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Abstract
We demonstrate in vivo velocity-resolved, volumetric bidirectional blood flow imaging in human
retina using single-pass flow imaging spectral domain optical coherence tomography (SPFI-
SDOCT). This technique uses previously described methods for separating moving and non-moving
scatterers within a depth by using a modified Hilbert transform. Additionally, a moving spatial
frequency window is applied, creating a stack of depth-resolved images of moving scatterers, each
representing a finite velocity range. The resulting velocity reconstruction is validated with and
strongly correlated to velocities measured with conventional Doppler OCT in flow phantoms. In
vivo velocity-resolved flow mapping is acquired in healthy human retina and demonstrate the
measurement of vessel size, peak velocity, and total foveal blood flow with OCT.

1. Introduction
Spectral domain optical coherence tomography (SDOCT) has demonstrated clinical potential
for in vivo high-resolution and high-speed imaging of biological structures [1,2]. Advances in
Doppler SDOCT (DOCT) have demonstrated several image acquisition schemes that enable
real-time, high-resolution, volumetric display of blood flow maps [3–8]. Recently, several
methods have been introduced which focus on utilizing spatial frequency modulations across
lateral scans to resolve moving scatterers within a B-scan [9–12]. Techniques have also been
presented which use reference delay modulations to specify a velocity measurement range
[13]; or uses temporal frequency shifts to improve velocity resolution in low signal conditions
[14]. The theoretical bases behind these techniques are closely related to those used in complex
conjugate resolved imaging [15–23]. A subset of these techniques [9,10,12] have demonstrated
improved flow detection over conventional DOCT, resolving in vivo microvascular networks.
Compared with DOCT, however, this subset of techniques has sacrificed velocity resolution
for improved flow sensitivity, providing only flow direction without speed.

Spatial frequency flow detection techniques [9,10,12] can be considered optical analogs to
power Doppler (PD) ultrasonography [24–26]. Developed as a method of improving the
sensitivity of Doppler ultrasound, the analog to DOCT, PD reports the power of the Doppler
signal within specified frequency windows instead of the mean frequency shift. The advantage
arises from the representation of the power spectrum of random phase noise. Since the noise
in the power spectrum is uniformly low, random phase variations can be filtered out by raising
the sensitivity threshold above the noise floor. The Doppler signal in PD is represented as an
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integral of the power spectrum, which improves the sensitivity and detection range of moving
scatterers at the expense of eliminating velocity information. PD is relatively insensitive to
Doppler angle and phase wrapping since these factors only modify the distribution of the
Doppler power spectrum, but the total integrated power remains constant. The Doppler signal
in PD is separated from non-moving components by filtering out all power spectrum
components without Doppler shifts, thus only imaging moving scatterers. The resulting PD
signal is related to the number of moving scatterers producing the corresponding Doppler shifts.
Algorithmically, PD is equivalent to the single-pass flow imaging SDOCT (SPFI-SDOCT)
technique we recently demonstrated [12].

Spatial frequency filtering techniques [9,10,12], while able to provide 3D flow maps with
improved acquisition speed and sensitivity compared with DOCT, lack velocity-resolved blood
flow information provided by techniques such as DOCT [4] and laser Doppler velocimetry
(LDV) [27]. In ophthalmology, noninvasive quantification of blood circulation in tissues can
facilitate the description of retinal vascular changes prior to and during ocular and systemic
disease. Here, we demonstrate an improvement to SPFI-SDOCT which allows for velocity-
resolved flow mapping using a similar modified Hilbert transform algorithm. The spatial
frequencies of moving scatterers detected by SPFI are windowed such that only a small spatial
frequency range, corresponding to a finite velocity range, is reconstructed. The window is then
scanned across all spatial frequencies, forming a stack of B-scans each corresponding to a
different velocity. The stack can then be summed across the entire velocity range to reconstruct
a single velocity-resolved B-scan. OCT volume datasets can be processed to yield three-
dimensional, velocity-resolved flow maps featuring the flow detection sensitivity improvement
of SPFI, and the velocity resolution of conventional DOCT. Flow velocities calculated using
this technique is validated against measurements taken with DOCT in flow phantoms.
Velocity-resolved SPFI is then used to reconstruct flow maps of in vivo human retina
estimating, for the first time to our knowledge, total foveal blood flow using OCT.

2. Theory
The theoretical basis for SPFI-SDOCT [12], and similar techniques [9,10,13,17], have been
developed previously. Briefly, for a recorded interferometric B-scan, I [k,x], the spatial Fourier
transform along the lateral scan dimension (Fig. 1(a)) yields the spatial frequency content

(1)

Here, both moving, V±[k,u + fD,±], and non-moving, R′[u,k], scatterers in the sample are imaged
(Fig. 1(b)), where fD,± represents the Doppler frequency shift associated with the axial
components of scatterer motion. All scatterer motion and associated flow refer to the axial
components of motion.

In SPFI-SDOCT, we recognize that the spatial frequencies of moving and non-moving
scatterers do not overlap at spatial frequencies above the non-moving scatterer bandwidth (Fig.
1(b)). An analytic signal for the spectral interferogram can be obtained by applying a Heaviside
function (H[u − fT]), frequency-shifted outside of the structural bandwidth (Fig. 1(c)), and then
inverse Fourier transforming the result (Fig. 1(d)). Application of this modified Hilbert
transform (HT*) enables bidirectional flow imaging by windowing Eq. (1) to yield

(2)
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where α represents the fractional portion of bidirectional flow with Doppler frequencies outside
of the spatial frequency bandwidth of non-moving scatterers (Fig. 1(c)). This threshold
frequency (fT) defines the minimum detectable velocity in SPFI-SDOCT and is related to the
spatial correlation of sequential A-scans [12]. The spatial oversampling and velocity resolution
can be related by combining the velocity-related Doppler frequency shift with the spatial
frequency resolution, thus yielding a velocity resolution

(3)

where λ0 is the center wavelength, τ is the integration time, and θD is the Doppler angle between
the scanning beam and the direction of scatterer motion. n is the index of refraction, L is the
lateral scan length, D is the number of A-scans acquired across the lateral scan, and wo is the
scanning beam spot size. Eq. (3) shows that velocity resolution in SPFI increases and the
maximum detectable velocity decreases linearly with increased spatial oversampling.

Since velocity depends linearly on frequency, application of a spatial frequency window will
necessarily filter out all velocities not traveling at velocities described by

(4)

Here, W [u] represents the spatial frequency FWHM bandwidth of the Gaussian window. There
is, however, a tradeoff between the spatial frequency window width and the resulting spatial
resolution of the velocity-resolved intensity image. For a Gaussian window in frequency-space,
the resulting spatially resolved vessel map will be convolved with a Gaussian in the B-scan
dimension with FWHM bandwidth W [x] = 4ln 2/(πW [u]). Thus, to avoid loss of lateral
resolution in the velocity-resolved vessel maps, the spatial frequency window bandwidth, W
[u], needs to be constrained such that the associated lateral blurring function, W [x], does not
exceed the scanning beam spot size, wo. The velocity window limit can be represented as the
bandwidth W [u] ≥ 4ln 2/(πwo). Given the discrete sampling parameters of SPFI-SDOCT, the
minimum W [u] before loss of resolution is a factor of 8ln 2/π greater than the spatial frequency
sampling rate. Combining this result with Eq. (3) gives the minimum resolvable velocity
resolution as

(5)

Finally, a datacube, I [x, z, v], for each B-scan can be formed by shifting the spatial frequency
window across the bandwidth of moving scatterers (Fig. 1(c)), inverse transforming the result
back to functions of I[k, x] (Fig. 1(d)), and then performing a spectral inverse Fourier transform
(Fig. 1(e)). Each v-slice represents a velocity range given by Eq. (4), and the datacube can be
summed across the v-dimension to create a single velocity-resolved B-scan. Similar to
conventional DOCT, velocity wrapping occurs as the spatial frequency content of moving
scatterers wraps across the Nyquist sampling upper limit. In this case, the scatterers are mapped
to the opposite image half-plane and are therefore represented as moving in the opposite
direction. Phase unwrapping techniques, similar to those used for DOCT [28], can be applied
for a singly wrapped velocity profile. Higher spatial frequencies that wrap across Nyquist and
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have components greater than the threshold frequency, fT, will necessarily lose their velocity
components due to SPFI windowing. This fundamentally limits the resolvable spatial
frequency range to twice the Nyquist frequency.

3. Methods
Velocity-resolved SPFI-SDOCT was implemented on a high-speed SDOCT retinal imaging
system (Fig. 2) employing a light source with a central wavelength of 859nm and a FWHM
bandwidth of 99nm (Superlum, Ltd.). The sample arm was a modified slit lamp equipped with
scanning galvanometers and relay optics for retinal imaging of subjects. The retinal scanner
optics were designed for a 15–20μm transverse resolution, as limited by the optics of the eye,
across a 12×12mm field. The reference arm was dispersion compensated using a water cell
and matched optics, and interferometric signals were captured using a 2048 pixel line-scan
camera (e2v, Ltd.). Custom software (Bioptigen, Inc.) performed data acquisition, archiving,
and real-time processing and display of image magnitude. Using a 700μW sample beam, the
SNR measured near DC was 110dB with an axial resolution of 4.72μm in tissue and a 6dB
falloff at 0.8mm. DC removal, k-space resampling, and flow imaging using the modified
Hilbert transform algorithm [12] were computed during post-processing using Matlab
(MathWorks, Inc.). Vessels and structure were visualized using Amira (Visage Imaging, Inc.)
and OSA ISP (Kitware, Inc.).

Velocity-resolved bidirectional flow imaging was validated and compared with conventional
DOCT on a flow phantom. Two glass micro-capillary tubes (1.5mm outer diameter, 0.6mm
inner diameter) were connected using silastic tubing to a syringe pump (Harvard Apparatus)
and pumped with 1% liposyn at 10μL/min, 20μL/min, 30μL/min, and 40μL/min. The micro-
capillaries were then positioned adjacent to each other on an angled stage such that fluid in the
tubes flowed in opposite directions in a B-scan cross-section (Fig. 3(a)), simulating
bidirectional flow. B-scans of the phantom were acquired across a 2mm scan range with 2500
A-scans/frame for SPFI and 1000 A-scans/frame with 4 sequential A-scans at each lateral
position for DOCT. The SPFI dataset was laterally oversampled compared to DOCT because
velocity resolution increases as a function of spot-size overlap on the sample (Eq. (3)). Both
datasets were acquired with an integration time of 50μs. At these sampling parameters, the
total imaging time for SPFI is a factor of 1.6 times faster than that of DOCT. SPFI parameters
were chosen to demonstrate velocity resolution at the lower limit of the detection range for a
given integration time as a comparison with DOCT. Since the velocity resolution of DOCT is
limited by the phase noise of the system instead of spatial sampling parameters, as is the case
with SPFI, an appropriate lateral spacing used to minimize scanner jitter. The number of
sequential A-scans used is indicative of common DOCT sampling parameters.

A threshold frequency was determined which filtered out all spatial frequencies of non-moving
scatterers. A Gaussian window was then moved across the remaining spatial frequencies to
velocity-resolve the B-scan for flow rate measurements. The shifted window was set such that
the velocity-range resolved had a FWHM and shifted at increments of 24.3μm/s. Given the
oversampling parameters and threshold frequency window used, the magnitude of the total
detectable velocity range for the axial components of positive and negative velocities was 0.61–
11.53mm/s. Velocity-resolved scatterer information was then overlaid onto structural B-scans
for visualization (Fig. 3(a)). DOCT volumes were processed using standard phase-difference
methods [6]. Velocity profiles for both SPFI and DOCT were fit to laminar flow curves, and
measured capillary cross-section and flow rate were calculated for both imaging methods and
compared.

In vivo microvessel imaging was demonstrated in normal human retina. First, a 10×10mm OCT
volume of the subject was acquired, allowing for the reconstruction of a standard OCT summed
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voxel projection (SVP) to use as an atlas to locate smaller volumes imaged using SPFI (Fig.
(4)). Several 2×2mm volumes were then densely-sampled using SPFI parameters (2500 A-
scans/frame, 100 frames/volume, 100μs integration time − 25s total imaging time) at several
locations across the macula (Figs. 4(a) (View 1), 4(b) (View 2), and 4(d) (View 4)), including
landmarks such as the fovea (Fig. 4(c)(View 3)) and optic nerve (Fig. 4(e)(View 5)). Given
the sampling parameters, threshold frequency, and assuming a 20μm scanning beam spot-size
on the retina, the detectable velocity range for axially moving scatterers was 0.45–8.64mm/s.
Parameters were set for a lower velocity range, compared to flow phantoms, to adequately
detect slow flow in small foveal vessels (<30mm/s) [27]. The frequency window was set such
that the velocity-range had a FWHM of 18.4μm/s and was shifted at increments of 82.8μm/s.
Bulk motion correction using the algorithm described in [10] was implemented prior to SPFI
windowing. Velocity-resolved B-scans were used to determine vascular size by fitting velocity
profiles to parabolic flow curves and then calculating the zero-velocity crossing positions.
Finally, blood flow rates and total retinal flow were calculated for a 2×2mm velocity-resolved
volume of human fovea.

SPFI acquisition of the entire macula in a single volume dataset would be impractical. Since
velocity resolution and lateral sampling density are coupled in SPFI by Eq. (3), an order of
magnitude increase in the lateral sampling density, A-scans/frame, would be required. This
requirement limits the SPFI sampling volume size by both the available memory in the
acquisition software and total imaging time.

4. Results and Discussion
Velocity-resolved bidirectional flow imaging was demonstrated in a liposyn-pumped flow
phantom and compared with measurements taken with conventional DOCT (Fig. 3). Velocity
profiles for both positive and negative flow were plotted for both SPFI and DOCT datasets and
fit to second-order polynomials, characteristic of laminar flow, to determine the tube diameter
and maximum flow velocities (Fig. 3(b)–(d)). The DOCT measured velocity profiles correlated
stronger with the parabolic flow fit (mean R2=0.96) than those calculated with SPFI (mean
R2=0.81). Since laminar flow velocities across the tube decrease continuously towards zero,
all components below the SPFI velocity threshold contribute to velocity noise, which becomes
more significant for low flow velocities. The velocities measured using SPFI shows a poor
parabolic fit and a correlation of R2<0.7 for the lowest pump speed (Fig. 3(d–e) – dark blue),
demonstrating the lower detection limit of the modality. This is a result of the spatial frequency
overlap of the slow moving scatterers near the edge of the capillary tubes, which is filtered out
in SPFI processing. As scatterer velocity increases, the fit improves and is comparable with
that of DOCT (Fig. 3(f–g)). Fig. 3(d) also shows a velocity dip across all pump velocities
calculated using SPFI. This is a result of a shadowing artifact as seen in Fig. 3(a), which is
more pronounced in SPFI and in DOCT (Fig. 3(b)) since SPFI is an intensity sensitive modality,
as opposed to phase sensitive DOCT. For each flow rate, velocity profiles were measured three
times for both SPFI and DOCT, and the averaged velocity and standard deviation were
calculated (Fig. 3(b)–(g)). Flow rates measured using SPFI and DOCT were plotted as
functions of pump flow rates (Fig. 3(f)–(g)), showing strong correlations of both SPFI (mean
R2=0.99) and DOCT (mean R2=0.99) with theoretical values.

Depth-resolved vessel maps for each volume were first reconstructed and overlaid onto
structural OCT data to distinguish macular vasculature (Fig. 4(a)–(e)). Total blood flow
measurements were then calculated for a single 2×2mm volume of the fovea (Fig. 4(c)(View
3)). The structural OCT data shows the foveal pit and the associated SPFI vascular map
confirmed its location by resolving a circular avascular zone surrounded by a set of terminal
capillaries [29]. First, the resolved vessels in the volume were identified as arteries and veins
using the flow directionality information calculated by SPFI (Fig. 5(a)). Vessel orientation and
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Doppler angle were then measured for all 17 resolved vessels, and velocity profiles were
measured at a single point for each vessel (Fig. 5(a) – dots). Doppler angles were measured by
calculating the vessel cross-section displacement across sequential B-scans in the 3D datasets
[4]. The velocity profiles were then fit to laminar flow curves to determine both the peak
velocity and diameter of each vessel. Finally, the vessel size, orientation, and velocity
information was used to calculated the total foveal blood flow [4]. A representative B-scan
(Fig. 5(b)) taken across the foveal volume (dotted line) is shown with velocity-resolved flow
content overlaid on top of the structural image. The velocity profiles and parabolic fits for each
of the vessels are included (Fig. 5(c)–(i)) to show the strong correlation between velocities
measured using SPFI and their respective laminar flow velocity profiles (mean R2=0.95).
Closer inspection of vessel 17 (Fig. 5(i)) shows a blunted parabolic velocity profile,
characteristic of red blood cell aggregation in microvasculature, consistent with rheological
observations [30–32].

A summary of the size, peak velocity, and flow measurements for all vessels identified in the
2×2mm foveal volume are shown in Table 1. The smallest resolvable vessel was 13.64μm,
which is at the resolution limit of the retinal SDOCT system. The average measured foveal
vessel diameter was ~22μm, and average arterial flow velocity was greater than average venous
flow velocity (Table 2), which is supported by similar measurements made using LDV [27].
The detected velocities ranged from 5.97–30.22mm/s, concurrent with human retinal vessels
in the corresponding size range, also measured using LDV [27]. Finally, the total arterial and
venous flow showed a net inflow of blood into the fovea. This is a result of the presence of
unresolved veins in the volume and expected errors from measurements of vessel orientation
angle and calculation of diameter, which would significantly impact blood flow calculations.

While SPFI allows for velocity-resolved volumetric blood flow imaging with velocity
resolution comparable to that of DOCT, there are several advantages and drawbacks to the
modality that must be noted. Since velocity resolution and spatial oversampling are coupled,
this allows for the flexibility to set sampling parameters to a desired velocity range. This would
allow for improved data acquisition speeds over DOCT for imaging of small spatial volumes
of moderately high flow velocities, but could potentially require longer scanning times for large
scan areas with low flow. As discussed previously, the velocity resolving power of SPFI falls
off at the lower limits of velocity detection, as compared to DOCT, but is comparable for high
flow velocities. Since velocity-resolved SPFI requires a sliding spatial frequency window, this
increases the number of Fourier transforms required by the number of velocity increments
desired. However, this increase in computational complexity is essentially trivial since FFT
algorithms can be optimized and the transforms can be parallelized. Finally, it has been shown
that spatial frequency filtering results in a sensitivity improvement [16], which gives SPFI a
detection advantage over DOCT for small vessels at the resolution limit of the imaging system.
The overall advantage of SPFI over DOCT is in its improved sensitivity and customizability
over velocity resolution, velocity range, and acquisition time in exchange for small increases
in computational complexity.

5. Conclusions
We have demonstrated velocity-resolved in vivo volumetric bidirectional flow imaging for the
measurements of human retinal blood flow. Velocity-resolved SPFI-SDOCT builds on
previously described SPFI imaging techniques, which provide three-dimensional flow imaging
without acquiring multiple A-scans at a single lateral position. SPFI measured velocities were
validated with velocities measured using conventional DOCT on flow phantoms. Velocity-
resolved SPFI was then used for in vivo imaging of several volumes across the macula of
healthy human retina. SPFI processing allowed for volumetric visualization of flow without
the need for manual segmentation. SPFI also provided flow directionality and velocity,
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demonstrating the measurement of vessel size, peak velocity, and total foveal blood flow with
OCT, consistent with characteristics observed in LDV and rheology.
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Fig. 1.
Flow chart of velocity-resolved SPFI-SDOCT signal processing. (a) Lateral Fourier transform
of raw SDOCT spectral interferogram B-scan yields (b) spatial frequency of stationary
scatterers centered around DC, and spatial frequency of moving scatterers shifted by their
respective Doppler frequencies. (c) Applying a frequency-shifted Heaviside step function,
spatial frequency windowing, and inverse Fourier transforming each frequency range recreates
(d) the analytic interferometric signal. (e) Spectral inverse Fourier transform of the analytic
interferometric signal maps depth-solved reflectivities of moving scatterers for each
corresponding velocity range into a datacube for each B-scan. Bidirectional flow is mapped
onto opposite image half-planes. Summing the datacube across all velocity ranges creates
velocity- and depth-resolved B-scans.
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Fig. 2.
Velocity-resolved SPFI-SDOCT retinal system. The sample arm is a modified slit lamp
equipped with scanning galvanometers and relay optics for convenient patient retinal imaging.
SPFI windowing and velocity-map reconstruction were calculated in post-processing
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Fig. 3.
Validation of SPFI measured flow velocities. (a) Two micro-capillaries were connected and
oriented such that 1% liposyn flowed in opposite directions in a B-scan cross-section. (b),(c)
Velocity profiles measured using DOCT and fit to laminar flow curves. Data was acquired
with 1000 A-scans/frame with 4 sequential A-scans for each lateral position with 50μs
integration time. (d),(e) Velocity profiles measured using SPFI and fit to laminar flow curves.
Data was acquired with 2500 A-scans/frame with 50μs integration time. (f),(g) Flow measured
using both Doppler and SPFI were compared for both negative and positive flow, solid line
represents theoretical flow rate.
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Fig. 4.
10×10mm volume of in vivo human retina. (a)–(e) 2×2mm volumes sampled with
1024×2500×100pix at 100μs integration time (25s total imaging time) were acquired at several
locations across the macula, (a) (View 1), (b) (View 2), and (d) (View 4), including landmarks
such as (c) fovea (View 3) and (e) optic nerve (View 5). Volumes were processed using SPFI,
and structure, vessels, and representative B-scans (across dotted lines) with flow overlaid are
shown. Detectable vessel diameters ranged from 14 μm (fovea) to 120μm (optic nerve).
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Fig. 5.
Velocity-resolved 2×2mm volumetric flow map of in vivo human fovea. (a) Fovea vessel map
with vessels and flow direction resolved using SPFI. Arrows denote arteries and veins, and
dots represent locations where velocity profiles were measured. (b) Representative B-scan
depth-slice across the foveal volume (dotted line) with velocity-resolved vessels overlaid onto
structural data. Arteries (red) and veins (blue) are labeled for clarity. (c)–(i) Velocity profiles
of vessels 11–17, respectively, are fit to laminar flow to determine peak velocities. Individual
vessel diameters are measured at the zero-velocity crossings of their respective velocity
profiles.
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Table 1
Size, velocity, and flow measurements across a 2×2mm volumetric flow map of in vivo human fovea calculated using
SPFI.

Vessel Number Diameter (μm) Peak Velocity (mm/s) Flow (μL/min)

1 28.81 23.51 0.460

2* 20.86 −17.07 −0.175

3* 18.25 −16.45 −0.129

4 23.41 16.35 0.211

5* 21.33 −5.97 −0.064

6* 22.24 −10.66 −0.124

7 22.81 24.99 0.306

8 22.92 13.65 0.169

9 14.49 16.76 0.083

10 21.84 13.55 0.152

11* 21.52 −10.62 −0.116

12 28.64 11.34 0.219

13* 20.36 −24.41 −0.239

14* 27.05 −18.87 −0.325

15* 26.93 −7.88 −0.135

16 13.64 30.22 0.133

17 24.85 10.87 0.158

*
Arteries and veins are numbered according to those identified in Fig. 5(a). Flow was calculated using vessel sizes and peak velocities measured using

the parabolic fits of velocity profiles.
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Table 2
Retinal flow statistics in a 2×2mm volumetric flow map of in vivo human fovea calculated using SPFI-SDOCT.

Artery Vein

Maximum Velocity (mm/s) 30.22 −24.41

Minimum Velocity (mm/s) 10.87 −5.97

Average Vessel Diameter (μm) 22.38 22.32

Total Flow (μL/min) 1.89 −1.31
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