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ABSTRACT

Motivation: Integration of various genome-scale measures of
molecular alterations is of great interest to researchers aiming to
better define disease processes or identify novel targets with clinical
utility. Particularly important in cancer are measures of gene copy
number DNA methylation. However, copy number variation may
bias the measurement of DNA methylation. To investigate possible
bias, we analyzed integrated data obtained from 19 head and neck
squamous cell carcinoma (HNSCC) tumors and 23 mesothelioma
tumors.
Results: Statistical analysis of observational data produced results
consistent with those anticipated from theoretical mathematical
properties. Average beta value reported by Illumina GoldenGate (a
bead-array platform) was significantly smaller than a similar measure
constructed from the ratio of average dye intensities. Among CpGs
that had only small variations in measured methylation across tumors
(filtering out clearly biological methylation signatures), there were no
systematic copy number effects on methylation for three and more
than four copies; however, one copy led to small systematic negative
effects, and no copies led to substantial significant negative effects.
Conclusions: Since mathematical considerations suggest little bias
in methylation assayed using bead-arrays, the consistency of
observational data with anticipated properties suggests little bias.
However, further analysis of systematic copy number effects across
CpGs suggest that though there may be little bias when there are
copy number gains, small biases may result when one allele is lost,
and substantial biases when both alleles are lost. These results
suggest that further integration of these measures can be useful
for characterizing the biological relationships between these somatic
events.
Contact: E_Andres_Houseman@brown.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
New hopes for identifying novel carcinogenesis pathways and
potential therapeutic targets (Ng et al., 2006; Shai, 2006)
arise from emerging technologies for examination of cancer
transcriptomes, genomes, epigenomes, metabolomes, proteomes,
and microRNAomes. The advent of next-generation high-
throughput sequencing technologies will create high resolution
datasets of somatic events that contribute to or accompany
carcinogenesis. However, statistical analyses to date have focused
solely on a single -omic level (Sjoblom et al., 2006; Sugarbaker
et al., 2008; Wood et al., 2007) or, at most, integrated different
types of genomic changes (Leary et al., 2008) or genomic changes
with accompanying gene expression (Parsons et al., 2008). To truly
understand the carcinogenic process and make strides in cancer
prevention and treatment, new analytic approaches are needed to
more completely and most appropriately integrate across various
-omic level datasets (Risch and Plass, 2008; Zender and Lowe,
2008) in large numbers of specimens. However, such analyses will
be complicated by differences in the resolution, quality, content,
and design of the various assays used, as well as by issues related
to specimen source, specimen type (formalin fixed vs. fresh), and
specimen quality. Large-scale databases of somatic genetic and
epigenetic alterations from CaBIG (Kakazu et al., 2004), The Cancer
Genome Atlas (Hanauer et al., 2007) and NIH Roadmap initiative
studies will require development of appropriate methodologies for
integrating data in a manner that will be both useful and statistically
rigorous.

Studies of genome-wide copy number alterations in human
tumors are possible through the use of SNP-array technologies,
such as the Mapping 500K arrays, or newer genome-wide SNP
arrays, commercially available from Affymetrix. These arrays were
designed to interrogate constitutional genetic variation, initially at
SNPs (Mapping arrays), and later at both SNPs and other copy
number polymorphic regions. Somatic single base-pair copy number
alterations in tumors are determined either by algorithms that infer
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copy number from tumor DNA alone or through comparisons of
constitutional DNA (i.e. blood or buccal-derived) and tumor DNA,
which allows for determining changes in heterozygosity compared
with normal tissue. These arrays are highly sensitive and specific.

In parallel, analyses of epigenetic alterations, and specifically
promoter CpG island DNA methylation can be performed using
BeadArray technologies for both cancer related genes (Goldengate
Methylation panel), or genome wide (HumanMethylation27
BeadChip Infinium) commercially available from Illumina. Again,
these assays were initially designed for SNP detection, but have
been applied to DNA methylation detection using the same sodium
bisulfite modification approaches used in the gold standard bisulfite
sequencing techniques.

While deep sequencing promises to supplant the present
technology in the next decade, it is still out of reach for
many researchers. The ability to sequence an entire individual’s
genome for less than $1000 remains an elusive goal, and methods
development is still in its infancy (Morozova and Marra, 2008). As
a result, platforms such as Illumina are the sole tool available for
epidemiological assessment for large sample sizes. In addition, the
Illumina GoldenGate platform has, even recently, been considered
as a gold standard (Irizarry et al., 2008). Consequently, we believe
it will remain the major platform for population studies for the
foreseeable future, especially epidemiologists who require moderate
to large sample sizes.

The specific question we address in this manuscript is the
following: does the physical number of copies of a particular
gene (or, more generally, genomic element) influence the detection
of DNA methylation at the location of that element, thereby
masking any real relationships between these alterations? Although
Illumina used dilution experiments to assess the sensitivity of
the methylation assay in the development of the GoldenGate�
Methylation Platform, these types of experiments cannot adequately
assess how discrete copy number variation may affect the results of
the assay (Bibikova et al., 2006). On the other hand, it is difficult
to perform controlled experiments to assess biases in methylation
related to copy number (i.e., systematic differences that reflect
assay properties and not underlying biology) because there are no
known mechanisms for inducing methylation at specific sites in
living cells, nor any for inducing copy number variations that are
reliably independent of methylation patterns. Therefore, we present
a detailed analysis of the statistical properties of the GoldenGate
methylation assay. We also show observational data from two
types of human cancers, head and neck squamous cell carcinoma
(HNSCC) and mesothelioma, to validate the expected characteristics
of the assay and the systematic signals of assay bias detected in the
observational data.

2 METHODS

2.1 Specimens and assays
Our methods were motivated by methylation array data we obtained for two
independent types of cancers, HNSCC and malignant pleural mesothelioma
tumors. The studies from which the patients came have been previously
described (Christensen et al., 2008; Hsiung et al., 2007; Marsit et al., 2006).
Histological classification of the malignancy was reported by pathology of
the participating hospital, and confirmed by independent study pathologist.
All cases enrolled in the study provided written, informed consent as
approved by the IRBs of the participating institutions. The HNSCC tumors

examined in this analysis were obtained for patients undergoing surgical
resection of their incidence HNSCC at the Massachusetts Eye and Ear
Infirmary, Boston, MA, while the mesothelioma tumors were obtained from
patients at the Brigham and Women’s Hospital in Boston, MA. We used
fresh frozen tumor specimens and matched peripheral blood samples for
19 HNSCC patients and 23 mesothelioma patients for analysis of promoter
hypermethylation and copy number alterations.

2.2 DNA extraction and methylation analysis
DNA was extracted from the peripheral blood and tumor samples using the
QIAamp DNA mini kit according to the manufacturer’s protocol (Qiagen,
Valencia, CA). Sodium bisulfite modification of the tumor DNA was
performed using the EZ DNA Methylation Kit (Zymo Research, Orange,
CA) following the manufacturer’s protocol, with the addition of a 5-min
initial incubation at 95◦C prior to addition of the denaturation reagent to
allow for more complete sodium bisulfite conversion. Illumina GoldenGate
methylation bead arrays were used to simultaneously interrogate 1505 CpG
loci associated with 803 cancer-related genes in the modified tumor DNA.
Bead arrays were run at the UCSF Institute for Human Genetics, Genomics
Core Facility according to the manufacturer’s protocol and as described in
Bibikova et al. (2006).

2.3 Copy number status using Affymetrix arrays
Copy number alterations were determined by hybridizing the DNA obtained
from the matched tumor and peripheral blood from the same patient as the
referent using the 500 K SNP array (Affymetrix, Santa Clara, CA) (Bignell
et al., 2004) at the Harvard Partners Microarray Core Facility following
established protocols according to the manufacturer. Resulting data was
analyzed first to make genotyping calls using the Affymetrix GeneChip DNA
Analysis Software V4.1 (Liu et al., 2003). Copy number (n) was assigned
using the Copy Number Analysis Tool v4.0.1 (Huang et al., 2004) (CNAT,
Affymetrix) which utilizes a Hidden Markov Model algorithm to define n,
similar to previous examinations in other malignancies (Liu et al., 2006). We
note that ‘n = 4’ technically means amplification (multiple copy gain), and is
thus more properly interpreted as ‘n ≥ 4’. However, to avoid complications
in notation, we will continue to denote this amplification state as ‘n = 4’.
We also emphasize the use of a control referent, which rules out gross
misclassification of quadraploid tumors.

2.4 Statistical properties of the Goldengate methylation
assay

The result of the GoldenGate methylation array is a sequence of ‘beta’values,
one for each of 1505 loci, calculated as the average of ∼30 replicates (30
beads per site per sample) of the quantity max(M,0)/(|U|+ |M|+ ε), where
U is the green fluorescent signal from an unmethylated allele on a single
bead, M is the red signal from a methylated allele, and ε is a constant
chosen to ensure that the quantity is well-defined; an absolute value is used
in the denominator of the formula to compensate for negative signals due to
background subtraction. We assume in the sequel that M ≥0 and U ≥0, so
that the beta value reduces to M/(M + U + ε). Under this assumption, a more
technical definition for the beta value B̄ij at locus j for array i is

B̄ij =κ−1
j

κj∑
k=1

Mijk

Mijk +Uijk +ε
,

where k indexes each of the κj ≈30 beads used to form the
assay measurement. Illumina also reports the auxiliary quantities Ūij =
κ−1

j

∑κj
k=1 Uijk (‘Cy3’) and M̄ij = κ−1

j

∑κj
k=1 Mijk (‘Cy5’), from which the

following quantity, approximately equal to B̄ij , can be constructed: Rij =
M̄ij

(
M̄ij + Ūij

)−1
. In order to understand the statistical properties of the

assay, we assume that Mijk ∼ Gamma(αij , λij) and Uijk ∼ Gamma(βij , λij),
and that the target quantity of interest is µij = αij /(αij + βij). It follows that
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Rij ∼ Beta(κjαij , κjβij) and is therefore an unbiased estimator of µij . However,

E(B̄ij)=E

(
Mijk

Mijk +Uijk +ε

)
≈E

(
Mijk −ε

Mijk +Uijk

)
= αij

αij +βij
− ε

αij +βij
,

showing that B̄ij is slightly biased in the negative direction, and that the
magnitude of the bias varies inversely with αij + βij . Note also that

var(Rij)= µij(1−µij)

κjαij +κjβij +1
,

but

var(B̄ij)=κ−1
j var

(
Mijk

Mijk +Uijk +ε

)
≈ µij(1−µij)

κjαij +κjβij +κj
,

so that B̄ij is slightly less variable than Rij . For both measures, variability is
more pronounced with smaller signal. It follows that for any nondecreasing
transformation ϕ(B̄ij) and ϕ(Rij) of B̄ij and Rij , E[ϕ(B̄ij)−ϕ(Rij)]<0.
In addition, if αij + βij increases with some other factor nij (e.g. copy number),
then

∣∣E[ϕ(B̄ij)−ϕ(Rij)|nij]
∣∣≥ ∣∣E[ϕ(B̄i′j′ )−ϕ(Ri′j′ )|ni′j′ ]

∣∣ when nij <ni′j′ .That
is, the bias is less pronounced with greater signal. Note that signal
amplification never induces bias in Rij as long as the amplification occurs
at the same rate for both methylated and unmethylated signals, i.e. αij =
fj(nij)α0j and βij = fj(nij)β0j for some CpG-specific amplification function
fj and CpG-specific constants (α0j,β0j), as would occur with a well-
defined biological mixture of methylated and unmethylated genome and no
binding-affinity bias imparted by copy number changes.

Illumina also provides a detection P-value, based on the comparison of
signal Mij + Uij from the target sample with that from a negative control
(Illumina User Guide, 2008). If E(M̄ij +Ūij)= (αij +βij)/λij increases with
nij , then it is reasonable to assume that detection P-values would have small
values with greater frequency when nij is large. We note that the P-values are
constructed by comparing Mij + Uij to values generated by negative controls
only, so that the P-values are biased against detecting poor signal among
methylated CpGs.

2.5 Statistical analysis
To demonstrate that observational data follow the mathematical properties
described in the previous section, we conducted an analysis of the HNSCC
and mesothelioma tumors described above. Of 1505 CpG loci assayed, 1497
passed quality-assurance procedures (median detection P-value < 0.05). Of
those, we excluded 84 X-chromosome loci, for a remainder of 1413 loci.
For each tumor i, we compared B̄ij and Rij across all j via scatter-plot
(Supplementary Fig. 1). For all but one HNSCC tumor, B̄ij and Rij and were
highly correlated (Spearman correlation > 0.9998). Because one HNSCC
tumor sample showed poorer correspondence (Spearman correlation = 0.82)
we considered analyses separately with and without it; as there were no major
changes in our conclusions, we have chosen only to present other analytic
results for the 18 HNSCC with correlation >0.99. All mesothelioma tumors
had Spearman correlation >0.9996. We matched each CpG locus to its closest
Affymetrix SNP using RS number. That is, for each CpG site j, we found
the Affymetrix SNP for which the difference between the RS number for
the CpG and RS number for the SNP was smallest. Supplementary Figure 2
shows the distribution of the resulting minimized differences. The result was
that for each of tumor i and 1413 loci j, we had the following quantities:
B̄ij , Rij , nij , and a P-value πij for B̄ij . Table 1 shows a cross-classification of
significant detection P values with copy number.

All subsequent analyses were conducted in R (version 2.8.0, R
Development Core Team, 2007) using the functions glm, gam (mgcv
library), or elementary matrix operations. First, to determine if copy number
influences total signal, we fit the following linear regression model:√

M̄ij +Ūij =γ2 +δ01(nij =0)+δ11(nij =1)+δ31(nij =3)+δ41(nij =4)+Eij,

where the notation ‘1(condition)’ indicates one when condition is true and
zero when condition is false, γ2 is the mean square-root signal for two copies,
and the square-root transformation was used as the variance-stabilizing

Table 1. Summary statistics of copy number changes among 1413 SNPs
that are near 1413 CpGs interrogated by GoldenGate, cross-classified by the
detection P-value reported by Illumina for the nearby CpG

Det P≥0.05 Det P<0.05 % (Det P≥0.05)

HNSCC
(18 tumors
with R>0.99)

0 copies 0 0 N/A
1 copy 7 858 0.8
2 copies 122 23429 0.5
3 copies 2 919 0.2
4 copies 0 97 0.0

HNSCC
(1 tumor with
R = 0.82)

0 copies 3 5 37.5
1 copy 10 195 4.9
2 copies 11 958 1.1
3 copies 0 148 0.0
4 copies 0 83 0.0

Meso-
thelioma
(23 tumors)

0 copies 2 4 33.3
1 copy 10 2657 0.4
2 copies 39 28522 0.1
3 copies 1 1253 0.1
4 copies 0 11 0.0

Table 2. Regression coefficients describing the average CpG methylation
signal (square root of Cy3 + Cy5 intensity) as a function of copy number

Parameter Estimate Std. Err. Z-value P-value

HNSCC
(18 tumors)

(Intercept) 77.41 1.66 46.58 0.0000
0 copies
1 copy −6.01 2.10 −2.86 0.0043
3 copies 3.46 2.58 1.34 0.1794
4 copies 25.16 3.46 7.27 0.0000

Meso
thelioma
(23 tumors)

(Intercept) 90.80 1.76 51.67 0.0000
0 copies −43.50 1.76 −24.76 0.0000
1 copy −10.22 1.88 −5.43 0.0000
3 copies 4.36 2.18 2.00 0.0457
4 copies 14.67 2.97 4.94 0.0000

transformation for a gamma variable, to ensure that Eij could have plausibly
uniform variance with respect to i and j. Note that δ0 was not estimable
for HNSCC. For mesothelioma, there were sufficient numbers of zero-copy
SNPs to estimate δ0; while in theory, no signal should be detectable when
no copies exist, we point out that the SNPs do not reside at the exact
location of the CpGs, and there is a stochastic element both to the calling
of copy number and the assessment of Mij + Uij . To account for correlation
between loci on the same array, we used the bootstrap method of Parzen et al.
(1994) to compute standard errors (1000 bootstraps each, assuming the 1413
values from array i are potentially correlated and thus contribute a single
unit of independence to the estimating function). We conducted an omnibus
test for variation in mean among different numbers of copies by simply
constructing the Wald chi-squared test statistics for H0 :δ1 =δ3 =δ4 =0 (for
HNSCC) and H0 :δ0 =δ1 =δ3 =δ4 =0 (for mesothelioma). In other words,
we tested for nonzero differences in mean signal between CpGs having
normal copy number and CpGs having loss or gain. Results are shown
in Table 2, while Figure 1 illustrates the relationships. Next, to determine
how bias in measured methylation may vary with copy number, we fit the
following linear regression model:

sin−1
√

B̄ij −sin−1√
Rij =γ2 +δ01(nij =0)+δ11(nij =1)+δ31(nij =3)

+δ41(nij =4)+Eij .
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Fig. 1. Boxplots depicting signal (y-axis) by copy number (x-axis)
associations; white = HNSCC and gray = mesothelioma.

Table 3. Regression coefficients describing the average difference between
arcsine-square-root transformed methylation ‘average beta’, B and the
arcsine-square-root transformed ratio of methylation signal intensities, R,
as a function of copy number

Parameter Estimate Std. Err. Z-value P-value

(Intercept) −0.0089 0.0004 −24.71 0.0000
HNSCC
(18 tumors)

0 copies
1 copy 0.0000 0.0008 −0.06 0.9552
3 copies 0.0003 0.0005 0.68 0.4945
4 copies 0.0002 0.0006 0.37 0.7094

(Intercept) −0.0077 0.0004 −1.70 0.0000
Meso-
thelioma
(23 tumors)

0 copies −0.0015 0.0004 −4.17 0.0000
1 copy −0.0005 0.0004 −1.23 0.2171
3 copies −0.0002 0.0007 −0.23 0.8159
4 copies 0.0064 0.0006 10.48 0.0000

Again, we used the variance-stabilizing transformation for a beta-distributed
variable, and used the method of Parzen et al. (1994) to compute standard
errors. Tests for monotonic variation with copy number were conducted
by constructing Wald chi-square test statistics for H0 :δ1 =δ3 =δ4 −δ3 =0
(HNSCC) and H0 :δ1 −δ0 =δ1 =δ3 =δ4 −δ3 =0 (mesothelioma). Results are
shown in Table 3.

We used logistic regression to examine the relationship between small
detection P-values and copy number:

logit{Pr(πij <0.05)}=γ2 +δ(nij −2).

Note that because of the small numbers of detection P-values above 0.05 (as
shown in Table 1), we could not fit a stable model with categorical effects.
We used the method of Parzen et al. (1994) to compute standard errors, with
each bootstrap fit regularized by a small penalty to stabilize results. Results
are shown in Table 4. Because of the bias mentioned earlier, we caution
against over-interpretation of these results. Finally, we sought a systematic
copy number effect in B̄ij across both types of tumors. It is difficult to separate
effects of biology from assay, especially since copy number and methylation
could be associated biologically, as both are mechanisms through which
oncogenes can be activated and tumor suppressor genes inactivated
coordinately (Cadieux et al., 2006; Jones and Baylin 2002); consequently,
we attempted to isolate small copy number effects both by combining tumor
types (thus diminishing biological effects) and by restricting the variation
of methylation (thus diminishing biological associations of copy number
with strong methylation signals). For incremental values of s between 0
and 0.25, we selected CpGs whose within-tumor-type standard deviation

Table 4. Logistic regression analyzing the probability of a low (<0.05)
detection P-value as a function of copy number

Parameter Estimate Std. Err. Z-value P-value

HNSCC
(18 tumors)

(Intercept) 5.18 0.32 16.15 0.0000
Copies−2 0.56 0.28 2.01 0.0440

Mesothelioma
(23 tumors)

(Intercept) 6.60 0.14 47.89 0.0000
Copies−2 1.30 0.57 2.28 0.0228

A

B

Fig. 2. Systematic effect of copy number on methylation at CpG sites for
which overall variation in methylation is small. (A) The range of standard
deviation thresholds is depicted on the x-axis and the value of the correlation
coefficient for the regression of copy number on small methylation changes
is depicted on the y-axis for the given copy number states. (B) The range
of standard deviation thresholds is depicted on the x-axis and the value of
the correlation coefficient and its point-wise 95% confidence band for the
regression of copy number on small methylation changes is depicted on the
y-axis for each copy number state.

was smaller than s. That is, for each value of s, we selected sets J(s) of

CpGs satisfying both maxj∈J(s)

{∑18
i=1 (B̄(HNSCC)

ij − ¯̄B(HNSCC)
ij )2

}
<17s2 and

maxj∈J(s)

{∑23
i=1 (B̄(Meso)

ij − ¯̄B(Meso)
ij )2

}
<22s2. Note that for the HNSCC data

set we excluded the array with weaker correlation between B̄ij and Rij . For
each standard deviation threshold s, we fit the following regression model
using only CpGs j∈J(s):

sin−1
√

B̄ij =γ2 +δ
(s)
0 1(nij =0)+δ

(s)
1 1(nij =1)+δ

(s)
3 1(nij =3)

+δ
(s)
4 1(nij =4)+Eij .

Again, we used the method of Parzen et al. (1994) to compute standard
errors. Figure 2 illustrates the variation in coefficients δ

(s)
k as a function of

threshold s.
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Fig. 3. Copy number and methylation on Chromosome 8 among
mesothelioma tumors. For copy number, green = loss, white = no change,
red = gain. For methylation, yellow = unmethylated, blue = methylated. In
both panels, the 23 tumors are ordered by their copy number profiles via
hierarchical clustering.

3 RESULTS
As shown in Supplementary Figure 1, 18 of 19 HNSCC tumors
and all 23 mesothelioma tumors had strong correlation between B̄
and R (Spearman correlation > 0.99). As shown in Supplementary
Figure 2, the distances between GoldenGate CpG and its nearest
Affymetrix SNP were generally within 10 kb, although some were
as far away as 200 kb. Figure 3 provides a detailed illustration of
copy number and methylation along a single chromosome among
mesothelioma tumors, showing that, in general, methylation at a
CpG is not associated with copy number status at nearby SNPs.
For example, loci associated with TNFRSF10D are differentially
methylated among the tumors, yet the pattern is dissimilar from
that of copy number alterations in the region. Data from other
chromosomes and from HNSCC tumors show similar results
(Supplementary Fig. 3). Table 1 shows copy number changes among
the 1413 SNPs near to the CpG methylation sites cross-classified
with the detection P-values provided by Illumina for the nearby
CpG (Table 1). These P-values putatively assess the extent to which
signal can be distinguished from noise. First, it is clear that the vast
majority (89%) of SNPs had two copies, with about 4% of the SNPs
having three copies and a much smaller proportion having zero,
one or more than four copies. The probability of a large detection
P-value (≥0.05) appears to decrease with increasing copy number.
Table 2 reports regression coefficients describing the average signal
(Cy3 + Cy5 intensity) as a function of copy number. Signal by copy
number associations are also depicted in Figure 1. Evident in Table
2 and Figure 1 are statistically significant differences (P < 0.0001)
in average signal among different numbers of copies. In addition,
the regression coefficients indicate that the mean signal increases
monotonically with copy number.

The assay properties dictate that B̄ should be, on average,
slightly smaller than R. Table 3 reports regression coefficients
describing the average difference between transformed values of
B̄ and R as a function of copy number. Evident in the table is
the anticipated negative intercept, whose difference from zero is

statistically significant in both groups of tumors considered. This is
also somewhat evident in Supplementary Figure 1, as the mass of the
scatter plot lies above the black line indicating identity. For HNSCC
there was no significant trend in differences among copy number
(P = 0.86). However, for mesothelioma there was significant trend
(P < 0.0001), with the differences between B̄ and R more pronounced
for zero copies (i.e. a significantly negative coefficient) and less
pronounced for four copies (i.e. a significant positive coefficient).
This gradient is consistent with what we would anticipate from
consideration of the statistical properties of the assay. The difference
in result between HNSCC and mesothelioma may be explained by
differences in sample size (n = 18 versus n = 23), and the fact that
there were more copy number variants among the mesotheliomas.
From the assay properties, we would anticipate that methylation
signals would be easier to detect with increasing copy number; this
is evident in Table 4, which reports results of logistic regression
analyzing the probability of a low (<0.05) detection P-value as
a function of copy number. Thus, observational data confirm the
anticipated behavior of the assay.

Figure 2 shows the systematic effect of copy number on
methylation at CpGs for which overall variation in methylation is
small. The x-axis shows a range of standard deviation thresholds;
for each such threshold, CpGs at which methylation varied less than
the threshold in both tumor types were used in a regression analysis
to determine the association of copy number on small methylation
changes. The filtering was necessary to avoid associations with clear
biological methylation signals, i.e. CpGs for which the association
between copy number and methylation is likely to be confounded
by an underlying biological mechanism that correlates copy number
changes with hyper- or hypo-methylation; if both copy number
changes and aberrant methylation are associated with a global
disregulation process, then copy number changes will be associated
with large changes in B̄. Figure 2a shows regression coefficients
for zero, one, three and four copies (i.e. systematic methylation
differences from two copies), as a function of threshold. Figure 2b
shows each coefficient individually with its point-wise confidence
band. For all but the smallest thresholds there is a clear gradient,
with larger numbers of copies having systematically larger measured
methylation values. This result is consistent with an anticipated
property of the assay, that a greater number of copies leads to
less negative bias. However, as Figure 2b shows, differences at
three and four copies were insignificant. Zero copies and one copy
led to significant systematic negative differences, although for one
copy the difference was small; the results indicate that methylation
assayed at or near loci that are wholly lost may have large negative
bias.

4 DISCUSSION
There is an increasing interest in the integration of genome-
scale data detailing various somatic alterations from disparate
platforms in common human cancers, both to provide insight into
the carcinogenic process as well as to identify novel pathways
and therapeutic targets. There is also recognition that there may
be significant complications to the analysis and interpretation of
these integrated datasets. This can be particularly important when
considering changes in allelic copy number, as the physical number
of alleles at any given locus may also effect the detection and
analysis of other alterations within that allelic region, including
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epigenetic alterations. Thus, we have demonstrated that there is
little apparent bias induced by increased amplification of signal
resulting from additional copies, but that fewer than two copies
does result in a negative effect. This negative effect is expected,
as loss of the region of interrogation should result in loss of ability
to detect methylation of this region. As suggested in the ‘Materials
and methods’ section, the mathematical form of the definition of
Illumina’s reported average beta B̄ may induce small biases in the
measured value of methylation, with the magnitude of the bias
stronger when there are fewer copies. This is in part due to the
normalizing constant in the denominator of the ratios defining the
quantity, which will be influenced by changes in signal intensity.
On the other hand, a similar measure of methylation, R, constructed
from the ratio of dye intensities and defined below, should have
no bias, since the signal intensities are (in theory) wholly averaged
out. Because observational data are consistent with the behavior
we predict from purely mathematical considerations, we have little
reason to suspect that our understanding of the statistical properties
is incorrect, subject of course to the absence of biases in binding
affinities due to polymorphisms in the probe targets, which may
affect methylation values at specific CpGs. Because the mathematics
predicts only small bias in B̄ and no bias in R, we are reasonably
confident that large biases do not exist when genetic material exists
to be assayed. Note, however, that R is (according to theoretical
principles) more variable than B̄, so that even though R should have
smaller magnitude bias relative to B̄, its mean-square-error (MSE)
may in fact be as large or larger. From observational data alone it is
impossible to determine which measure has smaller MSE, since the
true methylation status cannot be known with certainty.

Our confidence in the absence of bias on methylation signal for
more than two copies is moderated by the additional analysis of
systematic effects for CpGs with small variation in methylation
(Fig. 2): for three copies and for the amplification state (four or
more copies), there appears to be little or no significant systematic
variation of copy number with methylation (measured by B̄).
However, for 1 copy we detected a small but significant negative
effect, and for zero copies we detected a significant and strong
systematic negative effect; this indicates that there may be some
negative bias when a single copy at or near the target CpG is lost,
and substantial negative bias when genetic material is wholly lost at
or near the target CpG.

From a cancer biology perspective, increasing copy number
may not correspond to monotonic increases in methylation. At
oncogene loci within amplified regions, selective pressure may drive
expansion of clones with increased copy number and increased
expression; this selective pressure would, in theory, negatively select
for methylation in order to preserve oncogene expression, though
passenger oncogenes (not driving selection) in the same amplicon
may not have aberrant expression or methylation states. Hence,
distinguishing between oncogenes that drive selection and those that
may be passengers within an amplified region should be possible.
However, it is impossible to test such a hypothesis in the presence of
doubt about artifactual variation in methylation due to copy number
influences. Our analysis suggests that such doubt may be safely
discounted.

Thus, these results validate the utility of integration of these
platforms, specifically the Affymetrix SNP array for copy number
determination, and the Illumina BeadArray systems for DNA
methylation analysis. As we have now demonstrated that there

is little significant bias in the determination of the average beta
of DNA methylation at specific loci, it is possible to undertake
larger scale examinations of these alterations in such an integrated
fashion. Utilizing our recursive portioning mixture model (RPMM)
procedure (Houseman et al., 2008), we can also incorporate data
on the clinical and epidemiologic correlates collected on these
subjects in order to model the carcinogenic processes responsible
for these somatic alterations, the inter-relationship between these
somatic alterations, and the clinical utility of these alterations as
diagnostic and prognostic markers. In addition, our results underline
the importance of careful analytic strategies and validation of these
strategies in order to most appropriately model the relationship of
these various molecular features in order to avoid misinterpretation.
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