

NIH Public Access

Author Manuscript

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2009 August 10

Published in final edited form as:

Arterioscler Thromb Vasc Biol. 2008 August ; 28(8): 1542–1548. doi:10.1161/ATVBAHA.107.161042.

HDL-associated lysosphingolipids inhibit NAD(P)H oxidasedependent monocyte chemoattractant protein-1 production

Markus Tölle¹, Alicja Pawlak², Miriam Schuchardt¹, Akira Kawamura², Uwe J. Tietge^{1,3}, Stefan Lorkowski², Petra Keul⁴, Gerd Assmann⁵, Jerold Chun⁶, Bodo Levkau⁴, Markus van der Giet^{1,*}, and Jerzy-Roch Nofer^{2,7,*}

¹Charite - Campus Benjamin Franklin, Medizinische Klinik IV, Berlin, Germany ²Leibnitz-Institut für Arterioskleroseforschung an der Universität Münster, Münster, Germany ³Center for Liver, Digestive, and Metabolic Diseases, University Medical Center, Groningen, Groningen, the Netherlands ⁴Institut für Pathophysiologie im Zentrum für Innere Medizin, Universität Essen, Essen, Germany ⁵Assmann-Stiftung für Prävention, Münster, Germany ⁶Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA ⁷Centrum für Laboratoriumsmedizin, Universitätsklinikum Münster, Münster, Germany

Abstract

Objectives—High density lipoprotein (HDL) levels are inversely proportional to the risk of atherosclerosis, but mechanisms of HDL atheroprotection remain unclear. Monocyte chemoatractant protein-1 (MCP-1) constitutes an early component of inflammatory response in atherosclerosis. Here we investigated the influence of HDL on MCP-1 production in vascular smooth muscle cells (VSMCs) and rat aortic explants.

Methods and Results—HDL inhibited the thrombin-induced production of MCP-1 in a concentration-dependent manner. The HDL-dependent inhibition of MCP-1 production was accompanied by the suppression of reactive oxygen species (ROS), which regulate the MCP-1 production in VSMCs. HDL inhibited NAD(P)H oxidase, the preponderant source of ROS in the vasculature, and prevented the activation of Rac1, which precedes NAD(P)H-oxidase activation. The HDL capacity to inhibit MCP-1 production, ROS generation and NAD(P)H-oxidase activation was emulated by sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), two lysosphingolipids present in HDL, but not by apolipoprotein A-I. HDL-S1P-, and SPC-induced inhibition of MCP-1 production was attenuated in VSMCs pretreated with VPC23019, an antagonist of lysosphingolipid receptors S1P₁ and S1P₃, but not by JTE013, an antagonist of S1P₂. In addition, HDL, S1P and SPC failed to inhibit MCP1 production and ROS generation in aortas from S1P₃- and SR-B1-deficient mice.

Conclusion—HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent ROS generation and MCP-1 production in a process that requires coordinate signaling through S1P₃ and SR-B1 receptors.

Diclosures: none

Address for correspondence: Markus van der Giet, M.D., Medizinische Klinik – SP Nephrologie, Charite - Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany, Tel: +49-30-84452379, e-mail: markus.vandergiet@charite.de. *equal contribution

INTRODUCTION

Monocyte infiltration into the vessel wall is an initial step in the formation of atherosclerotic lesion^{1,2}. Monocyte chemoattractant protein-1 (MCP-1) is a key regulator of monocyte recruitment to sites of vascular inflammation^{2–4}. In addition, MCP-1 induces several proinflammatory changes including secretion of cytokines and expression of adhesion molecules^{2–4}. MCP-1 was detected in atherosclerotic lesion and elevated levels of MCP-1 were encountered in acute coronary syndromes^{2–4}. Animals genetically modified to lack MCP-1 or its receptor, CCR2, displayed reduced atherosclerotic lesions, whereas overexpression of MCP-1 in macrophages led to increased susceptibility to atherosclerosis^{2–4}.

Numerous studies documented an inverse relationship between high density lipoprotein (HDL) levels and the progression of atherosclerosis and suggested that anti-atherogenic effects of HDL are related to inflammation and its sequel⁵. For instance, HDL inhibits expression of adhesion molecules and reduces leukocyte homing to arterial endothelium^{5,6}. Suppression of cytokine and chemokine production by HDL was observed after infusion of reconstituted HDL in animal models of inflammation⁷. The inverse relationship between HDL and acute phase proteins was repeatedly reported⁸.

Despite the central role played by MCP-1 in vascular inflammation, little information is available concerning the effect of HDL on MCP-1 production. In this study, we show that HDL-associated lysosphingolipids inhibits MCP-1 production in vascular smooth muscle cells (VSMCs) and in isolated aortas. We further demonstrate that this effect is contingent upon inhibition of NADPH-oxidase-mediated generation of reactive oxygen species (ROS). We identify the HDL receptor SR-B1 and the lysosphingolipid receptor S1P₃ as integral components of HDL-mediated inhibition of MCP-1 production.

METHODS

Animals

C57BL/J6 and heterozygous SR-B1 mice on C57Bl/J6 background were obtained from Charles River Laboratories (Sulzfeld, Germany) and Jackson Laboratories (Bar Harbor, Minnesota, USA), respectively. The S1P₃-null mice on a C57Bl/J6 background was generated by J.Chun. All experiments were done with 8 to 10week-old male homozygous animals and wild-type littermates.

Cells and aortic explants

VSMCs derived from rat thoracic aortas from 6-month-old male normotensive Wistar-Kyoto were maintained in DMEM containing 10% FCS and antibiotics. Aortic explants obtained from SR-B1-null mice, S1P₃-null mice and wild-type littermates were kept in an organ bath containing Tyrode's solution.

Analytical procedures

MCP-1 RNA and protein levels were determined by RT-PCR and ELISA, respectively. Superoxide and hydrogen oxide production were assessed using fluorescence microscopy or spectroscopy with hydroethidin or 2',7'-dichlorofluorescein, respectively. NADPH consumption was followed by light spectrometry at 340nm. Rac1 and p38^{MAP} kinase activities were determined by commercially available solid phase pull-down assay and ELISA, respectively. p47^{phox} translocation was assessed by Western blot after fractionation of cytosolic and membrane proteins by sequential protein extraction.

Statistical analysis

Data are presented as means±SEM. Comparisons between the groups were performed with Mann-Whitney-U-test, unless indicated otherwise. Detailed Methods can be found online (http://atvb.ahajournals.org).

RESULTS

HDL inhibits thrombin-induced MCP-1 production

To investigate whether HDL directly influences the agonist-induced MCP-1 gene expression VSMCs were stimulated with thrombin in the absence or presence of the lipoprotein. Addition of thrombin led to an accumulation of MCP-1 mRNA in VSMCs in the absence but not in the presence of HDL (Fig.1A). The presence of HDL was associated with reduced MCP-1 release (Fig.1B). The inhibitory effect of HDL on the thrombin-induced MCP-1 production was concentration-dependent. The inhibitory effects of HDL on thrombin-induced MCP-1 production were observed also in endothelial (HMEC-1) and macrophage (RAW264.7) cell lines (see Supplementary Materials, http://atvb.ahajournals.org). To test the effect of HDL on MCP-1 production in a setting more akin to the situation in vivo, experiments with isolated mouse aortas were performed. There was an increase in MCP-1 levels in supernatants from aortic segments from C57Bl/J6 mice exposed to thrombin that was markedly reduced in the presence of HDL (Fig.1C). To assess the contribution of smooth muscle cells to thrombininduced MCP1 production in isolated aortas, experiments were performed after mechanical removal of endothelial layer (see Supplementary Materials, http://atvb.ahajournals.org). As shown in Fig.1D, the thrombin-induced MCP1 production in de-endotelialized aortas was significantly inhibited in the presence of HDL.

HDL inhibits thrombin-induced ROS generation in VSMCs

As the agonist-induced MCP-1 expression in VSMCs is controlled by the intracellular redox status^{9–11}, we next examined whether HDL affects thrombin-induced ROS generation. VSMCs were loaded with hydroethidine (HE), which is converted to ethidium bromide in the presence of superoxide, and exposed to thrombin. This resulted in a substantial increase in ethidium fluorescence that was reduced in the presence of HDL (Fig.2A). The inhibitory effects of HDL on superoxide generation were concentration-dependent with a maximum at 0.5g/L HDL.

Superoxide generated in cells is converted to H_2O_2 . We next monitored the effect of HDL on the thrombin-induced H_2O_2 production using a fluorogenic substrate H_2DCFDA . A constant increase in DCF fluorescence was recorded in VSMCs indicating a steady-state H_2O_2 production. Exposure of VSMCs to thrombin enhanced H_2O_2 production and this was suppressed in cells pre-treated with HDL (Fig.2B). Since the phosphorylation of p38^{MAP} kinase in response to thrombin occurs as a consequence of ROS generation in VSMCs¹², the effect of HDL on thrombin-induced p38^{MAP} kinase activity was examined. Fig.2C demonstrates the increase in phosphorylated p38^{MAP} kinase in VSMCs exposed to thrombin and its suppression by HDL.

To investigate whether HDL inhibits ROS generation in isolated mouse aortas, aortic segments were incubated with HE, exposed to thrombin and examined by confocal microscopy. Exposure to thrombin resulted in a substantial increase in ethidium fluorescence indicating enhanced superoxide production (Fig.2D) which was reduced in the presence of HDL.

HDL inhibits thrombin-induced NAD(P)H-oxidase activation in VSMCs

As the agonist-inducible NAD(P)H-oxidase is a predominant source of ROS in the vasculature^{13,14}, we next investigated, whether the suppressing effect of HDL on the

intracellular ROS production is mediated via inhibition of NAD(P)H-oxidase. We measured the NADPH consumption rate in VSMCs, which occurs contemporaneously with ROS generation. Thrombin increased the NADPH consumption as compared to untreated cells, and this effect was reduced by HDL and blocked by diphenyliodonium (DPI), an inhibitor of NAD (P)H-oxidase (Fig.3A). To gain further evidence pointing to NAD(P)H oxidase as a target of HDL, we made use of gp91ds – a cell–permeable peptide specifically inhibiting NAD(P)H oxidase (see Supplementary Materials, http://atvb.ahajournals.org). gp91ds but not gp91scr, its inactive analogue, abolished thrombin-induced NADPH consumption and significantly reduced superoxide generation and MCP-1 production both in VSMCs and isolated aortas. HDL failed to further reduce thrombin-induced NADPH consumption, superoxide generation and MCP-1 production in VSMCs and aortas pre-treated with gp91ds, but retained its inhibitory activity in the presence of gp91scr. These results indicate that intact NAD(P)H oxidase is necessary and sufficient for HDL to exert its inhibitory effects. By contrast, xanthine oxidase does not serve as molecular target of HDL as these lipoproteins blocked thrombin-induced superoxide generation and MCP-1 production in VSMCs pre-treated with allopurinol, a xanthine oxidase inhibitor (see Supplementary Materials, http://atvb.ahajournals.org). Inhibition of p38^{MAP} kinase with SB202190 did not prevent HDL to reduce MCP-1 production in response to thrombin (see Supplementary Materials, http://atvb.ahajournals.org).

The induction of NAD(P)H-oxidase requires activation and translocation of GTPase Rac1 to cell membrane, where the assembly of NAD(P)H-oxidase is accomplished¹³. We next assessed the activity of Rac1 in VSMCs exposed to thrombin in the presence or absence of HDL. As shown in Fig.3B, exposure of cells to thrombin led to a marked increase in active Rac1 and this effect was alleviated by HDL. Similarly to Rac1, translocation of p47^{phox} NAD(P)H oxidase subunit is required for enzyme activation. As shown in Fig.3C, addition of thrombin to VSMCs increased and reduced, respectively, p47^{phox} amounts associated with membrane and cytosolic VSMCs fractions. Both effects were substantially diminished in the presence of HDL. HDL-associated lysophospholipids S1P and SPC inhibit MCP-1 and ROS production To determine HDL entities responsible for the inhibition of MCP-1 production and ROS generation we tested the effects of apo A-I, the constitutive protein of HDL, as well as S1P and SPC, lysosphingolipids previously identified in HDL^{14,15}, on MCP-1 levels, superoxide production, p38^{MAP} kinase phosphorylation, NAD(P)H consumption, and Rac1 activation in VSMCs. All tested responses to thrombin were inhibited in the presence of S1P or SPC but not apo A-I (see Supplementary Materials, http://atvb.ahajournals.org). We also tested the effects of S1P and SPC on the thrombin-induced MCP-1 production and superoxide generation in isolated aortas. Preincubation of HE-loaded aortic explants with lysosphingolipids inhibited the thrombin-induced ROS generation (Fig.4A). In addition, the pretreatment with S1P or SPC reduced MCP-1 production in explants stimulated with thrombin. To further assess the propensity of lipoprotein-associated lysosphingolipids to suppress VSMCs activation, we examined the effect of lipoprotein fractions containing various amounts of S1P on thrombininduced MCP-1 production. Fig.4B illustrates that the ability of HDL₃, HDL₂, and LDL to inhibit MCP-1 production increased proportionally to their S1P content. Conversely, the inhibitory effects of HDL were diminished after reduction of their S1P content by charcoal treatment.

The inhibitory effects of HDL on MCP-1 production and ROS generation are mediated by $S1P_3$

In agreement with previous studies, we found that both $S1P_2$ and $S1P_3$ but not $S1P_1$ are expressed in VSMCs¹⁶. To examine, which S1P receptor mediates inhibitory effects of HDL and lysosphingolipids on MCP-1 production, we used FTY720P, an agonist of all S1P receptors except S1P₂, and SEW2871, an agonist of S1P₁. As shown in Fig. 5A, preincubation of VSMCs and aortic explants with FTY720P inhibited MCP-1 production, while SEW2871 had no effect.

We also found that the inhibitory effects of HDL and S1P on MCP-1 production were partially reversed in VSMCs and aortas preincubated with VPC23019 - an antagonist of S1P₁ and S1P₃, but not with JTE013 – an antagonist of S1P₂ (Fig.5B). These results pointed to S1P₃ as a mediator of inhibitory effects of HDL and HDL-associated lysosphingolipids. To address this issue more specifically, we examined the influence of HDL, S1P and SPC on the thrombin-induced ROS generation and MCP-1 production in aortic explants obtained from S1P₃-deficient mice. Fig.5C demonstrates that the capacity of HDL to inhibit ROS generation was reduced and that of S1P and SPC abolished in aortic rings from S1P₃-deficient mice. In addition, HDL, S1P and SPC failed to inhibit MCP-1 production in aortas from S1P₃-deficient mice.

HDL and S1P fail to inhibit thrombin-induced MCP-1 production and ROS generation in aortas from SR-B1-deficient mice

As scavenger receptor type B1 (SR-B1) is critically involved in several physiological effects of HDL, we next examined its involvement in the HDL-mediated downregulation of MCP-1 production (see Supplementary Materials, http://atvb.ahajournals.org). Aortic explants from SR-B1-deficient mice responded to thrombin stimulation with MCP-1 production and superoxide generation that was affected neither by HDL nor by S1P. SR-B1-deficiency did not affect S1P₃ expression and vice versa. In addition, fractionation of VSMCs plasma membrane revealed that both receptors were recovered from overlapping fractions characterized by low lipid content and distinct from caveolae.

DISCUSSION

Activated smooth muscle cell is an abundant source of pro-atherogenic cytokine and chemokines including MCP-1. The present study provides evidence that MCP-1 expression is directly inhibited by HDL in VSMCs. In addition, the inhibitory effects of HDL were seen in endothelial cells and macrophages as well as in isolated whole aortas. Dose-response studies demonstrated the significant reduction of MCP-1 production by HDL concentrations close to physiological. Cumulatively, these results suggest that HDL reduces the chemotactic stimulus attracting leukocytes into the arterial wall. Along this way HDL may locally limit the inflammation and thereby inhibit development of atherosclerosis.

The enhanced MCP-1 production is an integral part of a larger response to various pathological situations. Concerted productions of inflammatory mediators such as interleukins, chemokines and adhesive proteins represent other components of this response negatively regulated by HDL. It is now established that NAD(P)H oxidase is located at the cross-road of proinflammatory signaling in the vasculature both collecting signals from pro-atherogenic factors including oxidized LDL, angiotensin II, homocysteine, or thrombin and triggering inflammatory responses such as production of cytokines and expression of adhesion molecules^{13,17}. The present study for the first time documents that NAD(P)H oxidasedependent ROS generation is negatively regulated by HDL. The evidence underlying the inhibitory effect of HDL proceeded along several pathways of investigations. First, HDL reduced the thrombin-induced generation of superoxide, a common progenitor of ROS, and the formation of H₂O₂, a product of superoxide decomposition, both in VSMCs and isolated aortas. Second, HDL inhibited the thrombin-induced activation of p38MAP kinase, which occurs as a consequence of NAD(P)H oxidase activation and is partially required for MCP-1 induction. Third, the increase in NAD(P)H consumption caused by thrombin was diminished in VSMCs pre-treated with HDL. In addition, pre-incubation of VSMCs with HDL prevented the activation of Rac1 and the membrane translocation of p47phox NAD(P)H oxidase subunit, which are both required for the assembly of NAD(P)H oxidase complex. Fourth, exposure of VSMCs to p91ds – a higly specific inhibitor of NAD(P)H oxidase but not to allopurinol – the inhibitor of xanthine oxidase – pre-emptied the inhibitory effects of HDL. Collectively, these data demonstrate that HDL suppresses the agonist-induced ROS production at cellular level. As modulation of the redox status constitutes an integral element of signal transduction processes, inhibition of ROS generation by HDL represents a novel mechanism by which this lipoprotein affects intracellular signaling pathways.

A question arises, by which mechanism HDL influences intracellular ROS generation? As HDL is known to carry α -tocopherol, the supplementation of cells with this compound could account for inhibitory effects exerted by these lipoproteins on intracellular ROS generation. Mechanisms involving both phospholipid transfer protein (PLTP), an enzyme associated with HDL, and ATP-binding cassette protein A1 (ABCA1), an apo A-I receptor, have been proposed that facilitate transfer of α -tocopherol between HDL and the cell interior^{18,19}. Whereas the direct effect of HDL-associated α -tocopherol on the cellular redox status cannot be entirely dismissed, this study supports the contention that the inhibitory effect of HDL on ROS generation is independent from supplying cells with antioxidants. First, the inhibitory effect of HDL on ROS generation was seen within minutes after treatment. By contrast, the inhibitory effects of α -tocopherol on cell oxidation are evident after few hours of incubation^{20,21}. Second the purified lysophospholipids S1P and SPC, lipid components of HDL without anti-oxidative properties, mimicked HDL capacity to reduce intracellular ROS generation. Third, HDL inhibited the thrombin-induced NADPH consumption and p47^{phox} membrane translocation, which are both located upstream to generation of superoxide. Consistent with our findings, Robbesyn et al. shown that α -tocopherol-depleted HDL was still able to inhibit oxidized LDLinduced ROS generation, whereas α -tocopherol failed to exert a short-term influence on the redox status of the cell²¹. Basing on our observations and those of Robesyn et al. we postulate that HDL inhibits ROS generation by directly influencing the activation of NADPH oxidase via inhibition of Rac1 activation.

The present study provides support to the contention that the substantial portion of inhibitory effects exerted by HDL on VSMCs activation can be attributed to S1P and SPC. Both compounds were previously shown to account for several pleiotropic effects of HDL including inhibition of endothelial apoptosis, activation of endothelial nitric oxide synthase (eNOS), and inhibition of the expression of adhesion molecules^{14,15,22}. Current findings extend these observations by showing that HDL lysosphingolipids inhibited NADPH-oxidase activation, ROS generation and MCP-1 production in VSMCs, whereas apo A-I, a major protein constituent of HDL, had no effect. In addition, the ability of HDL subfractions to inhibit MCP-1 production was related to their S1P content and reduced after S1P depletion. To our knowledge, this is the first report documenting the negative influence of lysosphingolipids on NAD(P)Hoxidase activation. However, the inhibition of the Rac1 activation, which is required for NADPH oxidase assembly, has been reported in VSMCs exposed to S1P at concentrations above 100 nmol/L¹⁶. In the present study, the inhibitory effects of lysosphingolipids on MCP1 production and ROS generation were seen in concentrations between 0.1 and 1.0 µmol/L. As one mg of HDL contains 287±17pg S1P and 290±20pg SPC¹⁵, these lipoproteins are likely to deliver sufficient amounts of lysosphingolipids to inhibit NAD(P)H-oxidase in vivo.

S1P and SPC mediate various physiological processes by binding to G protein-coupled receptors, two of which, S1P₂ and S1P₃, are expressed in VSMCs¹⁶. We previously demonstrated that NO-dependent vasodilatory effects of HDL and HDL-associated lysosphingolipids were attenuated in thoracic aortas obtained from S1P₃-deficient animals, suggesting that this particular receptor serves as a functional partner for HDL¹⁵. In the present study we show that inhibitory effects of HDL, S1P and SPC on MCP-1 production in VSMCs and isolated aortas were emulated by FTY720P, a synthetic agonist of S1P₃ and S1P₁ but not S1P₂ receptors. In addition, HDL and S1P retained its ability to inhibit thrombin-induced VSMCs activation in the presence of JTE013 – an S1P₂ antagonist. Conversely, elimination

of S1P₃ receptor by performing experiments either in the presence of S1P₃ inhibitor VPC23019 or in aortas from S1P₃-deficient animals led to reversal of inhibitory effects of HDL and lysosphingolipids. These observations together with previous findings showing reduced MCP-1 levels in apoE-deficient mice treated with FTY720²³ suggest that the activation of the S1P₃ rather than S1P₂ receptor by HDL led to the inhibition of NAD(P)H-oxidase and MCP-1 production in VSMCs. Previous studies suggested a link between activation of S1P₂ and inhibition of Rac1 activity^{16,24}. However, the inhibitory effects of S1P₃ and the activating effects of S1P₂ on Rac1 activation were also reported^{25,26}]. It is noteworthy that both receptors utilize similar intracellular signaling machinery and turn on either activating or inhibitory signals depending on cellular context.

The HDL-dependent inhibition of ROS generation and MCP-1 production was not observed in aortas from SR-B1-deficient mice suggesting that binding to this receptor is also required for inhibitory effects of HDL. Interestingly, SR-B1 deficiency equally effectively abolished inhibitory effects exerted by S1P, though the latter compound is not regarded SR-B1 ligand. It is worth notice that S1P₃ has recently been shown to reside in membrane invaginations termed caveolae, which host and are stabilized by SR-B1^{27,28}. Whereas in the present study we failed to detect SR-B1 in cell membrane fractions expected to contain structural components of caveolae, the demonstration of the presence of both SR-B1 and S1P₃ in overlapping fractions is nevertheless consistent with the notion that these receptors co-localize in certain plasmalemmal compartment(s). It would, therefore, be tempting to speculate that the primary role of SR-B1 in HDL signaling is to secure plasma membrane microenvironment optimal for effective signal transduction over S1P receptors.

The direct inhibitory effect of HDL-associated lysosphingolipids on the agonist-induced NAD (P)H oxidase activation for the first time demonstrated in this study is important for better understanding of the anti-atherogenic role of this lipoprotein. Uncontrolled ROS generation is a distinguished feature of several pro-atherogenic processes including lipid oxidation, NO degradation, and altering cell functions such as adhesion, motility, proliferation, and apoptosis. Increased ROS production was demonstrated in atherosclerotically changed arteries and is a marker of unstable plaques²⁹. Conversely, dramatic decrease in atherosclerotic lesions was observed in animals deficient in NAD(P)H oxidase³⁰. Inhibition of NAD(P)H oxidase activity by HDL-associated lysosphingolipids may constitute an important mechanism by which HDL exerts its potent anti-atherogenic effects.

ACKNOWLEDGEMENTS

This study was supported in part by Innovative Medizinische Forschung (IMF) (JRN: NO110441), the Deutsche Forschungsgemeinschaft (MvdG:GI339/3-1,GI339/6-2;BL:LE3-1,LE4-1), NIH (J.C.:NS048478,DA019674) the Sonnenfeld-Stiftung (MvdG, MT).

REFERENCES

- Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med 2005;352:1685–1695. [PubMed: 15843671]
- Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med 2006;354:610–621. [PubMed: 16467548]
- Bursill CA, Channon KM, Greaves DR. The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr. Opin. Lipidol 2004;15:145–149. [PubMed: 15017357]
- Boisvert WA. Modulation of atherogenesis by chemokines. Trends Cardiovasc Med 2004;14:161–165. [PubMed: 15177267]
- 5. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004;95:764–772. [PubMed: 15486323]

Tölle et al.

- 6. Theilmeier G, De Geest B, Van Veldhoven PP, Stengel D, Michiels C, Lox M, Landeloos M, Chapman MJ, Ninio E, Collen D, Himpens B, Holvoet P. HDL-associated PAF-AH reduces endothelial adhesiveness in apoE^{-/-} mice. FASEB J 2000;14:2032–2039. [PubMed: 11023987]
- Cockerill GW, Huehns TY, Weerasinghe A, Stocker C, Lerch PG, Miller NE, Haskard DO. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of Eselectin in an in vivo model of acute inflammation. Circulation 2001;103:108–112. [PubMed: 11136694]
- Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998;97:2007–2011. [PubMed: 9610529]
- 9. de Keulaner GW, Ushio-Fukai M, Yin Q, Chung AB, Lyons PR, Ishizaka N, Rengarajan K, Taylor WR, Alexander RW, Griendling KK. Convergence of redox-sensitive and mitogen-activated protein kinase pathways in tumor necrosis factor-alpha-mediated monocyte chemoattractant protein-1 induction in vascular smooth muscle cells. Arterioscler. Thrombosis. Vasc. Biol 2000;20:385–396.
- Brandes RP, Viedt C, Nguyen K, Beer S, Kreuzer J, Busse R, Gorlach A. Thrombin-induced MCP-1 expression involves activation of the p22phox-containing NADPH oxidase in human vascular smooth muscle cells. Thromb. Haemost 2001;85:1104–1110. [PubMed: 11434692]
- Chen XL, Zhang Q, Zhao R, Medford RM. Superoxide, H₂O₂, and iron are required for TNF-alphainduced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am. J. Physiol. Heart. Circ. Physiol 2004;286:H1001–H1007. [PubMed: 14576080]
- Herkert O, Diebold I, Brandes RP, Hess J, Busse R, Gorlach A. NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells. Circulation 2002;105:2030–2036. [PubMed: 11980681]
- Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res 2000;86:494–501. [PubMed: 10720409]
- Nofer J-R, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J. Biol. Chem 2001;276:34480–34485. [PubMed: 11432865]
- Nofer J-R, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest 2004;113:569– 581. [PubMed: 14966566]
- 16. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y. Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ. Res 2002;90:325–332. [PubMed: 11861422]
- 17. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108:1912–1916. [PubMed: 14568884]
- Oram JF, Vaughan AM, Stocker R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J. Biol. Chem 2001;276:39898–39902. [PubMed: 11546785]
- Desrumaux C, Deckert V, Athias A, Masson D, Lizard G, Palleau V, Gambert P, Lagrost L. Plasma phospholipid transfer protein prevents vascular endothelium dysfunction by delivering alphatocopherol to endothelial cells. FASEB J 1999;13:883–892. [PubMed: 10224231]
- 20. Negre-Salvayre A, Alomar Y, Troly M, Salvayre R. Ultraviolet-treated lipoproteins as a model system for the study of the biological effects of lipid peroxides on cultured cells. III. The protective effect of antioxidants (probucol, catechin, vitamin E) against the cytotoxicity of oxidized LDL occurs in two different ways. Biochim. Biophys. Acta 1991;1096:291–300. [PubMed: 2065102]
- 21. Robbesyn F, Garcia V, Auge N, Vieira O, Frisach MF, Salvayre R, Negre-Salvayre A. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells. FASEB J 2003;17:743–745. [PubMed: 12586748]
- 22. Nofer J-R, Geigenmuller S, Gopfert C, Assmann G, Buddecke E, Schmidt A. High density lipoproteinassociated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem. Biophys. Res. Commun 2003;310:98–103. [PubMed: 14511654]

Tölle et al.

- 24. Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 2000;20:9247–9261. [PubMed: 11094076]
- 25. Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol 2003;23:1534–1545. [PubMed: 12588974]
- 26. Lepley D, Paik JH, Hla T, Ferrer F. The G protein-coupled receptor S1P₂ regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Res 2005;65:3788–3795. [PubMed: 15867375]
- Singleton PA, Dudek SM, Ma SF, Garcia JG. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation. Novel role for hyaluronan and CD44 receptor family. J Biol. Chem 2006;281:34381–34393. [PubMed: 16963454]
- Frank PG, Marcel YL, Connelly MA, Lublin DM, Franklin V, Williams DL, Lisanti MP. Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class B type I. Biochemistry 2002;41:11931–11940. [PubMed: 12269838]
- 29. Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H, Awano K, Kobayashi K, Maeda K, Hata K, SHinke T, Kobayashi S, Hirata K, Kawashima S, Itabe H, Hayahsi Y, Imajoh-Ohmi S, Itoh H, Yokoyama M. Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler. Thromb. Vasc. Biol 2002;22:1838–1844. [PubMed: 12426213]
- Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, Runge MS. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J. Clin. Invest 2001;108:1513– 1522. [PubMed: 11714743]

Figure 1. Effect of HDL on the thrombin-induced MCP-1 production in VSMCs VSMCs (A and B) or rat aortas (C) were exposed for 6h (B) or 24h (A–C) to thrombin (A and B-1.0U/mL; C–4.0U/mL)) or thrombin/HDL (0.5g/L). **A**. mRNA levels assessed by RT-PCR. Lower panel: gel densitometry. Ratios from 3 experiments. **B** and **C**. MCP-1 determined by ELISA. Means±SEM from 3 to 6 experiments. **D**. MCP-1 in media from thrombin-stimulated aortas±HDL (0.5g/L). Means±SEM from 3 experiments. For all panels: *–p<0.05, **–p<0.01 thrombin vs. thrombin/HDL.

Figure 2. Effect of HDL on the thrombin-induced ROS generation and $p38^{\mbox{MAP}}$ kinase activation in VSMCs

A.VSMCs exposed for 16h to thrombin $(1.0U/mL)\pm$ HDL (0.5g/L). Superoxide detected by ethidium bromide (EtBr) fluorescence. Images (×400) from 3 experiments. **B**. H₂O₂ production in H₂DCFDA-loaded VSMCs exposed to thrombin $(1.0U/mL) \pm$ HDL (0.5g/L). Data are percent fluorescence increase relative to the intensity of unstimulated cells. Means±SEM from 6 to 8 experiments. **C**. VSMCs exposed to thrombin $(1.0U/mL) \pm$ HDL (0.5g/L). Phosphorylated p38^{MAPK} assessed by ELISA. Means±SEM from 3 to 4 experiments. **D**. Aortas

were exposed for 16h to 4.0U/mL thrombin±HDL (0.5g/L). Superoxide generation detected as above. Images from 3 experiments.

Figure 3. Effect of HDL on the thrombin-induced NAD(P)H-oxidase activation in VSMCs A. NADPH consumption in homogenates from VSMCs exposed for 1h to thrombin (1.0U/mL) \pm HDL (0.5g/mL). Superimposed tracings from 5 experiments. Right panel: NADPH consumption rate in VSMCs stimulated with thrombin/HDL (0.5g/L) or diphenyliodonium (DPI; 10µmol/L). Means \pm SEM from 3 to 6 experiments. *-p<0.05, ***-p<0.001 thrombin vs. thrombin+HDL/DPI. **B and C**. VSMCs exposed to 1.0U/mL thrombin \pm HDL (0.5g/mL) and assessed for (B) Rac1 activation or (C) $p47^{phox}$ translocation. (C). Immunoblots from 3 experiments. Lower panel: Densitometric analysis of $p47^{phox}$ in membrane (mem) and cytosol (cyt) fractions. Total $p47^{phox}$ set as 100%.

Figure 4. Effect of HDL-associated lysosphingolipids on the thrombin-induced MCP-1 production, ROS generation, and NAD(P)H oxidase activation in VSMCs and mouse aortic segments A. MCP-1 determined in media from aortic segments exposed for 16h to 4.0U/mL thrombin \pm S1P (1.0µmol/L) or SPC (1.0µmol/L). Means \pm SEM from 3 experiments. Superoxide generation detected by EtBr fluorescence. Images (×400) from 3 experiments. *-p<0.05 thrombin vs. thrombin+S1P/SPC. **B**. Effect of lipoprotein fractions with variable S1P amounts on thrombin-induced MCP1 production in VSMCs. CC-HDL–charcoal-treated HDL. Means \pm SEM from 3 experiments.

Tölle et al.

Figure 5. Involvement of S1P₃ receptor in HDL- and lysophospholipids-dependent inhibition of the thrombin-induced MCP-1 production and ROS generation

A. VSMCs (upper panel) or aortas (lower panel) exposed for 24h to, respectively, 1.0U/mL or 4.0U/mL thrombin±S1P (1.0 μ mol/L), FTY720P (1.0 μ mol/L) or SEW2871 (1.0 μ mol/L). MCP-1 in media determined by ELISA. Means±SEM from 3 to 5 experiments. *–p<0.05, *** –p<0.001 thrombin vs. thrombin+S1P/FTY720P. **B**. MCP1 in media from VSMCs (upper panel) or aortas (lower panel) preincubated for 30min with VPC2301 (20 μ mol/L) or JTE013 (20 μ mol/L) and exposed for 24h to, respectively, 1.0U/mL or 4.0U/mL thrombin±HDL (0.5g/L) or S1P (1.0 μ mol/L). **–p<0.01, ***–p<0.001 thrombin+HDL/S1P/HDL+VPC/S1P+VPC **C**. Aortas from S1P₃-deficient mice exposed for 16 h to 4.0U/mL thrombin±HDL (0.5g/L),

S1P (1.0 μ mol/L) or SPC (1.0 μ mol/L). Superoxide generation detected by EtBr fluorescence. Images (×400) from 3 experiments. MCP-1 levels determined by ELISA. Means±SEM from 3 to 4 experiments.