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Abstract
Objectives—To review various antigen-specific tolerogenic and immunomodulatory approaches
for arthritis in animal models and patients in regard to their efficacy, mechanisms of action and
limitations.

Methods—We reviewed the published literature in Medline (PubMed) on the induction of antigen-
specific tolerance and its effect on autoimmune arthritis, as well as the recent work on B cell-mediated
tolerance from our laboratory. The prominent key words used in different combinations included
arthritis, autoimmunity, immunotherapy, innate immunity, tolerance, treatment, and rheumatoid
arthritis (RA). Although this search spanned the years 1975 to 2007, the majority of the short-listed
articles belonged to the period 1990 to 2007. The relevant primary as well as cross-referenced articles
were then collected from links within PubMed and reviewed.

Results—Antigen-specific tolerance has been successful in the prevention and/or treatment of
arthritis in animal models. The administration of soluble native antigen or an altered peptide ligand
intravenously, orally, or nasally, and the delivery of the DNA encoding a particular antigen by gene
therapy have been the mainstay of immunomodulation. Recently, the methods for in vitro-expansion
of CD4+CD25+ regulatory T cells have been optimized. Furthermore, interleukin-17 has emerged
as a promising new therapeutic target in arthritis. However, in RA patients, non-antigen-specific
therapeutic approaches have been much more successful than antigen-specific tolerogenic regimens.

Conclusion—An antigen-specific treatment against autoimmune arthritis is still elusive. However,
insights into newly emerging mechanisms of disease pathogenesis provide hope for the development
of effective and safe immunotherapeutic strategies in the near future.
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INTRODUCTION
Rheumatoid arthritis (RA) is a multisystem autoimmune disorder affecting about 1% of the
world’s population (1). Despite advances in immune-based therapies in recent years, a much-
desired antigen-specific therapy for this debilitating disease has been elusive. The induction
of antigen-specific T cell tolerance has been extensively tested in various experimental models
of autoimmune diseases, and several mechanisms associated with tolerance to combat
potentially harmful autoimmune processes have been elucidated (2–5). In addition, the role of
antibodies (pathogenic versus protective) in the pathogenesis of T cell-mediated diseases is
gradually being realized (6–8). Although, most of the antigen-specific tolerogenic approaches
are successful in the prevention of autoimmune diseases, the efficacy of these approaches
against the ongoing disease is variable. Therefore, there is a pressing need to develop novel
immunomodulatory approaches that are effective in the treatment of established autoimmune
diseases (9–13,14). Nevertheless, significant advances have been made in this direction as
discussed below.

Currently available therapeutic agents mainly treat the symptoms of autoimmune diseases and
are only partially able to interfere with disease evolution, and thereby, fail to decrease the extent
of physical impairment. Thus, the development of therapeutic strategies to limit tissue damage
is imperative. Immunosuppressive drugs such as cyclosporine or steroids are widely used for
inducing remission in the active phase of autoimmune diseases. While global
immunosuppression may ameliorate an autoimmune disease, the immunocompromised state
increases the susceptibility to infections. Thus, antigen-specific immunosuppression or
tolerance induction is a highly desired goal for the treatment of autoimmune diseases.

METHODS
In addition to the classical tolerance-associated parameters such as T cell ignorance (15,16),
anergy (17,18) and the T helper 1- T helper 2 cytokine balance (immune deviation) (19–21),
the roles of the CD4+CD25+ T regulatory cells (Treg) (22,23) and the indoleamine -2, 3 -
dioxygenase (IDO)-tryptophan pathway (24,25) in controlling autoimmunity have been
elaborated in different animal models. Currently available methods for antigen-specific
tolerance induction are listed in Tables 1 and 2.

RESULTS
I. Antigen-specific tolerance induction and immunomodulation in experimental models of
autoimmunity

Systemic administration of soluble antigen has been shown to prevent diseases such as
experimental autoimmune encephalomyelitis (EAE) (26) and Type 1 diabetes mellitus (T1D)
(4,27). Single or multiple intravenous or intraperitoneal injections of antigen in the absence of
an adjuvant have been shown to induce antigen-specific immune tolerance. Fathman and
colleagues showed that this tolerance was a result of induction of anergy in antigen-specific T
cells (3). This anergic state resulted from T cell receptor (TCR) activation in the absence of a
costimulatory signal that is generally provided by an adjuvant (28). Furthermore, it was shown
that CD4+CD25+ regulatory T cells are generated after such a tolerization regimen (29).
Although successful in animal models, the beneficial effects of systemic antigen administration
in clinical settings are rather limited (30–32).

Weiner et. al. have demonstrated that oral administration of antigen prevents the induction of
autoimmune diseases (33,34). The success of oral administration of the disease-related antigen
in the control of the respective autoimmune disease has been shown for EAE, collagen-induced
arthritis (CIA), adjuvant arthritis (AA), and T1D (33,34). Several mechanisms mediating the
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effects of oral tolerance have been suggested, such as anergy/deletion of CD4 T cells and the
induction of CD4+ regulatory T cells that produce interleukin-10 or transforming growth
factor-β (35,36). Furthermore, the induction of oral tolerance can be enhanced by interleukin-4,
interleukin-10, anti IL-12 antibody, transforming growth factor-β, cholera toxin B subunit and
anti-CD40 ligand (37). It has been shown that peripheral blood mononuclear cells (PBMC) of
RA patients respond well in vitro to collagen Type II (CII) 256–271 epitope and its overlapping
variants (38). Using the CIA model, the oral administration of this CII peptide suppressed and
suppression of the associated antigen specific T cell/antibody responses (39). In another study,
the oral administration of CII induced interleukin-10-producing CD4+CD25+ regulatory T
cells (40). These Treg mediate anti-inflammatory effect by reducing the production of
interferon-g by CII-specific effector T cells. The role of Treg in CIA is further validated by
the observation that the depletion of Treg in vivo increased the severity of CIA (41).
Interestingly, the DQ8- HLA-transgenic (humanized) mice developed normal number of
functional Treg (42,43). These results have implications in further understanding the
pathogenesis of RA. Although the majority of animal studies have yielded positive results with
oral tolerance regimen, under some circumstances, mucosal application of antigen may instead
exacerbate the disease process (44).

An altered peptide ligand (APL) is a synthetic peptide similar to the pathogenic epitope of a
self antigen, but with a change in 1 or 2 critical amino acids. Such a synthetic peptide has been
shown to inhibit the activation of a T-cell clone (antagonistic activity) (45). APL administration
prevents EAE in mice (46). Furthermore, a large variety of microbial agents might possess
structural entities that mimic self epitopes, and thereby possess APL activity (47). The
implication is that microbial immunity could modulate autoimmunity. This relationship
between microbially-derived APL and autoimmunity could help understand the long-observed
relationship between infection and triggering of autoimmunity or the relapse of ongoing
autoimmunity. Another aspect of APL activity involves IDO, which is related to tolerance
induction. Stimulation of myelin-reactive T cells with tolerogenic APL led to increased IDO
transcription, which in turn induced suppression of both T cell proliferation and production of
proinflammatory cytokines (48). Interestingly, the oral administration of a synthetic derivative
of anthralinic acid (a tryptophan metabolite) reversed paralysis in mice with EAE, showing the
significance of both APL and the tryptophan pathway in the treatment of autoimmunity (48).

The use of peptides/APL has been associated with a serious side effect, anaphylaxis. Attempts
are being made to alter the solubility, dose, and route of administration of such peptides to
minimize severe side effects. In this regard, one successful approach consisted of altering the
isoelectric pH/point of the peptide by adding basic residues (arginine residues) to the carboxy-
terminal of the peptide (49). This modification significantly reduced the side effect without
affecting the disease modulating activity of the peptide.

II. Immunomodulatory approaches tested in the adjuvant arthritis model
AA is inducible in the Lewis (LEW) rat by injecting subcuteneously heat-inactivated
Mycobacterium tuberculosis H37Ra (Mtb), and it shares several features with human RA
(50,51). Numerous immunologic approaches are effective in protection against AA (Table 2).
In most of these approaches, attempts have been made to generate protective immunity against
mycobacterial hsp65 (Bhsp65) and its self homolog, the rat hsp65 (Rhsp65). The administration
of soluble recombinant Bhsp65 either intravenously/intraperitoneally (52) or orally (53,54)
prevents subsequently induced AA. Systemically administered Bhsp65 induces suppression of
antigen-specific T cell proliferation. This hypoproliferative state of T cells is reversible by
interleukin-2, indicating that these T cells are anergic in nature. Interestingly, the protection
against AA is associated with reduced production of IL-17 but enhanced anti-Bhsp65 antibody
response (55). The latter is protective against AA (7,8). However, most of the soluble antigen-
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based approaches in AA are ineffective against the ongoing disease with the exception of oral
tolerance to Bhsp65 (53) and of tolerance induced by Bhsp65-expressing B cells (52).

III. Tolerogenic gene therapy for arthritis
Somatic gene therapy involves the introduction of new genetic material into a cell in to modify
the function of the cell or to alter the level of expression of the corresponding protein within
the cell (56–58). Although therapies based on the use of cytokine receptors, inhibitors, or
antibodies are gaining widespread popularity in the treatment of autoimmune diseases, these
treatment modalities suffer from limitations such as high expense, the need for repeated
injections and unwanted side effects. Many of these limitations can be overcome by gene
delivery (56–59).

B cell-mediated gene therapy—In the past several years, Scott and colleagues have
developed a novel gene therapy approach for the induction of antigen-specific tolerance using
antigen-Ig fusion protein delivered via a retroviral vector in B cells (60–64). In short, a fusion
protein construct consisting of an immunodominant epitope or a full length antigen in-frame
at the N-terminus of an IgG heavy chain was created. This fusion construct was then delivered
into bone marrow-derived cells or lipopolysaccharide-stimulated B cell blasts via retroviral
infection. The injection of these B cells into syngeneic recipients rendered them tolerant to a
particular epitope or antigen (60–64). So far, the B cell-mediated gene therapy approach was
successful in disease models such as experimental autoimmune uveitis (EAU) (62), EAE
[induced either by myelin basic protein (MBP) or by myelin oligodendrocyte glycoprotein
(MOG)] (64), and the non-obese diabetic (NOD) mouse model of diabetes (64,65). This
approach has also been successful in inducing tolerance to factor VIII inhibitors in hemophilia
A (66) and (in combination with BM transplantation) in the treatment of EAE (67). Our recent
testing of the B cell-mediated gene therapy approach in the AA model (52) has not only
extended the application of this therapeutic approach to a new model of autoimmune disease,
arthritis, but also to another related species, the rat.

Adoptive cellular gene therapy of RA—Fathman and colleagues have developed the
concept of adoptive cellular gene therapy of RA (68). In this approach, specific cell types (e.g.,
T cells or T cell hybridomas) that specifically migrate to the target organ in a particular
autoimmune disease (e.g., the joints in arthritis) can be genetically modified to express a
therapeutic product (e.g., interleukin-4) locally (69). Thus, the local delivery of an
immunotherapeutic product is assured, which in turn limits the side effects inherent in the
systemic delivery of cytokines and other biomolecules. This approach involving genetically
engineered T cells expressing interleukin-4 was used successfully to prevent the development
of CIA in mice (69). In addition to cytokines, agents that can prevent damage to cartilage and
bone would constitute attractive molecules for targeted delivery. Other investigators have
shown that direct local injection of the gene of interest (e.g., the tumor necrois factor-α receptor
gene) in the paws can downmodulate arthritis in mice (70). Thus, an appropriately tailored
adoptive cellular gene therapy approach using B cells, T cells, dendritic cells (DCs) and the
desired gene can be applied for the treatment of multiple sclerosis (MS), RA, and insulin-
dependent diabetes mellitus (IDDM or T1D).

Tolerizing DNA vaccines—Recently, the success of another gene therapy approach in
arthritis was reported: the tolerizing DNA vaccine encoding CII leading to the downmodulation
of established CIA (71). The reduced severity of CIA was associated with decreased pro-
inflammatory cytokines as well as reduced spreading of the antibody response (the latter was
tested by arthritis microarray analysis) (71). Interestingly, the effect of DNA vaccination was
significantly increased by atorvastatin, one of the statin drugs previously shown to suppress
the severity of EAE (71).
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IV. Current status of the antigen-specific tolerogenic/immunomodulatory approaches in
clinical practice

Extensive efforts have been made in the past several years to transfer the promising bench-
tested therapeutic approaches to the bed-side (translational research). The outcome of this
transition has been mixed, with significant success for some approaches, but unexpectedly poor
outcomes for others. We describe below an overview of the clinical application of various
tolerogenic and immunomodulatory approaches in arthritis as the primary example. However,
we also have included examples of other rheumatic diseases (e.g., systemic lupus
erythematosus; SLE) as well as additional autoimmune diseases (e.g., MS and T1D) for sharing
a broader perspective on the treatment of autoimmune diseases. Considering the availability
of a relatively sizable literature on the use of biologics (such as anti-tumor necrois factor-α
agents (infliximab, etanercept and adalimumab), interleukin-1-receptor antagonist (anakinra),
cytotoxic T lymphocyte-associated antigen-4-immunoglobulin heavy chain (CTLA-4)-Ig
(abatacept)) and anti-CD3 antibody in the treatment of autoimmune diseases or transplantation,
this aspect of immunotherapy will not be further discussed.

CD4+CD25+ regulatory T cells (Treg)—CD4+CD25+ T cells play an important role in
mediating peripheral tolerance and controlling the activity of potentially self-reactive T cells
(72,73). Currently, several efforts are being made to induce and maintain tolerance by using
therapeutic vaccination with CD4+CD25+ regulatory T cells, which can be done either directly
or indirectly (through the use of anti CD3-antibody or antigen-directed immunotherapy) (72,
74,75). Treg are functionally compromised in RA (76) and SLE (77) patients. In RA patients,
anti-tumor necrosis factor-α treatment increases the number as well as the function of Treg
(76). Thus, the reduced function of Treg can be reversed/restored by treatment with a biologic
agent.

Peptide/APL and tolerogenic DC therapy—Current therapeutic strategies that are based
on global immune suppression or blocking of inflammatory pathways do not induce long-term
disease remission, and have serious side effects, including infections. Thus, there is a need to
develop antigen-/epitope-specific immunotherapy. Several immunomodulatory peptides have
been identified as promising candidates for immunotherapy in various autoimmune diseases.
Examples are heat-shock protein (hsp) peptides for the treatment of RA and juvenile chronic
arthritis (JCA), and peptides derived from anti-DNA antibodies for the treatment of SLE (74,
78,79). The immune modulation with Hsp peptides was associated with the induction of Treg.
In one pilot trial, immunization of RA patients with a peptide of a prokaryotic heat-shock
protein led to the induction of Treg and disease improvement (75). Furthermore, small peptides
that can interfere with cytokines or specific cell surface molecules have been developed, and
can lead to the inhibition of autoimmune inflammatory reactions (80). Similarly, attempts have
been made to block helper T cell responses by the use of competitor peptides whose in vivo
efficacy had been increased by coupling to transferrin (81).

APLs are quite successful in controlling autoimmunity in animal models. However, the
immune response to autoantigens in humans is polyclonal and a peptide that inhibits one clone
may stimulate another. A clinical trial of an APL for the treatment of MS was halted because
of disease exacerbation in a few patients (82). In 9% of the patients, the immune response
deviated from T helper 1 type to a severe allergic (Th2) type (83).

DCs have been implicated in the induction of autoimmune diseases. These cells have been
identified in lesions associated with several autoimmune inflammatory diseases, including RA
(84). Unlike mature DC that are potent activators of naïve T cells, immature or semi-mature
DC have the ability to tolerize T cells or prevent autoimmune reactions (85). Thus, current
strategies exploiting the tolerogenic potential of DC or blocking their migration to the
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inflammatory site by chemokine-blocking antibodies are attractive approaches for the
treatment of RA and other autoimmune diseases (84–86).

Oral tolerance—Mucosal administration of antigen is an efficient way of tolerizing antigen-
specific T cells. Oral tolerance has been tested in patients with RA, MS, uveitis, T1D, and
allergies (35,36,87–90). No significant beneficial effect was observed in phase III clinical trials
of oral bovine/chicken CII treatment in RA patients (87,88,91), or of oral myelin and glatiramer
acetate in MS patients (37). Oral insulin treatment delays the onset of diabetes in a high-risk
population (37,90). On the basis of animal studies, it has been suggested that the feasibility of
the induction of oral tolerance to CII or other antigens in RA patients is high if prostaglandin
levels are maintained normally in gut associated lymphoid tissue (92). Another report indicated
that a cytotoxic T cell response could be induced by oral application of antigen, which could
lead to the induction of an autoimmune disease (44). Thus, there is a possibility that oral
tolerization may either have a beneficial effect or a detrimental effect, or no effect at all,
depending on the dose, timing and other related conditions of testing (93).

DISCUSSION
The breakdown of self-tolerance results in autoreactivity, which if continued may result in
autoimmune pathology. Several mechanisms have been described for the development of
spontaneous autoimmunity. Genetic predisposition, especially the presence of a particular
human leukocyte antigen (HLA) haplotype, plays an important role in susceptibility to arthritis
and other autoimmune diseases (94–98). In addition, the background (non-major
histocompatibility complex; non-MHC) genes also contribute to the disease process. For
example, inbred rats of the same MHC haplotype display differential susceptibility to
autoimmune diseases (99,100).

Deficiency in the number and/or function of CD4+CD25+ regulatory T cells (Treg) is
associated with autoimmunity

Forkhead box p3 (Foxp3)-positive Treg have emerged as the central controllers of
spontaneously-induced as well as experimentally-induced autoimmunity in a variety of animal
models (22,23,101). Experimental cellular therapy using CD4+CD25+ T cells effectively
delays and downmodulates the course of diabetes, colitis, gastritis, and graft-versus-host
disease in animal models (22,23,101–103). An important question that is raised in
autoimmunity is whether a deficiency of Treg is an essential component of the disease process.
There is a relative deficiency of Treg in the NOD mouse compared to that of other mouse
strains (104). However, a difference in the frequency of Treg may not explain the differential
susceptibility of rat strains to an autoimmune disease (Satpute & Moudgil, unpublished data).
Furthermore, it has recently been shown that the frequency of Treg in MS patients is
comparable to that of healthy controls; however, the Treg of these patients are significantly
less efficient in mediating the suppression of pathogenic effector T cells compared to the Treg
from controls (105). Similarly, Treg defects have been reported in RA as well as SLE (76,
77). Thus, both the frequency as well as the efficacy of suppression of Treg needs to be
considered in evaluating an autoimmune state. Interestingly, the number and function of Treg
can be altered significantly by treatment with appropriate immunomodulatory peptides (75,
106).

IL-17 plays a critical role in the pathogenesis of autoimmunity
IL-17 is a pro-inflammatory cytokine produced by effector T cells (T helper 17; Th17) distinct
from T helper 1 cells (107,108). Interleukin-6 and transforming growth factor-β are essential
for the differentiation of naïve CD4 cells into Th17 effector cells (109,110). Ironically,
transforming growth factor-β alone is required for Foxp3 expression in Treg (109). Therefore,
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these new studies suggest that interleukin-6, which stimulates Th17 differentiation but inhibits
Treg development, might act as a master switch that determines the induction of immune
response versus its regulation (111). Recently, a number of reports have described a reciprocal
interaction between T helper 1 (interferon-γ) and Th17 (IL-17) (112,113), as well as the role
of interleukin-2 and interleukin-27 in the inhibition of Th17 differentiation (114,115).
Interestingly, retinoid-related orphan receptor-gamma (RORγt), an orphan nuclear receptor, is
a transcription factor required for the differentiation of Th17 lineage (116).

Studies involving the modulation of IL-17 or interleukin-23 have revealed that these cytokines
are critical in EAE (117,118), CIA (119,120), inflammatory lung disease (113), and T1D
(121,122). Through these studies, it has been suggested that the IL-17/interleukin-23 axis is
required to initiate tissue-specific autoimmune diseases. IL-17 has been associated with RA
pathology, as IL-17 can be found in the synovium of RA patients, and acts in concert with
interleukin-1 to stimulate interleukin-6 production by synovial fibroblasts (123).

Mechanisms underlying tolerance induction by B cell-mediated gene therapy
Immunoglobulins are efficient antigen-carriers for the induction of T- and B-cell tolerance,
and B cells are among the most potent tolerogenic antigen-presenting cells (APCs) (60–64).
Gene therapy with DNA fragment encoding an antigen (in the absence of an IgG scaffold)
produces hyporesponsiveness and affords protection against disease (124). However, the level
of hyporesponsiveness induced is significantly higher when the antigen is expressed within
the IgG scaffold. Moreover, such tolerance is maintained for a much longer duration compared
to the transient tolerance offered by antigen/DNA alone (61). A recent study has demonstrated
that the assembly of the IgG heterodimer may contribute to the efficacy of tolerance induction
(125). The advantages of B cell-mediated gene therapy protocol over other methods include
the following: the tolerance induced is antigen-specific, the effective tolerance is maintained
for as long as 6 months (62), the tolerance can be induced not only in the peripheral lymphoid
organs, but also in the target organ, and the tolerogenic regimen is capable of ameliorating the
ongoing disease, simulating application in the clinical setting for patients (62,64,65).

The precise mechanisms of tolerance induction by B cell-delivered antigen are not fully
defined. The question whether B-cell mediated tolerance occurs via the secretion of chimeric
antibody molecules, or via B cells acting as APCs for the presentation of IgG-peptide, has been
examined through studies based on specific gene knock-out mice (63,64). B cells were critical
APCs for this tolerance induction. MHC class II expression by the presenting B cells was
essential for the tolerogenic effect, but the Fc receptors (FcRs) were not required (63). A high
level of expression of B7, especially B7.2 costimulatory molecule, was required for the
induction of tolerance by negative regulatory signaling through CTLA-4 (126). T helper 1/T
helper 2 deviation was not observed following tolerance induction, and interleukin-10 was not
required as the mediator for tolerance (64). However, the expression of Fas ligand (FasL) on
the tolerogenic B cell was required for the induction of tolerance (64). Song et al have recently
demonstrated that transforming growth factor-β was upregulated in long-term tolerant NOD
mice treated with B cells expressing glutamic acid decarboxylase-IgG (65). Furthermore, the
frequency of CD4+CD25+ T cells in the spleen of the experimental group of mice was
significantly higher than that of the control mice, and these regulatory T cells suppressed the
proliferative response of CD4+CD25− T cells in vitro (65). The role of Treg in B cell-mediated
tolerance has been corroborated by subsequent studies in hemophilia (66) and in the NOD
mouse model of T1D (127).

B cell tolerance and the protective effect of antibodies in arthritis
Most of the examples discussed above have focused on the tolerization of T cells. However,
it is conceivable that the tolerization of B cells that are the potential source of arthritogenic
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antibodies would also serve a useful therapeutic purpose. In a recent study based on the K/
BXN model of arthritis, it was shown that multiple mechanisms were operative in the
tolerization of B cells depending on the affinity of the B cell receptor (BCR) for the ligand,
glucose-6-phosphate isomerase (GPI) (128). The B cells bearing high affinity-BCR for GPI
were negatively selected, with receptor editing contributing to this process. However, several
B cells escaped tolerance induction through the expression of an additional light chain.
Furthermore, B cells bearing low affinity-BCR for GPI were ‘ignored’ (immune ignorance)
(128). Considering that anti-GPI antibodies serve as a good marker for extra-articular RA
(129), the detailed understanding of the tolerization of B cells specific for GPI would contribute
towards better understanding of the pathogenesis of RA as well as for designing novel antigen-
specific therapeutic approaches for this disease.

Increasing evidence suggests that antibodies to certain disease-related antigens might be
regulatory in nature (7,8,130,131). We and others have shown that arthritic Lewis (LEW) rats
develop antibodies to Bhsp65 during the peak and recovery phase of AA (7,8). These antibody
responses are seen early after Mtb immunization in AA-resistant rat strains such as the Wistar
Kyoto rat (WKY) (7), the Fischer F344 rat and the Brown Norway (BN) rat (131). Interestingly,
the transfer into naïve LEW rats of serum derived from the late phase arthritic LEW rats or the
AA-resistant BN rats offered protection against subsequent AA in the recipient rats (7,131).
Furthermore, the Bhsp65 peptides 31–46, 211–226, and 349–364 represent the epitopes that
were recognized by the late antibodies from both WKY and LEW rats (7).

The role in innate immune mechanisms in the pathogenesis of autoimmunity
Rapid advancements in the field of innate immunity have brought to focus the interactions
between innate and adaptive immune effectors mechanisms in infection and host immune
response (132–136). It is increasingly being realized that the molecules and receptors that were
initially assumed to be restricted to the microbial agents in regard to their origin or response
are also capable of recognizing and responding to certain self components. This, along with
the observations showing the involvement of the Toll-like receptors (TLRs) in the activation
of macrophages, dendritic cells, T cells and B cells (132–136), begin to provide one of the
rationales for the long-observed association between infection and autoimmunity.
Furthermore, mast cells that were typically viewed in the context of allergies, only are now
coming to the forefront constituting one of the effector mechanisms of autoimmune
inflammation (137,138). Similarly, the perturbations of the complement pathway-components
and their impact on self reactivity and autoimmune damage are gaining significance (139,
140).

Several recent studies have highlighted the role of various innate immune mechanisms in
rheumatic diseases. The role of complement components and mast cells in effector mechanisms
of arthritis is exemplified by studies in the K/BXN model of arthritis (128,138,140). In RA
patients, synovial tissue expresses TLRs (e.g., TLR 2 and 4), which affect macrophage
activation, cytokine production and chemokine expression (141–143). In regard to antibody
responses, TLRs (e.g., TLR 7 and 9) are involved in the production of autoantibodies in murine
lupus (134,144). Some of the innate immune pathways are also being targeted for therapeutic
purposes. For example, in experimental models, arthritis can be suppressed by inhibitors of the
innate pathways by using, for example, a tylophorine analog, anti-complement 5 antibodies,
or a TLR 4-antagonist (145–147).

Concluding remarks
Two major realizations that have emerged in experiments from animal models and in clinical
trials in patients with autoimmune diseases are (2,9–14,148)-: a) Non-antigen-specific
immunomodulatory approaches (e.g., biologics and costimulation blockade) have been far
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more successful than the antigen-specific tolerogenic approaches (9,10). However, newer
therapeutic strategies may have to harness the beneficial aspects of both approaches (9,10);
and b) There is increasing emphasis on restoring a functional balance across the immune system
among the critical subsets of T/B cells involved in autoimmune processes, including the naïve,
effector, memory, and regulatory cells (13,14). Thus, newer therapies would be aimed at
controlling or deleting effector cells, and at shifting the profile of the immune homeostasis of
patients towards a healthy type (148).
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Table 1
Immuno-specific tolerogenic approaches tested in animal models of autoimmune diseases

Mode of delivery of the native antigen Examples Reference

Model Antigen (route)

Soluble antigen (injected intravenously
or intraperitoneally)

EAE MBP (3)

CIA CII (149)

AA Bhsp65 peptide (150)

Antigen coupled to splenocytes (injected
intravenously)

EAE MBP (151,152)

Antigen-IgG fusion protein expressed in
B cells (injected intravenously or
intraperitoneally)

EAE MBP-IgG (64)

T1D Glutamic acid decarboxylase-IgG (64)

- -

EAU IRBP peptide-IgG (62)

AA Bhsp65-IgG (55)

Antigen emulsified in adjuvant (injected
subcutaneously, intradermally,
intratesticularly, or intracamerally)

AA Bhsp65 peptide (153)

AA Bhsp65 peptide (154)

DIA Bhsp65 peptides (155)

AA Mtb (156)

AA Mtb (156)

AA= Adjuvant arthritis; Bhsp65= Mycobacterial heat-shock protein 65; CII= Collagen type II; CIA= Collagen-induced arthritis; DIA= Dimethyl
Diammonium Bromide (DDA)-induced arthritis; EAE= Experimental autoimmune encephalomyelitis; EAU= Experimental autoimmune uveitis; IRBP=
Interphotoreceptor retinoid-binding protein; MBP= Myelin basic protein; Mtb= M. tuberculosis, heat-killed; T1D= Type 1 diabetes.
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Table 2
Antigen-specific approaches for the prevention/treatment of autoimmune arthritis in animal models

The form of the antigen used Model Antigen Reference

Native protein AA Bhsp65, Bhsp70, Bhsp10, Rhsp65, CII (157–160)

PIA Bhsp65 (161)

CIA CII, Bhsp65 (40,162)

SCWIA Bhsp65 (163)

AvIA Bhsp70 (158)

Synthetic peptides representing native
amino acid sequences

AA Peptides of Bhsp65, Rhsp65, Hhsp60 (8,99,153,154,
164–167)

- -

AvIA Bhsp65 peptide (167)

DIA Bhsp65 peptides 120–134 and 213–227 (155)

CIA CII peptide 250–270 (39)

PIA Bhsp65 peptide 261–271 (168,169)

Altered peptide ligands having altered
TCR- or MHC-contact residues

AA Bhsp65 peptide 180–188 with an alanine
substituted at position 183

(170,171)

- -

CIA Core CII determinant 256–270/276 (172)

PGIA Aggrecan peptide (173)

DNA vaccination AA Construct encoding Hhsp60 (174)

Recombinant vaccinia virus expressing
the antigen

AA Bhsp65, Hhsp60 (175,176)

B cells expressing the DNA construct
encoding the Bhsp65-IgG fusion protein

AA Bhsp65 (55)

Bacille Calmette Guérin AA Bhsp65 and other bacterial antigens (177)

Mycobacterium vaccae PIA Bhsp65 and other bacterial antigens (178)

Mycobacterium tuberculosis AA Bhsp65 and other bacterial antigens (156)

AA= Adjuvant arthritis; AvIA= Avridine-induced arthritis; Bhsp65= Mycobacterial heat-shock protein 65; Bhsp70= Mycobacterial hsp70; Bhsp10=
Mycobacterial hsp10; CII= Type II collagen; CIA= Collagen-induced arthritis; DIA= Dimethyl Diammonium Bromide (DDA)-induced arthritis; Hhsp60=
Human hsp60; IgG= IgG heavy chain; MHC= Major histocompatibility complex; PGIA= Proteoglycan-induced arthritis; PIA= Pristane-induced arthritis;
Rhsp65= Rat hsp65; TCR= T cell receptor.
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