabetes data.
The first is a lumican protein (IPI:00020986.2), for which six peptides were
observed. Lumican has been found to be associated with diabetes in previous
studies (Lehti et al., 2006). It is apparent from the figure that average
intensity differs across peptides. Also, while many control intensities were
apparently censored on the low end, it appears reasonable to assume that
group differences remain roughly constant across peptides. In other words,
whereas the average intensity of one peptide may differ from other peptides
of the same protein, the difference between control and diabetic intensities in
the same protein should remain approximately constant. The second protein
is an antithrombonin III variant (IPI:00032179.2). In both proteins, peptides
that have been shaded out vertically were filtered from the analysis due to
poor data quality, as determined by a model-based filtering routine described
in the later section.

The observations above suggest a protein-specific additive model
involving main effects for peptide and group. In particular, let yijkl be the
log2-transformed intensity for protein i and peptide j in comparison group
k and sample l; we consider a model of the form

yijkl =Proti +Pepij +Grpik +errorijkl . (1)

Here, Proti represents the overall average intensity for protein i, Pepij

represents the effect of peptide j in protein i and Grpik represents the effect
of group k in protein i. For a given protein, the peptide effects are constrained
to sum to zero; that is,

∑
jPepij =0. Similarly, for a given protein, the group

effects are constrained to sum to zero;
∑

kGrpik =0. The errorijkl term
represents random error, assumed to follow the Normal distribution with
mean zero and variance σ 2

ij . Note that we assume a separate error variance
for each peptide but a common variance between comparison groups in the
same peptide.

For the purposes of comparing protein abundance levels, the parameters
of interest are the Grpik . In the diabetes study, for example, peptide j of
protein i has overall mean intensity Proti +Pepij . This is an average of
the intensities for this peptide in the control and diabetic groups. If k =1
indicates the diabetic group and k =2 the control group, then Grpi2 −Grpi1

is the expected difference in intensity between controls and diabetics in
protein i. To test for differential expression, we can test the null hypothesis
that Grpi2 =Grpi1 =0; note that, since

∑
kGrpik =0, this is equivalent to

testing whether Grpi2 =0. Furthermore, the model naturally handles more
than two comparison groups (K , say), in which case we test a null hypothesis
that Grpi1 =Grpi2 =···=GrpiK =0.
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Fig. 1. Peptide profiles for two proteins in the diabetes data that were found to be overexpressed in diabetics relative to controls: (A) lumican (IPI:00020986.2)
and (B) an antithrombonin III variant (IPI:00032179.2). Note the peptide-specific baseline intensities, the apparent censoring of low intensities and the consistent
group differences across peptides. The data have been log2-transformed. Peptides that have been shaded out vertically were filtered from the analysis due to
poor data quality by our model-based filtering routine. The horizontal lines and shaded regions show our protein-level estimates for each group, as well as
approximate 95% confidence intervals for those estimates.

2.2.1 Missing and censored values Figure 2 compares the proportion
of missing peaks for a peptide to the average of the peptide’s observed
peaks in the first sample from the diabetes experiment. Overall, 32% of the
attempted recordings were unsuccessful. The systematic pattern reflects the
fact that low-abundance peptides are more likely to have missing peaks.
Many unobserved peaks therefore correspond to peptides that are either
absent in a sample or present at levels below the detection limit of the mass
spectrometer. In statistical parlance, such peaks have been censored to the
left. While we do not know the actual peak height, we do know that the peak
height is below the instrument’s detection threshold.

Consider, for example, the second lumican peptide in Figure 1. This
peptide was observed in only 2 of 10 controls, but in 9 of 10 diabetics.
Suppose that the detection limit of the instrument was 16.9 (the smallest
observed intensity in the entire experiment was 16.91). A reasonable
explanation for the observed profile for the second peptide would then be
that the abundance level in controls is lower than that in diabetics, with
most control samples giving rise to peaks below the instrument’s detection
limit. To quantify peptide abundance in the two groups, we might average
the observed peaks. While this would be reasonable for the diabetics, we
would overestimate the abundance of the controls. A similar problem arises
from replacing the missing control values with the average of the two
observed intensities. This underestimation of the control group would lead
to an estimate of the group difference that is attenuated toward zero; such
attenuation has been reported in validation studies (Old et al., 2005). In other
words, failure to account for censored peaks reduces our ability to detect
differences. Note that replacing the missing values with a small number
will underestimate the variability of intensities, resulting in underestimated
standard errors and hence overestimated significance levels. As discussed
below, standard statistical techniques can be employed to carefully account
for censoring.

On the other hand, other unobserved peaks are likely unobserved for
completely random reasons, regardless of the peptide abundance levels. This
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Fig. 2. Missingness proportions by observed mean for peptides in the first
sample from the diabetes experiment. Each point represents a peptide. The x-
axis indicates the average of the observed intensities, and the y-axis indicates
the proportion of missing peaks. There are generally more peaks missing for
peptides with lower observed intensities, suggesting that many missing peaks
have been censored. The solid curve is a natural cubic spline with 5 degrees
of freedom, and the dashed line is the estimated random missing proportion
for this sample.
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can happen due to the ionization inefficiencies, ion-suppression effects and
other technical factors (Tang et al., 2004). These peaks are said to be ‘missing
completely at random’ and can be safely ignored or imputed (Little and
Rubin, 2002). Incorrectly treating randomly missing peaks as censored or
vice versa will result in biased abundance estimates. We cannot know whether
any one unobserved peak is randomly missing or censored. However, we can
estimate probabilities of the two events from the entire collection of data and
use these to construct unbiased abundance estimates.

2.2.2 Probability model We use maximum likelihood estimates (MLEs)
of protein abundance under the above model assumptions. These are obtained
by first translating our model assumptions into probability statements,
combining these probabilities into the likelihood, then choosing the values of
the unknown model parameters that maximize the likelihood. The likelihood
gauges how likely it would be to observe our data, given a particular set of
values for the model parameters. Maximum likelihood estimation therefore
seeks parameter values for the model that best explain the data (Lehmann
and Casella, 2003). We describe the model and estimation approach in detail
in what follows.

Consider the j-th peptide of the i-th protein in the k-th comparison group
and the l-th sample. The expected intensity is µijk =Proti +Pepij +Grpik .
Further, based on the random error distributions, we assume that sampled
intensities follow the normal distribution with mean µijk and variance σ 2

ij .
We assume that there are two independent mechanisms by which an intensity
will not be observed. The first is due to censoring at the unknown detection
threshold ci for protein i. The probability that censoring occurs is the left-
hand tail probability of the N(µijk,σ

2
ij ) distribution, evaluated at a peptide-

specific censoring threshold cij . We denote this by �
(
(cij −µijk)/σij

)
, where

� is the cumulative distribution function (cdf) of the N(0,1) distribution.
The second mechanism is random missingness, and any peak in sample l is
assumed to be affected with probability πl .

Let Wijkl be an indicator of whether yijkl is unobserved (0 if observed and
1 if unobserved). Note that Wijkl =0, and we observe yijkl , if and only if the
peak is neither randomly missing nor censored. By the independence of these
two mechanisms, we therefore have that the probability of a missing peak is

P(Wijkl =1)=1−(1−πl)

(
1−�

(
(cij −µijk)/σij

))

=πl +(1−πl)�
(
(cij −µijk)/σij

)
.

This is the contribution to the likelihood of an unobserved peak. Similarly,
the likelihood contribution of an observed peak yijkl >cij is (1−πl)φ

(
(yijkl −

µijk)/σij
)
/σij , where φ is the probability distribution function (pdf) of the

N(0,1) distribution. Putting these pieces together and combining all peaks,
the likelihood for protein i is of the form

Li(θ )=
mi∏

j=1

K∏
k=1

n∏
l=1

[
(1−πl)φ

(
(yijkl −µijk)/σij

)
/σij

]1−Wijkl

∗
[
πl +(1−πl)�

(
(cij −µijk)/σij

)]Wijkl

,

(2)

with the restriction that all observed yijkl exceed the relevant detection
thresholds cij . Actually, the full likelihood is the product of the protein-
specific pieces, L(θ )=∏M

i=1 Li(θ ). However, as discussed below, heuristic
estimates for the πl allow us to consider each protein-specific likelihood
separately, and this greatly reduces the computational burden.

2.2.3 Maximum likelihood estimation The likelihood is viewed as a
function of the unknown parameters πl , cij , µijk and σij , i=1,2,...,M,
j=1,2,...,mi, k =1,2,...,K and l=1,2,...,n, which we have collectively
denoted as θ . Our estimation goal is to maximize expression (2) for each
protein with respect to the unknown parameters, resulting in the MLEs
θ̂ =maxθ L(θ ).

Since the likelihood is increasing in the cij , and any observed yijkl had
to exceed the thresholds, the MLE of cij equals the minimum observed

intensity for peptide j of protein i. Analytical solutions for the other MLEs
are not available, necessitating an iterative solution. However, the random
missingness probabilities πl have heuristic estimates, based on a simple
observation. Recall that Figure 2 shows missingness proportions versus
observed average intensities in the diabetes example. At the far right side
of the x-axis, there are many complete peptides. Assuming that the intensity
distributions of these peptides are shifted enough to avoid censoring, we can
interpret any systematic vertical deviation from zero as being due to random
missingness. To estimate the systematic part to Figure 2, we fit a natural cubic
spline with 5 degrees of freedom, shown by the solid curve in the figure. We
then estimate πl as the fitted value of the curve at the maximum average
intensity, shown by the dashed line in the figure; see the Supplementary
Material for details. This results in the estimate π̂l =0.083, meaning that we
expect 8.3% of all peaks to be missing randomly in this sample.

While the remaining mean and SD parameters do not have analytical
solutions, numerical optimization algorithms can be used to iteratively
search for their MLEs. Searching the parameter space of all proteins and
peptides simultaneously is not practical, since finding the best direction
to search requires a prohibitive amount of computation. Instead, since we
initially estimate the πl parameters, we can break the likelihood into protein-
specific pieces and maximize each separately. Thus, estimation proceeds
by first forming the MLEs of the censoring thresholds cij and the random
missingness probabilities πl , then treating these as known in protein-specific
algorithms for the mean and SD parameters. We use a generic Newton–
Raphson algorithm and provide the requisite first and second derivatives of
the likelihood in the Supplementary Material.

2.2.4 Hypothesis testing and the false discovery rate Recall that, in terms
of the model statement in Equation (1), the relevant null hypothesis for testing
differential expression in protein i is H0i: Grpi1 =Grpi2 =···=GrpiK =0.
We use likelihood ratio statistics to test this null hypothesis for each protein.
A likelihood ratio statistic is a ratio of the maximized likelihood computed
under the null hypothesis to the maximized likelihood computed under
the alternative hypothesis. In practice, we estimate the null likelihood by
plugging in MLEs θ̂0 computed under the null and the alternative likelihood
by plugging in unconstrained MLEs θ̂ . Thus, the likelihood ratio for protein
i is

�i = Li(θ̂0)

Li(θ̂ )
.

The standard likelihood ratio test statistic is actually −2log�i, as this has
a χ2-distribution with K −1 degrees of freedom under the null hypothesis
(Lehmann, 1997). A P-value for protein i can therefore be computed as the
right-hand tail probability of the χ2

K−1-distribution, evaluated at −2log�i.
By relying on a parametric form, we are assuming that our model is
approximately correct or that the sample size is large. We point out, however,
that standard alternatives like ANOVA require parametric assumptions in
small samples and thus are susceptible to similar small-sample difficulties.
While it would be preferable to assign significance levels by non-parametric
resampling techniques like the bootstrap, the bootstrap is not easily applied
to the complex data structure considered here.

In a typical comparative quantitative proteomics experiment, hundreds to
thousands of hypothesis tests will be performed. When using P-values to
assign statistical significance to proteins, we are focusing on the probability
of a single false positive out of all tests. In order to keep this probability
small when conducting a large number of hypothesis tests, we must choose
a P-value cutoff that is much smaller than the traditional cutoffs of 0.01 or
0.05. While this will stringently control false positives, such a small cutoff
will mean that many interesting proteins are missed. A more practical error
measure in the context of many hypothesis tests is the false discovery rate
(FDR) (Benjamini and Hochberg, 1995) and its associated Q-value (Storey
and Tibshirani, 2003). For example, selecting all proteins with a Q-value
of 0.05 leads to a FDR of 5% among all significant proteins. In contrast,
a P-value threshold of 5% leads to a 5% false positive rate among all null
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proteins. The Q-value is therefore a relevant significance error measure for
the selected proteins.

2.3 Preprocessing
2.3.1 Model-based filtering Peptides and proteins of poor quality are
typically filtered out prior to analysis. The definition of ‘poor quality’ is
usually subjective, however, having to do with (i) the number of times a
peptide or protein was observed, (ii) the variability of a peptide relative
to other peptides from the same protein, (iii) the agreement of a peptide’s
behavior across samples with other peptides from the same protein, etc.
Peptides or proteins with too few observations contribute little information
to the analysis. Peptides that differ wildly from sibling peptides from the
same proteins may be false identifications.

One of the benefits of having a probability model is that we can use it
to quantify the information content of a protein or peptide. In likelihood
theory, the information matrix is the negative expected value of the second
derivative matrix of the log-likelihood function. In large samples, the inverse
of this matrix contains the variances of the maximum likelihood estimators
(Ferguson, 1996). Hence, large information matrix entries correspond to
parameters whose estimates we can be highly confident in. In the context
of our model (1), the parameters of interest are the protein-level group
differences. For any protein and set of peptides within that protein, we can
estimate the information matrix and quantify the information content for the
protein-level group difference parameters by taking the scaled determinant of
the corresponding matrix block. We filter out proteins for which no collection
of peptides can produce an identifiable model, with non-zero information
matrix determinant. We then use a greedy search algorithm to select peptide
sets for each remaining protein that produce an optimal information content
and filter out the rest. For the two proteins in Figure 1, peptides that are shaded
out vertically were filtered from the analysis due to insufficient information
content. As an example, the two filtered peptides for the lumican protein had
too many censored values and did not contribute any further information
over the other, more complete, peptides. In the examples considered here,
our filtering routine resulted in ∼30% of all peptides being removed from
the analysis. For details of the filtering algorithm, see the Supplementary
Material.

2.3.2 Model-based imputation Our model can also be used to impute
missing values. With estimates of the model parameters in hand, we can
simply replace the missing values with random numbers drawn from the
estimated likelihood model. Standard visualization, estimation and inference
can then be performed without the use of any special methodology.
Furthermore, inference on the resulting complete data will be unbiased
under the model assumptions. We obtain preliminary estimates of our model
and use these to simulate random numbers from the estimated intensity
distributions to replace missing values. To avoid overfitting issues associated
with single imputation as well as the awkward data management required
with multiple imputation (Little and Rubin, 2002), we implement a hybrid
approach. A single imputation is carried out, but then we adjust the P-value
distribution to minimize the effect of overfitting. For details of the imputation
algorithm, see the Supplementary Material.

As we discuss with the examples below, the results from standard
regression on complete data from our model-based imputation routine are
very similar to the full likelihood model results obtained by numerical
optimization. This is particularly relevant in the analysis of complex
experiments, like the Salmonella mutant virulence example considered
below. In this case, there are many comparison groups, and the nature of
the scientific question of interest requires non-standard hypothesis testing
procedures and an implementation of the bootstrap, neither of which are
easy in the context of the full censored likelihood model (1). Because of the
similarity between the results based on the censored likelihood model and
imputation, together with the flexibility gained by working with complete
data, the model-based imputation routine may be preferred in complex
experimental designs and/or very large datasets.
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Fig. 3. ROC curve comparing the performance of (a) numerical estimation
of our model, (b) estimation of our model after model-based imputation,
(c) ANOVA on just the complete data, throwing out all missing values
and (d) ANOVA after simple row-mean imputation. Our model achieves
substantially higher sensitivity for each specificity, as compared with the
standard alternatives.

3 RESULTS

3.1 Simulated data
We carried out four analyses: (a) filtering, then numerical estimation;
(b) filtering and model-based imputation, then ANOVA; (c) ANOVA
on just the complete data, throwing out all missing values; and
(d) ANOVA after imputation by simple row-means. As mentioned
above (full details in the Supplementary Material), the simulations
were constructed to mimic the diabetes data as closely as possible.
Thus, these results describe the performance of our method under
the assumptions of our model, in a scenario that closely resembles a
real-world proteomics dataset. Figure 3 shows a receiver operating
characteristic (ROC) curve for the simulation with 40% missingness.
As can be seen in the ROC curve, our method achieves substantially
higher sensitivity at any given specificity, as compared with both
simple alternatives. This is true for the numerical estimates of our
model as well as ANOVA on the data after applying our model-based
imputation routine. Both versions of our method resulted in null
P-values that were approximately uniformly distributed between
0 and 1, as expected (Dabney and Storey, 2006; Storey, 2002).
As compared with the estimates from our method, methods (c)
and (d) resulted in attenuated group effects and underestimated
standard errors. Table 1 summarizes the results of all six simulations,
in which it is apparent that both implementations of our method
outperform standard alternatives under various model scenarios, and
particularly when there is >20% missingness. When there are few
missing values, our method performs very similarly to the ANOVA
on the complete data. This is as expected since, by inspection of our
likelihood model (2), our method reduces to standard ANOVA when
there are no missing values. Taken together, these results indicate
that the proposed method produces valid estimates and inference
in general, and can achieve substantially more discoveries than
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Table 1. Summary of all simulations

Method Simulation

S1 S2 S3

(i) (ii) (i) (ii) (i) (ii)

(a) 0.85 0.90 0.79 0.82 0.77 0.83
(b) 0.84 0.89 0.79 0.78 0.79 0.83
(c) 0.74 0.89 0.75 0.67 0.76 0.77
(d) 0.60 0.85 0.51 0.56 0.70 0.72

Shown are the sensitivities achieved at a specificity of 0.90. Simulations S1 have 50%
of the proteins differentially expressed and π =0.05, with (i) 40% and (ii) 20% overall
missingness, respectively. Simulations S2 have 40% overall missingness with π =0.05,
with (i) 30% and (ii) 15% of the proteins differentially expressed. Simulations S3 have
50% differential expression, 40% overall missingness, with (i) π =0.15 and (ii) π =0.10.
Both implementations of our model outperform simple alternatives in the presence of
>20% missing data. Note that Simulation S1(i) is shown in more detail in Figure 3.

standard approaches in typical MS-based proteomics datasets for
which there are widespread missing measurements.

3.2 Diabetes data
We found substantial differential expression overall in the diabetes
experiment. After filtering, we were left with 151 proteins, of which
90 were called significant at q=0.05. Nearly all of the selected
proteins were overexpressed in diabetics relative to controls.
Figure 1 shows two examples of differentially expressed proteins:
lumican and antithrombonin III. For lumican, the estimated group
difference (control minus diabetic) is −1.28 on the log2 scale,
meaning that control raw abundance is estimated to be 2−1.28 ≈40%
that of diabetics on average. The estimated standard error of this
estimate is 0.17, giving an approximate 95% confidence interval
of [−1.62,−0.94]. Model-based standard errors and confidence
intervals are also easily attained for peptides and any model contrast
of interest. For example, the horizontal lines and shaded regions
in Figure 1 show our protein-level estimates for each group,
together with approximate 95% confidence intervals. We note that
the lumican protein, as well as alpha-2-glycoprotein (zinc), were
selected by our analysis and agree with a previously published
biomarker study using these data (Metz et al., 2008). Also, using
our model-based imputation routine resulted in a similar number
of differentially expressed proteins at a 5% FDR (104 versus 90),
while the standard alternative methods considered in the simulation
studies, ANOVA on the complete data only and ANOVA after
simple row-mean imputation, both found only 42 proteins at 5%
FDR. This is a more substantial discrepancy than was observed
in the simulations, perhaps due to a greater impact of our model-
based filtering routine. We did not specifically include cases in the
simulations that would highlight the filtering routine, but to the
extent that it catches falsely identified or otherwise poor quality
peptides, the filtering routine can substantially improve the quality
of the data and hence significance analysis performance.

3.3 Salmonella mutant virulence data
The goal of this experiment was to find proteins that differ from
wild-type Salmonella in the majority of the 13 mutant strains, as
such proteins are thought to be best targets for disrupting virulence.

After filtering, we used standard least-squares regression to fit the
model

yijkl =WTi +PEPij +MUTik +errorijkl,

where WTi is the mean protein-level abundance for the wild-type,
the PEPij are peptide effects and the MUTik are mean differences
between the mutant and wild-type groups. We therefore wish to test
the null hypothesis that all MUTik terms equal zero, for each protein.

For the i-th protein, we first compute mutant-specific test statistics

Tik = ˆMUTik

ˆs.e.( ˆMUTik)
,

where ˆs.e.( ˆMUTik) is the model-based standard error estimate for
ˆMUTik , k =1,2,...,13. A large absolute value for the k-th of these test

statistics is indicative of a difference between mean abundance of the
k-th mutant and wild-type. We use Ti =#{|Tik |≥2 :k =1,2,...,13}
as the protein-level test statistic, where a large value of Ti is the
evidence that many mutants differ from wild-type. To compute
a P-value, we perform a bootstrap analysis, simulating many
realizations of Ti under the null hypothesis and computing the
proportion of these that exceed the observed statistic; see the
Supplementary Material for more details. Using a Q-value threshold
of 0.05, we select 55 of the 112 proteins. Included in this list of
selected proteins are STM0831 and STM1044, both of which are
known to contribute to Salmonella virulence in mice. A third protein
known to be relevant to virulence, STM0448, was not selected by
our method. This indicates that our analysis has reasonable statistical
power to detect interesting proteins in this context.

4 DISCUSSION
Observations for peptides from the same protein are correlated
within a single sample, although preliminary investigation indicates
that this correlation is negligible relative to other sources of
variation in a typical MS-based proteomics experiment. Protein-
level inference could also be carried out by first averaging the
post-imputation complete peptide-level data, similar to what is done
for rolling probesets up to the probe level in expression arrays. To
the extent that within-sample correlation between peptides is indeed
negligible, employing a peptide-level model like that in Equation
(1) is to be preferred, as adjustment for peptide shifts will lower the
standard error of the protein-level group effects.

We have avoided the issue of degenerate peptides, or peptides
that could come from more than one protein. Instead, we simply
randomly assign a single protein identity. Degenerate peptides
constitute a small fraction of the total collection of peptides, ∼5%
for the datasets considered here. We have also avoided the issue of
peptide identification confidence levels. Since all peptide intensities
are dependent on correct peptide identification, it is clear that protein
quantitation is closely tied to peptide identification. In the datasets
considered here, we have applied stringent identification criteria,
typically using PeptideProphet posterior probabilities (Keller et al.,
2002) of 0.95 or more for MS/MS-based identifications and in-house
confidence measures for LC/MS-based identification. We intend to
incorporate more systematic treatments of these issues in future
work.

2033



[17:45 15/7/2009 Bioinformatics-btp362.tex] Page: 2034 2028–2034

Y.Karpievitch et al.

ACKNOWLEDGEMENTS
We thank Navdeep Jaitly, Nathan Manes, Vlad Petyuk and Ashoka
Polpitiya for helpful discussions. Therese Clauss and Marina
Gritsenko assisted with sample preparation and instrument operation
in the Salmonella mutant virulence experiment.

Funding: This work was sponsored by a subcontract from PNNL
and by the NIH R25-CA-90301 training grant at TAMU. Additional
support was provided by NIH grant DK070146 and by the National
Institute of Allergy and Infectious Diseases (NIH/DHHS through
interagency agreement Y1-AI-4894-01).

Conflict of Interest: none declared.

REFERENCES
Aebersold,R. and Mann,M. (2003) Mass spectrometry-based proteomics. Nature,

422,198–207.
Benjamini,Y. and Hochbergv,Y. (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300.
Dabney,A.R. and Storey,J.D. (2006) A reanalysis of a published affymetrix genechip

control dataset. Genome Biol., 7, 401.
Ferguson,T.S. (1996) A Course in Large Sample Theory. Chapman and Hall, London.
Gygi,S.P. et al. (1999) Quantitative analysis of complex protein mixtures using isotope-

coded affinity tags. Nat. Biotechnol., 17, 994–999.
Hill,E.G. et al. (2008) A statistical model for iTRAQ data analysis. J. Proteome Res.,

7, 3091–3101.
Keller,A. et al. (2002) Empirical statistical model to estimate the accuracy of

peptide identifications made by MS/MS and database search. Anal. Chem., 74,
5383–5392.

Kiebel,G. et al. (2006) PRISM: a data management system for high-throughput
proteomics. Proteomics, 6, 1783–1790.

Lehmann,E.L. (1997) Testing Statistical Hypotheses. Springer, New York, NY.

Lehmann,E.L. and Casella,G. (2003) Theory of Point Estimation. Springer, New
York, NY.

Lehti,T.M. et al. (2006) Effects of streptozotocin-induced diabetes and physical training
on gene expression of extracellular matrix proteins in mouse skeletal muscle. Am.
J. Physiol. Endocrinol. Metab., 290, E900–E907.

Little,R.J.A. and Rubin,D.B. (2002) Statistical Analysis with Missing Data. Wiley-
Interscience, Hoboken, New Jersey.

Metz,T.O. et al. (2008) Application of proteomics in the discovery of candidate protein
biomarkers in a diabetes autoantibody standardization program sample subset.
J. Proteome Res., 7, 698–707.

Nesvizhskii,A.I. et al. (2007) Analysis and validation of proteomic data generated by
tandem mass spectrometry. Nat. Methods, 4, 787–797.

Oberg,A.L. et al. (2008) Statistical analysis of relative labeled mass spectrometry data
from complex samples using ANOVA. J. Proteome Res., 7, 225–233.

Old,W.M. et al. (2005) Comparison of label-free methods for quantifying human
proteins by shotgun proteomics. Mol. Cell. Proteomics, 4, 1487–1502.

Pasa-Tolic,L. et al. (2004) Proteomic analyses using an accurate mass and time tag
strategy. BioTechniques, 37, 621–636.

Polpitiya,A.D. et al. (2008) DAnTE: a statistical tool for quantitative analysis of -omics
data. Bioinformatics, 24, 1556–1558.

Storey,J.D. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. B, 64,
479–498.

Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA, 100, 9440–9445.

Tang,K. et al. (2004) Charge competition and the linear dynamic range of detection
in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 15,
1416–1423.

Troyanskaya,O. et al. (2001) Missing value estimation methods for DNA microarrays.
Bioinformatics, 17, 520–525.

Wang,P. et al. (2006) Normalization regarding non-random missing values in
high-throughput mass spectrometry data. In Pacific Symposium Biocomputing,
pp. 315–326.

Wang,W. et al. (2003) Quantification of proteins and metabolites by mass spectrometry
without isotopic labeling or spiked standards. Anal. Chem., 75, 4818–4826.

Zimmer,J.S. et al. (2006) Advances in proteomics data analysis and display using an
accurate mass and time tag approach. Mass Spectrom. Rev., 23, 450–482.

2034


