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Abstract
In the process of cell division, chromosomes are segregated by mitotic spindles—bipolar microtubule
arrays that have a characteristic fusiform shape. Mitotic spindle function is based on motor-generated
forces of hundreds of piconewtons. These forces have to deform the spindle, yet the role of
microtubule elastic deformations in the spindle remains unclear. Here we solve equations of elasticity
theory for spindle microtubules, compare the solutions with shapes of early Drosophila embryo
spindles and discuss the biophysical and cell biological implications of this analysis. The model
suggests that microtubule bundles in the spindle behave like effective compressed springs with
stiffness of the order of tens of piconewtons per micron, that microtubule elasticity limits the motors’
power, and that clamping and cross-linking of microtubules are needed to transduce the motors’
forces in the spindle. Some data are hard to reconcile with the model predictions, suggesting that
cytoskeletal structures laterally reinforce the spindle and/or that rapid microtubule turnover relieves
the elastic stresses.

1. Introduction
Mitosis, the process by which the chromosomes are segregated in the dividing cell, is driven
by a complex macromolecular machine—the mitotic spindle [1–4]. The characteristic fusiform
(spindle-like) shape of this machine, wide in the middle and tapered at both ends (figure 1), is
determined by microtubules (MTs)—polar dynamic filaments—the minus ends of which are
anchored at or near the centrosomes (spindle poles), while the plus ends reach the spindle
‘equator’. The spindle dynamics are regulated by a host of molecular motors in addition to
MTs (figure 1(C)) [5].

The dynamic spindle evolves through a number of stages [3]. After the centrosomes (two
anchoring organelles focusing MT asters that constitute the spindle) are separated around the
nucleus in prophase, the nuclear envelope breaks down, and in prometaphase the spindle self-
assembles by establishing connections between the centrosomes and kinetochores—
specialized organelles on the chromosomes. The chromosomes align at the spindle equator in
metaphase, after which cohesion between the sister chromatids is dissolved, and the chromatids
are segregated to the opposite pole in anaphase A, while the poles themselves separate in
anaphase B [1–3]. This complex sequence of events is mediated by (i) astral MTs reaching
from the poles to the cell cortex, (ii) kinetochore MTs connecting the centrosomes and
kinetochores, (iii) chromosome arm MTs (chrMTs) reaching from the poles to the chromosome
arms and (iv) interpolar MTs (ipMTs) overlapping at the spindle equator (figure 1(C)) [6].
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What orchestrates the spindle assembly is not completely clear (and depends on the organism).
Several distinct molecular processes, such as force balancing, limiting concentrations of
spindle components, morphogen gradients and others acting in various combinations are the
candidates for this role [7]. There is strong evidence that the motor-generated force balance is
the principal mechanism in a number of organisms [3,6,8]. Even when different mechanisms
govern the spindle dynamics in other systems [9], the spindle often functions as a mechanical
machine [7], and the forces’ effects have to be considered. We emphasize though that there
may be stages in the spindle development in some systems, or even its whole duration, when
the chromosomal MT arrays are being emitted from the spindle equator and focused at the pole
in an almost forceless fashion [4]. Our analysis does not apply to this pathway of the spindle
assembly.

Here, we will focus on only a couple of outward forces that contribute to stabilizing and/or
segregating the spindle poles in prometaphase, metaphase and anaphase. Both of these forces
are developed by plus-end-directed molecular motors. One of the forces is generated by the
sliding action of kinesin-5 motors that are able to cross-link and slide apart the anti-parallel
overlapping ipMTs at the spindle equator [5,8,10,11] (figure 1(C)). Another is exerted by
chromokinesins on the chromosome arms that push the chrMTs away [12,13] (figure 1(C)).
Alternatively, MT polymerization itself can push on the chromosome arms [14].
Complemented by the outward force of dynein motors at the cell cortex as they pull on the
astral MTs reaching the cortex and by the internal tension created by a host of other molecular
motors in the kinetochore MTs, this antagonistic outward/inward force balance underlies the
spindle structure and function (figure 1(C)) [6].

The motor-generated forces are applied to deformable spindle components, elasticity of some
of which (centromeres [15] and chromosomes [16]) was investigated. MT elasticity in a number
of cell biological systems was recently studied in a number of elegant papers [17–22], but the
relevance of the internal MT elastic forces and for the spindle shape was not examined in
quantitative detail. (An insightful qualitative discussion of this issue in [23] was an inspiration
for our study.) In the following section, we describe the model of the elastic MTs in the spindle
bent by the motor forces. Then, we analyze the scales of forces and deformations and solve (in
order of mathematical complexity) the elasticity theory equations for chrMTs, for ipMTs with
small overlap at the spindle equator, and finally for ipMTs with significant overlap between
the anti-parallel ipMTs. We then compare these solutions with shapes of early Drosophila
embryo spindles and discuss implications of the model for other spindles.

One of the results of this study is that cross-linking of MTs into bundles of ~10 filaments and
clamping them at the spindle pole is essential for the force transduction of the motor forces
across the spindle. We estimate effective stiffness of such bundles in the spindle as ~30 pN
µm−1 and conclude that this stiffness limits the maximal motor sliding force at the spindle
equator. We also discuss discrepancies between the model predictions and some published
data, and speculate that either additional lateral stabilizing structures or rapid MT turnover in
the spindle, or both, are important for its proper function.

2. Elastic bending of chromosomal MT bundles
2.1. Mathematical model for chrMT bundles

Mechanically, MT polymers are stiff rods with an elastic modulus comparable to that of
plexiglass [24]. In vivo, MT-associated proteins and mechanical stresses in the cell can affect
the MT mechanics [25,26]. In particular, MTs are often bundled by various cross-linking
proteins [27], which presumably increases the effective MT stiffness further [28]. Each MT is
a thin elastic rod characterized by its flexural rigidity YI, where Y ~ 109 pN µm−2 is the MT
Young’s modulus, and I ~ 10−8 µm4 is the second moment of inertia of the MT cross section
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[24]. We assume that the bundle consists of N elastic MTs; if the MTs are tightly cross-linked,
the bundle’s flexural rigidity scales as ~N2, while if the cross-linking is flexible, the scaling is
~N [28]. Therefore, the order of magnitude of the MT bundle’s flexural rigidity can vary from
B ~ YIN to B ~ YIN2. In the calculations described below we used the value N = 10 and assumed
tight cross-linking, B = 100YI; we will discuss the consequences of varying these assumptions
below. The bundle’s rigidity, in principle, can vary along the length due to many factors
including spatial variance of the number of MTs, density of the cross-linking, and local
mechanochemistry of the cell. Here we assume that the flexural rigidity is constant.

Let us consider a chrMT bundle of length L, with minus ends anchored at the spindle pole
located at a distance l < L from the spindle equator (figure 1(C)). Mathematically, the shape
of the bundle can be described with the arc length parametrization: the x- and y-coordinates of
the material points of the bundle are {x(s), y(s)}, where 0 ≤ s ≤ L is the arc length. We assume
that the plus end of the bundle is clamped at the chromosome arm in the horizontal (along the
pole–pole axis) direction, and the chromokinesin motors and/or MT polymerization push the
bundle’s plus end outward with force P. We also assume that the bundle’s plus end may slide
freely in the vertical direction. Thus, mathematically, the force P = {−P, 0} is applied to the
bundle’s plus end. We consider two possible types of anchoring of the minus end of the MT
to the pole—clamped and hinged.

Let us introduce the unit vector tangential to the bundle t(s) = {x′(s), y′(s)} (here and below ′
denotes the derivative with respect to the arc length). In the appendix, we derive the equation
for the bundle shape:

(1)

where θ(s) is the variable angle between the tangent to the bundle and the vertical direction.
We use the bundle length L ~ 10 µm as the characteristic length scale, and its flexural rigidity
divided by the bundle length squared, B/L2 ~ 10 pN, as the characteristic force scale in the
system. Using these scales to non-dimensionalize the variables and parameters (we will keep
the same notations for the non-dimensional variables), s → sL, P → PB/L2, we derive (see the
appendix) the non-dimensional equation for the bundle shape:

(2)

The boundary conditions are determined by the assumption that the plus end is clamped in the
horizontal direction (θ(s = 1) = π/2) and that the minus end at the spindle pole is either clamped
at the prescribed angle (θ(s = 0) = π/2 − α) or hinged (θ′(s = 0) = 0). Thus

(3)

(4)

2.2. Model predictions for the shape of the chromosomal MT bundles
Model parameters and predicted observables are listed in table 1. In the appendix, we found
analytical solutions of equations (2)–(4) in the form of elliptic functions [29] and plotted these
solutions in figure 2. (As a control, we also solved these equations numerically using the
shooting method; numerical solutions are in agreement with the analytical solutions.) Figure
2(A) illustrates the predicted shapes of chrMT bundles when there is a flexible hinge connection
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at the spindle pole. When the pushing force P at the chromosome arm is less than the critical
force of ~25 pN, the bundle is stiff enough not to be deformed by such force and remains
straight. At greater forces, the bundle buckles, and as the pushing force increases to ~30 pN,
the bundle bends significantly into the shape that resembles the characteristic fusiform shape
of MT bundles in the spindle (figure 1(B)). However, as the chromokinesin or polymerization
pushing force increases beyond ~30 pN, the bundle deforms to an extent not observed in the
spindles. These calculations suggest that the hinge connection at the centrosome would not
support the spindle architecture robust to fluctuations of the motor forces: only a very narrow
region of 25–30 pN per bundle gives realistic shapes, while the data and modeling indicate that
the spindle has to be a robust structure as force changes within an order of magnitude.

Figures 2(B), (C) show the predicted shapes of chrMT bundles when the MTs are clamped at
various angles at the spindle pole. We found that for smaller pushing forces of a few tens of
piconewtons, the bundles are bent into the characteristic spindle-like shapes (figure 2(B)).
However, when the pushing force exceeds a characteristic critical force, which is clamp-angle
dependent and varies from ~50 pN for α ~ π/3 to ~70 pN for α ~ π/6, the bundles bend so much
that an inflection point emerges in the middle of them (figure 2(C)). At such super-critical
force, the bundle shape near the centrosome becomes convex up, which is not observed in the
spindles (figure 1(B)). Thus, the clamped connection at the spindle pole is more robust than
the hinged one: the bundles are bent into the realistic shapes by the pushing forces ranging
from zero to ~50 pN per bundle for realistic clamp angles.

To compare the mathematical results with the observations and better understand the
mechanical properties of the spindle, we plotted the spindle half-length (pole-to-equator
distance), half-width (see figure 1(B)), and aspect ratio (length over width) (figure 3). Figures
3(B), (D) illustrates that the bending MT bundles effectively act as springs: greater force P
compressing the spindle causes shorter spindle length. Figures 3(B), (D) allow us to evaluate
the effective spring constant, K, of the MT bundle by estimating the inverse slope in the length–
force relation: the effective spring constant can be defined as K = ΔP/Δl. The spring is nonlinear,
so the spring constant depends on the range of the applied forces. For the hinge connection
(figure 3(D)), the chrMT bundle behaves as a very weak spring characterized by K ~ 1 pN
µm−1. On the other hand, the clamped bundle behaves as a relatively stiff spring characterized
by K ~ 30 pN µm−1 for forces up to 50 pN per bundle. At greater forces, the bundles buckle,
exhibiting the inflection in bent shapes, and the effective spring weakens to K ~ 10 pN µm−1.

To change the spindle width significantly, forces have to change by ~10 pN per bundle for the
hinged connection and by ~100 pN for the clamped connection (figures 3(A), (C)). The model
predicts that the (clamped) spindle aspect ratio linearly decreases with force per bundle (figure
3(E)), changing from ~4 to 2 for greater clamp angles and from ~2 to 1 for smaller clamp angles
as the force increases to ~50 pN per bundle.

3. Interpolar MT bundles bent by great sliding forces
Let us consider the ipMTs overlapping at the spindle equator in an anti-parallel fashion (figure
1(C), figure 4(A)). At the overlap, bi-polar kinesin-5 motors (sometimes resisted by other
proteins) attempt to reach the plus ends of the overlapping MTs, and as a result generate the
forces sliding the anti-parallel bundles apart in a fashion opposite to the well-known actin–
myosin contraction in muscles. We characterize this sliding motor action by the parameter γ
(table 1)—the force exerted per unit length of the overlap—equal to the force per motor
multiplied by the average number of the motors per unit length.

Here we investigate the simple limiting case when the sliding force γ is great, of the order or
greater than ~100 pN µm−1, while the spindle length is kept constant by the inward forces
generated by the tension of the kinetochore MTs. If this is the case, then the length of the ipMT
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overlap at the equator, δ (figure 4), is small compared to the whole bundle length and spindle
length. Indeed, if the overlap length is equal to a few microns, then with γ equal to 100 or more
pN µm−1, the total sliding force amounts to hundreds of piconewtons, which would bend each
of the ipMT bundles drastically away from the spindle equator (as is clear from the previous
section), so the overlap would decrease to a sub-micron range. But then, the overlap length is
an order of magnitude smaller than the lengths of the whole bundle and spindle, and the
curvature of the overlap region can be neglected. Effectively, the overlap region can be
represented by a short straight segment at the spindle equator, parallel to the spindle axis (figure
4).

Mathematically, the following iteration procedure can be used to find the ipMT bundle shape
in this case (figure 4). First, we start with an arbitrary length of the bent part of the bundle,
sbent, find the length of the overlap, (1 − sbent) and the resulting sliding force P = γ(1 − sbent).
Then, without changing the spindle length, we use the analytical formulae in the appendix to
find the shape of the curved part of the bundle. This gives us the new, updated shape of the
ipMT bundle, from which we obtain the updated value of the overlap length, and therefore the
updated values of the sliding force and arc length of the bent part of the bundle (see the detailed
description in the appendix). We checked numerically that this iteration process converges;
the resulting stable ipMT shape can be found analytically (see the appendix).

The result of these calculations is very simple and intuitive: for γ equal to 100 or more pN
µm−1, the ipMT overlap at the equator is so small that it can be mathematically considered
point-like, and so the shape of the bundle is well approximated by the results of the previous
section for chrMTs. In particular, the hinged connection at the pole is not robust; for the
clamped connection, the ipMTs are bent into realistic shapes by forces on the poles not
exceeding ~50 pN per bundle, and the bundle behaves effectively as a spring with a spring
constant ~30 pN µm−1. Note also that the case of possible ipMT bundles cross-linked at the
spindle equator, rather than being pushed by active molecular motors, is also mathematically
equivalent to this case.

4. Interpolar MT bundles bent by small sliding forces
4.1. Mathematical model for chrMT bundles

The case of smaller sliding forces, when γ is of the order of 10 pN µm−1, is mathematically
the most difficult, because the overlapping region between anti-parallel MTs is not small
compared to the spindle length, and curvature of the overlap region cannot be neglected. In
this case, a direct solution of the elasticity theory equations for the bent rods becomes
prohibitive, because the bending forces and moments exerted by motors and MAPs cross-
linking the MT rods depend on the rod shape, which in turn depends on these forces and
moments. This interdependence of the forces and shapes makes the problem too difficult for
even a numerical analysis of the differential equations [30]. (A numerical investigation treating
the MTs as short segments connected by angular springs and motors as linear springs [22]
could be feasible in the future.)

Here we overcome this difficulty by modeling the kinesin-5 motors and other possible proteins
at the middle part of the bundle of length δ as sliding cross-links keeping the MTs tightly
bundled at the overlap, but sliding freely relative to each other. This allows us to approximate
the whole overlapping ipMT array that spans the space from one pole to another as a single
elastic rod. For simplicity, we do not consider possible heterogeneity of its effective stiffness.
The simplest case is when the kinesin-5 motors do not generate sliding forces, but are just
freely sliding cross-links.
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Then, the ipMT bundle shape can be found as follows: we consider the bundle’s ends clamped
at an angle α at the spindle poles at the fixed distance 2l from each other. The total ipMT bundle
length is (2L − δ), where δ is fixed, but unknown, overlap length. An unknown force P,
physically generated by the astral and kinetochore MTs, restrains the bundle at the poles. We
analytically solve the elasticity theory equation for the bundle’s shape:

(5)

(see the appendix, where the non-dimensional version of the equations is solved). We find the
solutions for any value of the parameter δ, so that the value of force P is determined by this
parameter, and other parameters and boundary conditions, P = P(δ, α, L, l). Then, we compute
numerically the elastic free energy [31] of the ipMT bundle, which is given by the integral

(6)

The energy is parametrized by the unknown value of the overlap: ϒ = ϒ(δ). Numerically
minimizing the elastic free energy, we obtain the value of δ, force P and the shape of the bundle
for given values of L, l and α.

This model can be generalized to the case when kinesin-5, possibly with other motors, applies
tangential sliding forces γ per unit length of the overlapping ipMTs. We assume that these
forces are independent of the bending elastic forces, and that the motor forces are additive.
Note that we do not explicitly solve the elasticity theory equations for the rods bent by these
forces for the reasons discussed above. Indeed, these forces are applied to the individual MTs
within the bundle, but are canceled when integrated over the bundle’s cross section, because
the forces on the antiparallel MTs are opposite to each other. However, clearly, these forces
slide the anti-parallel MTs apart, increasing the bundle length and decreasing δ. This effect can
be accounted for by adding the potential energy of the sliding motors to the elastic energy. The
former can be estimated by integrating the force γs, sliding apart the anti-parallel sub-bundles
overlapping over the distance s, with respect to s from 0 to δ. The resulting work (motor
potential energy) is γδ2/2. Thus, the total energy in the active motor case is

(7)

In the appendix, we compute this energy, minimize it, and thus numerically obtain the value
of δ, force P and the shape of the bundle for given values of L, l, γ and α.

4.2. Model predictions for the shape of the interpolar MT bundles at small sliding forces
The resulting ipMT bundle shapes are shown in figure 5 for various clamping angles and motor
forces. (For the hinged connection, the results are not shown because of the non-robustness of
the shape in response to small force changes.) When the motors are passive, γ = 0, the ipMT
bundle’s shape is an almost perfect circular arc (see the appendix), and no force is needed to
restrain the poles. The spindle’s aspect ratio is between 2 (at α = π/3) and 4 (at α = π/6). When
the motors exert sliding forces (γ = 10–25 pN µm−1), the MTs are bent outward, and the aspect
ratio decreases, changing from 1.2 (at α = π/3) to 2.5 (at α = π/6).
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Note that the parameter γ has the same dimension, pN µm−1, as the effective elastic spring
constant K, and in fact the overlapping ipMT region works as a spring: when the spindle length
decreases, the ipMT overlap increases, and the outward sliding force grows with the overlap
length. However, there is no simple linear relation between the force P applied to the poles and
the overlap: P ≠ γδ. One reason is that the sliding force is not applied exactly in the pole–pole
direction, plus, the force-dependent elastic bending mediates the resulting force at the poles.
By varying the pole–pole distance 2l and computing the resulting force P, we estimated the
effective spring constant of the combined effective motor/elastic spring. Its value, K ~ 10 pN
µm−1, is insensitive to the value of γ. Thus, at significant, a few microns long, overlap between
the ipMTs, the force of tens of piconewtons per ipMT bundle has to be generated by the
kinetochore MTs to stabilize the spindle in metaphase.

The model also shows, in agreement with intuitive expectations, that if there is a net outward
force from a collective action of astral and kinetochore MTs trying to segregate the poles, and
if the ipMTs are pulled inward (i.e., by kinesin-14; γ is negative), then the aspect ratio of the
spindle increases (figure 5). The computed shapes can also be representative of the shapes of
the kinetochore MTs under tension, if they are cantilevered at the poles.

5. Discussion
5.1. Biophysical implications

Our analysis suggests that a flexible, hinge-like connection between the MT bundles and the
centrosome (spindle pole) is not robust and is an ineffective way of transducing the motors’
forces in the spindle: in this case, the tightly cross-linked bundle of 10 MTs is equivalent to a
weak spring characterized by K ~ 1 pN µm−1, so just one additional molecular motor would
be able to significantly deform the spindle. Also, the change of forces in the narrow range of
25–35 pN per bundle would drastically deform the spindle aspect ratio from 10 to 1, which
was never observed.

If the MTs are clamped at the spindle poles, the mechanical properties of the spindle become
more robust: each MT bundle would be able to withstand up to 50 pN of pushing or sliding
force before buckling. In this regime, the MT bundles behave as effective compressed springs.
Respective stiffness of these ‘elastic springs’ is of the order of K ~ 30 pN µm−1, so only tens
of motors would deform the spindle noticeably. When a bundle buckles at forces exceeding
~50 pN, the model predicts a characteristic inflection point (figure 2(C)) in the middle of the
bundle.

In summary, our model suggests that the MT bundles in the spindle can be considered as a
series of springs compressed by the molecular motors. The chrMT bundle is an elastic spring
with effective stiffness K ~ 30 pN µm−1, while the ipMT bundle is an elastic spring with similar
stiffness K ~ 10 pN µm−1. Note that all of these springs are under compression, assuming that
both kinesin-5 and chromokinesin motors exert the outward forces on the spindle pole (not
canceled completely by other motors, i.e. kinesin-14). The spindle poles in this situation are
kept in equilibrium by inward forces, most notably by forces generated on kinetochore MTs
that keep those MTs under tension [32]. Note also that the chrMT bundle spans half-spindle,
while the ipMT bundle connects the poles; effective stiffness of the pair of the chrMT bundles
in series is ~15 pN µm−1, so the stiffness of the whole spindle composed of a few tens of
bundles would be in the range of hundreds of piconewtons per micron.

For chrMT bundles, it is natural to assume that the pushing force is generated by one motor
per MT plus end. The respective force, either of kinesin or of MT polymerization is in the range
of a few piconewtons [33], so N ~ 10 MTs, if they are tightly bundled and clamped at the
spindle pole, would not be able to buckle and transduce the motor force effectively within the
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spindle. The pushing force scales as N, while the stiffness of the bundle scales as N2 at tight
cross-linking, so either decreasing the number of bundled MTs or making the cross-linking
loose would destabilize the spindle. Increasing the number of bundled MTs would make the
bundle more robust, but the spindle clearly has to have many bundles for structural stability,
so it is tempting to speculate that N ~ 10 MTs is the minimal required number per bundle, and
that the cell regulates the bundle thickness to allow both mechanical stability and maximizing
the number of the bundles.

For ipMT bundles, the parameter γ is probably scaling as N, and it is likely that ~10 motors
per micron of the overlap between a MT pair are engaged [23]. This would put the value of γ
in the range of hundreds of piconewtons per micron for N ~ 10 MTs per bundle, and thus into
the regime in which the value of γ does not affect the spindle’s overall elastic properties. In
this regime, the spindle geometry and effective stiffness would be sensitive to the forces
generated by astral and kinetochore MTs and respective motors. This argument also holds when
either N or cross-linking decreases. The important conclusion is that too many outward pushing
molecular motors would simply waste their power by bending the spindle MTs out of shape
and not transducing their force to the spindle poles. Even in the limit of the low motor density
or force, we demonstrated that the force at the spindle poles is not very sensitive to the total
sliding motor force, so the assumptions of the previous one-dimensional force balance models
[6] that the whole motor force is transduced to the spindle poles have to be re-examined.

Finally, the possible dispersal of the MT bundle length is an interesting issue. The bundle’s
stiffness is inversely proportional to the square of its length, so MT bundles much longer than
the half-length of the spindle would not contribute much to the spindle mechanics, and
moreover would be buckled drastically, which has never been observed, to the best of our
knowledge. This makes it likely that the effective length regulation of the MTs in the spindle
[34–36] has an important mechanical function.

5.2. Comparison with mitotic spindles in the early Drosophila embryo
Electron microscopy of the mitotic spindle in the early Drosophila embryo shows the average
length of the ipMT overlap of the order of 1 µm [23] in metaphase. It also shows that tens of
bundles consisting of 2–4 MTs overlap at the spindle equator [23]. In anaphase, the number of
the ipMT bundles is likely to decrease to ~10 [37], and probably the MT number per bundle
increases. These data are consistent with the regime in which the elastic bending of the ipMTs
would have to be significant and sensitive to the characteristic forces. The latter are in the range
of hundreds of piconewtons in prometaphase and metaphase and close to 100 pN in early
anaphase [6]. Divided by the number of ipMT bundles, this suggests that ~10 pN is applied
per bundle of ~3 MTs in prometaphase and metaphase, and ~10 pN is applied per bundle of
~10 MTs in anaphase. Our physical estimates suggest that in anaphase the clamped ipMT
bundles can easily sustain such forces, while in prometaphase and metaphase the characteristic
forces would have to buckle the ipMT bundles, unless the bundles are additionally reinforced
(see below).

We measured the average aspect ratio of tens of the Drosophila spindles in metaphase and
anaphase (figure 1(B)) and observed that the spindle’s average aspect ratio increases 1.5 times
from 1.8 ± 0.2 in metaphase to 2.7 ± 0.3 in anaphase. From the micrographs, we estimate the
clamping angle α ≃ π/6 − π/4. In principle, both values of the aspect ratios are in agreement
with the characteristic aspect ratios predicted by our theory (figure 3(E), figure 5), as is the
increase of the aspect ratios in anaphase, when the force decreases and the bundles stiffen.

However, some data are harder to explain by the model. First, buckling MTs in metaphase are
not observed. Second, we measured the aspect ratio of the spindles when some motors were
inhibited (kinesin-14, effectively diminishing the sliding force of kinesin-5), and did not
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observe any significant changes in the aspect ratios of the perturbed spindles. In principle, these
observations can be reconciled with the theory if the total motor force is smaller than suggested
by recent models and inferred from crude measurements. Below, we discuss other plausible
reasons for these inconsistencies.

5.3. Budding yeast spindle
In the future, it would be interesting to examine the MT elasticity in the budding yeast spindle,
which is a prime candidate for modeling because of its relative simplicity compared to other
eukaryotes [38,39]. The low number of MTs (about 20) in each half-spindle will make it
possible to consider each individual MT, especially because the MTs do not seem to be bundled.
The yeast spindle appears to be barrel shaped; there are few interpolar MTs and they are straight
[40]. It is highly likely that sliding by forces of the order of 100 pN [38] underlies spindle
elongation [41] in this system.

The budding yeast spindle is short compared to other eukaryotes, thus MT bundling may not
be necessary; however, it was suggested that some cross-linking takes place and keeps MTs
from buckling [39]. It is interesting to note that occasionally some spindle MTs appear bowed
[38], as if they are buckled by compression forces. Our theory predicts for short unbundled
ipMTs in the yeast spindle that they should remain straight both if the overlap is very small
and if it is great. Buckling, however, is possible in longer spindles with moderate overlaps
between the MTs. One additional aspect to consider is the fact that in yeast, ipMTs are
surrounded by cohesin and kinetochore MTs [38], which is curiously the optimal mechanical
design reinforcing the ipMTs laterally.

5.4. Model limitations and biological implications
How are some other spindles built? In generic animal cells, electron microscopy [42] suggests
that ipMTs in metaphase and anaphase are not heavily bundled, while bundling increases in
anaphase. The length of the equatorial overlap is in the micron range, and forces of hundreds
of piconewtons [43] are operating in the spindles. This suggests that mechanically these
spindles are similar to the Drosophila spindles considered above, so it is likely that some
additional strengthening of the spindle is necessary in early stages of mitosis. In our opinion,
the prime candidates for this are numerous MTs that orient laterally [44,45], rather than along
the spindle axis, and so, if cross-linked with the ipMTs can serve as trusses and struts stiffening
the spindle. Additional or alternative strengthening can be provided by embedding the spindle
in an actin meshwork [46], a lipid membrane envelope [47], other cytoskeletal elements [19],
i.e. MAPs, or ‘spindle matrix’ networks [48].

Additional arguments for the spindle’s mechanical reinforcement is the observation that when
a cricket or grasshopper spermatocyte spindle is cut by a micro-needle half-way between one
of the poles and the equator, or across the equator diagonally, the shapes of the two resulting
parts do not change drastically compared to how they appear in the intact spindles [49]. (One
would expect the MTs to spring loose and straighten without lateral restrictions.) Similarly,
halves of the spindles in fertilized eggs and blastomeres of the sand dollar, derived from
breaking the spindles by stretching, kept their fusiform shapes [50]. However, after the cuts
and breaks, the spindles look a little ‘frayed’, as if some MTs are splayed. Spindle’s stretching
in these organisms indicates too high mechanical strength of the spindles [50]: a stretching
force of up to 104 pN does not change the spindle length and shape in metaphase, while our
theory predicts that a force in the range of a few hundreds of piconewtons would deform the
chrMT and ipMT bundles noticeably. However, kinetochore MT fibers connecting the poles
and chromosomes in metaphase are already stretched, and further stretching of these fibers are
not likely to be broken or deformed by relatively great forces. These fibers are in parallel with
chrMTs and ipMTs, which can explain the results of the stretching experiment. Our theory
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predicts that if instead the spindle is compressed, it has to appear much weaker mechanically
than if stretched.

Besides strengthening of the ipMT and chrMT bundles laterally with cytoskeletal elements,
other factors that could significantly change the process of mechanical stabilization of the
spindle are very high dynamicity of the MTs in the spindle [34], regulation of MT properties
by non-motor proteins [51] and length and width regulation of the MT fibers [52]. The former
could ensure that elastic deformations and stresses do not have time to develop before
individual MTs disassemble, and the latter could be the reason that very long buckled MTs are
absent. We would like to stress again that our analysis does not apply to the systems where the
spindle dynamics is dominated by the almost forceless (Listeria-actin-tail-like [4]) emission
of the chromosomal MTs, focusing them at the poles or other potential shape-forming
mechanisms [9,53].

Another issue important for the spindle mechanics that we did not consider in detail is that
chromosomes, in addition to MTs, are also elastic deformable elements. The following
argument suggests that chromosomal deformations are moderate and do not change drastically
the spindle shape. The polymerizing MTs, and/or chromokinesin pushing forces applied to the
chromosome arms are in the tens of piconewtons range (a few piconewtons per MT times ~10
MTs per chromosome). These forces are applied to the chromosome arm over an area of ~1
µm2, resulting in the pressure of tens of pN µm−2. The effective stiffness of the chromosome
arm is ~100 pN µm−2 [16], so the chromosomes are deformed only moderately. (Pressure
divided by stiffness, ~0.1–0.5, gives the effective elastic strain.) The fact that chromosomal
deformations are not huge is due to the spindle geometry: the MT lattice is much stiffer than
the chromosome arms, but MTs are long and thin, while chromosomes are short and thick, plus
the forces applied to the MTs are focused near their ends, while those applied to the
chromosome arms are spread over their area. Nevertheless, the chromosomes’ role in the
spindle mechanics will have to be more thoroughly examined in the future: at significant
deformations, chromosomes could become crowded, start behaving like a ‘visco-elastic’
aggregate and dominate the spindle behavior.

Finally, our prediction that the MTs have to be clamped at the spindle poles raises questions
about the molecular nature of the connections between the MT minus ends and the centrosomes
(similarly, molecular details of the chrMT plus end interactions with the chromosome arms
have to be investigated). Indeed, the moment of the bending forces of the order of hundred pN
µm is applied to the MT bundle’s minus ends. If the MTs are cantilevered in the centrosomes,
the size of which is but about 1 µm (and so the effective lever arm is about 1 µm), then such
moment means that force of the order of 100 pN per bundle would be deforming the centrosome.
Such forces would probably break the centrosome, so it is likely that larger relatively rigid
structures surround the centrosomes serve as a ‘block of cement’ in which the MTs can be
clamped. One candidate for such a structure is the NuMA protein network [54]. It would be
informative to see what are the consequences for the spindle shape from perturbations of the
mechanical strength of such a network.

6. Conclusion and outlook
We examined the role of elastic forces bending MTs in shaping the mitotic spindle. Our theory
predicts that a flexible, hinge-like connection between the MTs and the spindle poles would
make the spindle mechanically unstable. On the other hand, if the MTs are clamped at the
spindle poles, the mechanical properties of the spindle become more robust. Based on the
theory, about ten tightly cross-linked MTs are the minimal required number per bundle keeping
the spindle stable. The model suggests that each chromosomal and interpolar MT bundle in
the spindle can be considered as a spring, with a stiffness of the order of ~20–30 pN µm−1.
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The model also hints that the cell has to limit the power of the outward-pushing molecular
motors: too many of them would simply waste their power by bending the spindle MTs out of
shape and not transducing their force to the spindle poles.

A mathematical ‘proof’ that certain mechanism works in the cell is rarely convincing, because
models are based on simplifying assumptions and because of complexity and redundancy of
the cell phenomena. The value of mathematical models is in their ability to either demonstrate
that a hypothesis, though qualitatively plausible, does not conform with physical laws and
quantitative constraints imposed by available data, or to make clear predictions about which
data are or are not consistent with the theory, thereby suggesting further experiments and
modeling refinements. Our model is able to explain the fusiform shape of the mitotic spindles
in metaphase and anaphase in the early Drosophila embryo. However, some data, such as
insensitivity of the spindle shape to motor inhibitions, to cutting the spindle, and very high
rigidity of the spindle, indicate that the MT elasticity may not be the whole story. It is possible
that after the spindle is assembled in prometaphase and shaped by the elastic forces, some
additional reinforcement is put in place in metaphase. Candidates for such reinforcement are
(not mutually exclusive) additional short MTs or MAPs that can serve as trusses and struts,
actin, ‘spindle matrix’ and lipid membrane networks enveloping the spindle. Another
possibility is that the MT length is regulated in the spindle by motor-induced forces.

In order to quantitatively understand the spindle mechanics, besides detailed microscopy of
the spindle, accurate mechanical measurements of the forces and rheologies of the spindle
elements have to be made. Indeed, at the present the motor-generated forces are either inferred
or crudely estimated; rapid MT turnover can make the spindle more ‘fluid’, than solid like. To
test some of the model predictions, it could be useful to look for long MTs with characteristic
buckled shapes in the spindles, to measure spindle deformations by stresses of various
frequency and localization, and to strengthen or weaken the protein networks near the spindle
poles and to observe consequent shape changes. Perhaps the main message of this study is that
the mitotic spindle shape can reveal important information about the molecular mechanisms
of the mitotic machinery, and that elastic forces of the bending MTs have to be taken into
account to understand the spindle dynamics quantitatively.

Glossary
List of abbreviations

MTs  
microtubules

chrMTs  
chromosome arm MTs

ipMTs  
interpolar MTs

Glossary

Mitotic spindle 
Fusiform-shaped bi-polar array of overlapping dynamic microtubules that
segregate chromosomes with the help of multiple molecular motors.

Microtubules 
Linear dynamic polymers with static minus end and dynamic plus end. In the
spindle, the minus end is focused at or near the spindle poles. The plus ends of
the astral microtubules reach the cell boundaries; the plus ends of the interpolar
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microtubules reach the spindle mid zone; and the plus ends of the kinetochore
and chromosomal microtubules reach the chromosomes.

Molecular motors 
Proteins able to use the chemical energy of ATP hydrolysis to generate
mechanical force and movement. Specifically, mitotic motors of Dynein and
Kinesin families exert sliding, pushing and pulling forces on microtubules and
chromosomes in the spindle.

Clamp  
A rigid structure holding an elastic rod (microtubule) in a fixed position and
orientation.

Hinge  
A type of bearing that connects an elastic rod (microtubule) with the spindle pole,
allowing an angle of rotation between them.

Spring constant, or stiffness 
Measure of the ‘strength’ of a spring (has units of force per unit length): the
proportionality coefficient between force and extension in the Hooke’s law.
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Appendix

Appendix A. Derivation of the equation for the shape
Introducing the moment of the internal stresses on the cross section of the MT bundle M(s)
and the resulting internal stress on the cross section F(s), we can determine the equilibrium
shape of the bundle from the linear elasticity theory [31]:

(A.1)

At the plus end, F = P = {−P, 0}, and since F′ = 0, then at all points along the bundle we have
F = P, and

(A.2)

Using the non-dimensionalization F → FB/L2, M → MB/L, and introducing the angle θ(s)
according to t = {sin θ, cos θ}, we obtain from the first of equation (A.2) the only nonzero
component of the moment Mz = −θ′. Substitution of this expression into the second of equation
(A.2) leads to

Appendix B. Analytical solutions of the shape equation
The solution of equations (2)–(4) can be found analytically in the form of the elliptic functions
[29]:
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(B.1)

where m is an integration constant, and am(u|m) denotes the inverse of the elliptic integral of
the first kind:

Using the properties of the elliptic functions, it can be shown that the solution of equation (B.
1) and its derivative at s = 0 have the form

(B.2)

where . Substituting the above expressions into the corresponding
boundary conditions at the left end we obtain the equations for the integration constants:

(B.3)

where cn = cos(ϕ). After constants m1,2 are found, the shape of the bundle is obtained by
integration:

(B.4)

Let us denote

so that θ(s) = π/2 − 2ψ(s).

Consider the indefinite integral equation (B.4) which can be rewritten as

(B.5)

Recall the formula for integration of cn(u|m) = cos(am(u|m)):
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where  is the elliptic integral of the second kind, and sgn(x) = x/|
x|. Equation (B.5) becomes

(B.6)

The indefinite version of equation (B.4) is given by

(B.7)

We have ψ(1) = u(1) = 0, ψ(0) = ψ0 = am(u0|m), u(0) = u0.

Finally, the shape of the bundle is determined parametrically as follows:

(B.8)

(B.9)

Noting that am(0|m) = sn(0|m) = E(0|m) = 0, cn(0|m) = dn(0|m) = 1, we find from equation (B.
9) that y(1) = (2/mu0)[1 − dn(u0|m)]. The general formulae (B.8), (B.9) can be simplified for
two types of the boundary conditions discussed above.

Hinge at the pole
In this case, we have m = m2, dn(u0|m2) = 0, and dn(u|m2) ≥ 0, so the bundle shape is given by
the formulae

(B.10)

(B.11)

It should be noted that there exists a critical value of the force Pcr = π2/4, such that for P <
Pcr equation (B.3) admits no solution with positive y2. This critical force corresponds to the
first eigenvalue of the buckling problem.

Clamp at the pole

In this case, we have ψ0 = α/2, and , where the plus sign is chosen
for P < Pcr, and for P > Pcr the sign depends on the value of s. Here Pcr is a critical force which
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depends on the clamping angle α. For P ≥ Pcr the shape of the MT bundle has an inflection
point (see below).

Consider these two cases separately, starting from P < Pcr. Since u′(s) = −u0 < 0, the function
dn(u(s)|m1) is increasing, so that function dn(u(s)|m1) does not change its sign. This leads to
the following expressions for the bundle shape:

(B.12)

(B.13)

As the elliptic integral of the second kind E(ϕ|m) has a positive derivative, the derivative of
the horizontal coordinate x′(s) is also positive. The same statement is valid for the derivative
of the vertical coordinate y′(s), so that the bundle has no inflection points for P < Pcr.

The case P > Pcr is more complicated, since the function dn(u(s)|m1) at some value s = s*
changes its sign. This value s* is found from the relation

. The smallest positive zero of the periodic
function cn(u|m) is given by u* = K(m), where K(m) = F(π/2, m). Using this result, we find

. The corresponding angle , thus we find

.

The change of dn(u(s)|m1) at s = s* from a negative to a positive value means that the function
f0(s, m1) = E(am(u|m1)|m1) sgn(dn(u|m1)) increases its value by 2E*. As we want to have a
continuous and smooth solution with respect to s, we compensate for this change in sign by
introducing a smooth function f(s, m1) in place of the discontinuous function f0(s, m1):

which can also be written in the form f(s, m1) = E(ψ(s)|m1) sgn(dn(u|m1)) − E*[1 + sgn(dn(u|
m1))]. Thus, we finally have the bundle shape in the case P > Pcr:

(B.14)

(B.15)

The bundle shape defined parametrically by equations (B.14), (B.15) has the inflection point
at s = s*.
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B.1. Analytical solutions for ipMT bundles with great sliding force
The numerical solution is obtained by iterations over the value sbent. The iteration step consists
of the following stages:

• Having the current values of sbent, the length of the parallel overlap is (1 − sbent), find
the force P = γ(1 − sbent).

• Use the formulae in the previous subsection to find the shape of the curved part of the
bundle. This gives the abscissa of the right end of this part, xre = x(sbent).

• Compute the abscissa of the right end of the bundle as xr = xre + (1 − sbent).

• Find the updated value of abscissa of the left end of the cross-linked overlap of the
anti-parallel bundles xl = l − xr. Thus, we obtain the updated value of the overlap
length δ = xr − xl = 2(xre + (1 − sbent)) − l.

• Find the updated arc length of the bent part of the left bundle .

If the iteration process converges, we arrive at the equilibrium shape of the bundles which
depends on the pole–pole distance 2l. The convergence point of the iteration process satisfies
the condition 1 − sbent = 2(x(sbent) + (1 − sbent)) − l, where x(sbent) also depends on P = γ(1 −
sbent). Thus, we can write this condition as

(B.16)

This equation gives a way to an analytic solution of the problem.

Hinge at the pole
There is a lower bound of γ at which the nontrivial solution exists given by the condition P >
Pcr which takes the form .

The function s2(1 − s) has a maximum equal to 4/27 reached at s = 2/3. This gives the lower
bound γl = 27π2/16 ≈ 16.66. The pole–pole distance 2l imposes an additional restriction on the
value of γ. In order to have the nontrivial solution, the unperturbed structure with both
horizontal bundles should be unstable: the condition P > Pcr should be valid for sbent = l − 1.
This gives the additional condition γ > π2/(4(l − 1)2l), which means that when the pole–pole
distance is small, close to the MT bundle length, the values of γ ~ 100 are required to buckle
the ipMT bundle.

From (B.10) we have

We determine the modulus of the elliptic functions m2 from the condition

. Using the smallest positive zero u* = K(m) of
the periodic function cn(u|m), we obtain m2 as an implicit function of γ and

. The amplitude ψ0 satisfies the condition 1 − m2

sin2 ψ0 = 0, from which we find , and finally
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(B.17)

Clamp at the pole

In the case , equation (B.12) gives

(B.18)

where m1 is found as a function of γ and α from the equation:
. When P > Pcr, we have

(B.19)

B.2. Unstressed interpolar bundle is shaped as a circular arc
Consider an elastic rod of a length (2 − δ) clamped at both ends at an angle α. The positions
of the left and right ends are at the origin and at (2l, 0), respectively. In the case when there is
no force applied to the rod at the poles, the force balance equation reads

(B.20)

Due to the mirror symmetry about the midpoint of the rod, the equivalent problem is

(B.21)

The rod shape {x(s), y(s)} is determined by a set of equations:

(B.22)

The solution of this simple problem is θ(s) = As + α, A = −α/(1 − δ/2). Integrating equation (B.
22), we have

(B.23)

Using the condition x(1 − δ/2) = l, we have x(1 − δ/2) = −A−1 sin α = l, and obtain the value of
δ = 2(1 − (αl)/(sin α)) and of A = −sin α/l. Excluding s from equation (B.23), we find the rod
shape (x − l)2 + (y + l cot α)2 = (L/sin α)2, as a circular arc of the radius l/sin α. The elastic
energy of the half rod is
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B.3. Semi-analytical solutions for the shape of the interpolar bundle
We extend the treatment of the previous subsection to consider the general case when the
nonzero force P, the value of which is unknown and has to be found, is applied to the interpolar
bundle at the spindle poles. As above, the ends are clamped at a distance 2l(1/2 < l < 1). Due
to the problem’s symmetry, we consider only the left half of the system: the left end is clamped
at the origin at an angle α; the right end has coordinates {l, yr} (yr is unknown), and the tangent
at that point is parallel to the horizontal axis. The arc length position of the right end point is
sm = 1 − δ/2 < 1. The solution for P = 0 found above corresponds to .

The force balance equation in this case is

(B.24)

and the rod shape is determined by the set of equations x′(s) = sin θ, y′(s) = cos θ. The solution
of equation (B.24), similarly to equation (B.1), has the form

(B.25)

where m is an integration constant, and am(u|m) is the inverse of the elliptic integral of the first
kind (see section 6.2). The solution of equation (B.25) at s = 0 has the form

. Substituting the above expression into the corresponding
boundary conditions at the left end, we obtain the equations for the integration constant m:

(B.26)

After the constant m is found, the shape and elastic energy of the rod are obtained by integration:

(B.27)

We can substitute u(θ) = θ′(s) into equation (B.24) to re-write it in the form uu′ = P cos θ, and
after integration, we find

(B.28)

Let us denote
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so that θ(s) = π/2 − 2ψ(s). To compute the constant C, we differentiate equation (B.25) to have
u = 2u0 dn(u|m) and . On the other hand, sin θ = cos 2ψ = 2 cos2 ψ − 1 = 2
cn2(u|m) − 1. Using these relations in equation (B.28), we have (4P/m) dn2(u|m) = 2P(C + 2
cn2(u|m) − 1), and recalling the relation for the elliptic functions dn2(u|m) = 1 − m + m cn2(u|
m), we arrive at 2/m(1 − m + m cn2(u|m)) = 2 cn2(u|m) − 1 + C and obtain C = (2 − m)/m. Thus,
we have

(B.29)

It is easy to see that in the case of zero force, P = 0, we have from equation (B.26) m = 0.
Comparing equation (B.29) with the results of the previous subsection, we find in the limit P,
m → 0: A2 = sin2 α/l2 = 4P/m. Substituting equation (B.28) into equation (B.27), we have

which gives the final expression for the elastic energy:

(B.30)

We established earlier that for P < Pcr = (π/2sm)2,

The horizontal position of the right end at s = sm is l, and we have u(sm) = 0, so

(B.31)

As the value of the parameter m depends on sm as defined in equation (B.26), the relations (B.
26), (B.31) determine the values of sm and m for given value of P. Substituting equation (B.
31) into equation (B.30), we arrive at , where both P and m depend on
sm.

Using the definition of F(u|m) and equation (B.26), we obtain

(B.32)

so that
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(B.33)

Substituting equation (B.32) into equation (B.31), we have

(B.34)

Expressions (B.25), (B.33), (B.34) implicitly solve the problem of the interpolar bundle shape:
equation (B.34) determines the parameter m for given l, α and sm; substituting the result into
equation (B.33) and minimizing the elastic energy, we can find the value of sm corresponding
to the minimal energy. Equation (B.26) gives the value of the force P. Finally, the shape is
given by equation (B.25).

Specifically, expressing sm from equation (B.34) and substituting it into equation (B.33), we
find

(B.35)

In the limiting case when m = 0, the expression in the square brackets becomes equal to sin α/
(mα), so that at m = 0 we find , and equation (B.35) gives ϒ(0) = α sin
α/2l = ϒ0, so the case m = 0 corresponds to the unstressed circular-arc-shaped bundle.

The minimal value of the elastic energy can be found by differentiating equation (B.35) with
respect to the parameter m, ∂ϒ/∂m = 0. For an arbitrary value of α, the minimum corresponds
to the value m = 2. (In addition, there is a minimum at m = 0 at a special angle α = α*, where
α* satisfies the equation (α*/sin α*)2 + (α*/sin α*) cos α* = 1. However, as the left-hand side
of this equation increases for positive values of α*, one finds only the trivial solution α* = 0.)
Thus, the minimum of the elastic energy

is reached at m = 2.

The corresponding values of sm and P are computed as

(B.36)

We used equation (B.36) to compute the bundle length and force needed to stabilize it
corresponding to the minimal elastic energy at a given clamping angle and pole–pole distance.
Then we computed and plotted the bundle’s shape using the formula

(B.37)
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In fact, this shape is very close to the circular arc, and corresponding force P is very small.

Equation (B.37) gives the bundle’s shape when the motors at the microtubules’ overlap at the
spindle equator only cross-link, but do not push the microtubules apart. In order to compute
the shape in the presence of the active pushing motors, we used the Taylor expansion for the
elastic energy as a function of sm in the vicinity of s̃m:

(B.38)

where the coefficients ak(l, α) can be found as follows. Expanding the expression for sm into
the Taylor series around m = 2, we have sm = s̃m + lG(α)(m − 2) + O(m − 2), so that m − 2 =
(sm − s̃m)/lG(α). Expanding also equation (B.35), we obtain

Here G(α) and Fk(α) denote very cumbersome expressions containing the elliptic integrals that
we computed, but do not show here. Comparing the last relation with equation (B.38), we find
an explicit expression for the coefficients ak(l, α) = 2Fk(α)/(Lk+1Gk(α)).

The molecular motors distributed over the overlapping part of the bundle increase the system
energy by adding γδ2/2 to the elastic energy 2ϒ in equation (B.38). The total energy ϒ̅ then
reads

(We kept only first four terms in the Taylor series, which gives a very accurate approximation.)
The minimum of total energy corresponds to ∂ϒ̅/∂δ = 0, i.e.,

(B.39)

We solved equation (B.39) numerically to find δ, and then obtained the corresponding value
of sm = 1−δ/2. Substituting this value into equation (B.34), we numerically find the parameter
m. Then, using equation (B.26), we numerically find the value of P, and finally calculate and
plot the shape from equation (B.25).
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Figure 1.
(A) Confocal micrograph from a living Drosophila melanogaster syncytial embryo injected
with fluorescent tubulin shows images of hundreds of synchronously dividing spindles. (Data
obtained by Sharp et al as described in [8]; bar, 50 µm.) (B) Enlarged image of four spindles
from A; the aspect ratio of the spindles is estimated as the ratio of the spindle length (segment
connecting the spindle poles) to its width (segment at the spindle equator normal to the pole–
pole axis). Bar 5 µm. (C) Schematic depiction of the spindle. Only a small fraction of mitotic
motors is shown. Four functionally distinct MTs are shown: chromosomal MT (1), interpolar
MT (2), astral MT (3) and kinetochore MT (4).
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Figure 2.
(A) Predicted shapes of the chrMT bundles for the hinge connection at the centrosome as
functions of the force in the range of 25–60 pN per bundle. (B), (C) Predicted shapes of the
chrMT bundles clamped at the centrosome at angles α = π/8, π/6, π/5, π/4, π/3 at forces 20
(B) and 90 (C) pN per bundle. Distances are shown in units of 10 µm; forces are in units of 10
pN.
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Figure 3.
Predicted half-width (A), (C) and half-length (B), (D) of the spindle for hinge (A), (B) and
clamp (C), (D) connections at the centrosome as functions of the force per bundle. (E) Predicted
aspect ratios (l/S) for the spindles with the clamped connection at the centrosome as functions
of the force per bundle. Circles represent the computed values, curves—quadratic (linear for
(E)) polynomial approximations. Distances are shown in units of 10 µm, forces—in units of
10 pN. It is not clear if negative (pulling) forces at the chrMT bundle tips are biologically
realistic, but mathematically they lead to realistic shapes for the clamped connection.
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Figure 4.
Iteration procedure for computing the ipMT bundle shape for great sliding forces; see the
appendix for the details.
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Figure 5.
Predicted shapes of the ipMT bundles clamped at the centrosome at angles α = π/6, π/4, π/3 at
weak outward (γ = 10, 25) and inward (γ = −15) sliding forces. Distances are shown in units
of 10 µm; parameter γ – in units of 1 pN µm−1.
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Table 1
Model parameters and predicted observables.

Model parameters

Notation Meaning Value

P Outward pushing or sliding force ~0 − 100 pN (N/d: 0–10)

L MT bundle length ~10 µm (N/d: 1)

N Number of cross-linked MT in the bundle ~10

B = N2YI MT bundle flexural rigidity ~103 pN µm2

α Clamping angle at the pole π/8 to π/3

γ Sliding force at the ipMT overlap ~0–200 pN µm−1

Observables predicted by the model

l Spindle half-length 0 − L (N/d: 0–1)

S Spindle half-width 0 − L (N/d: 0–1)

l/S Spindle aspect ratio 0.2–5

K Effective spring constant of the MT bundle ~1–30 pN µm−1
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