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Reduction of Spike Afterdepolarization by Increased Leak
Conductance Alters Interspike Interval Variability

Fernando R. Fernandez and John A. White
Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112

Data from neurons in vivo have shown that spike output can often sustain episodes of high variability. Theoretical studies have indicated
that the high conductance state of neurons brought on by synaptic activity can contribute to an increase in the variability of spike output
by decreasing the integration timescale of the neuron. In the present work, we were interested in understanding how background synaptic
conductance activity alters the interspike interval (ISI) variability of layer III pyramidal cells of the medial entorhinal cortex. We
compared ISI variability in pyramidal cells as a result of synaptic current- or conductance-mediated membrane fluctuations. We found
that the effects of background synaptic conductance activity on ISI variability depend on the neuron type. In pyramidal cells lacking spike
frequency adaptation, the variability increased in relation to a comparable synaptic current stimulus. In contrast, in pyramidal cells
displaying spike frequency adaptation, the synaptic conductance stimulus produced lower ISI variability. To understand this result, we
constructed a phenomenological model that reproduced the basic properties of these neurons under control and increased leak conduc-
tance. We found that leak can change the properties of the neuron by acting as a bifurcation parameter that reduces the afterdepolariza-
tion (ADP) and decreases the slope (gain) of the frequency– current relationship, particularly for transient stimuli. A lower gain with the
added leak causes a reduction in ISI variability. We conclude that the ability of a high conductance state to increase ISI variability cannot
be generalized and can depend on the spike ADP dynamics expressed by the neuron.

Key words: membrane conductance; medial entorhinal cortex; layer III; CV; dynamic clamp; bifurcation; gain; afterdepolarization; ADP;
afterhyperpolarization; AHP

Introduction
Recordings of neurons in vivo have shown that neuronal output is
often characterized by a high degree of variability in interspike
interval (ISI) times (Softky and Koch, 1993; Shadlen and New-
some, 1998; Anderson et al., 2000). Synaptic activity has also been
shown to significantly increase the membrane conductance in
vivo (Borg-Graham et al., 1998; Steriade et al., 2001; Mariño et al.,
2005; Jorntell and Ekerot, 2006; Berg et al., 2007; Rudolph et al.,
2007). Theoretical work has linked these two findings, showing
that a high conductance state can contribute to an increase in ISI
variability by reducing the time constant of the neuron (Stein,
1965; Bernander et al., 1991; Koch, 1999; Moreno-Bote and
Parga, 2005).

Noise in synaptic activity can also alter neuronal spike output.
In particular, the interaction between the threshold nonlinearity
and noise has been exploited to smooth the output functions of
neurons (Anderson et al., 2000; Longtin, 2000; Chance et al.,
2002; Miller and Troyer, 2002; Wolfart et al., 2005). The ability
for the steady-state leak conductance associated with background

synaptic activity to change neuronal dynamics, outside of the
expected reduction in time constant, is less well established. Re-
cent studies, however, have shown that conservative increases in
leak conductance can alter intrinsic cell dynamics (Prescott et al.,
2006; Fernandez and White, 2008). In particular, a study of layer
II stellate cells in the medial entorhinal cortex (MEC) has shown
that increased leak conductance can reduce subthreshold mem-
brane resonance and alter the power spectrum of the spike train
(Fernandez and White, 2008). The ability for changes in leak
conductance to influence ISI variability by altering neuronal fir-
ing dynamics, however, has not been considered. The increase in
leak conductance could, potentially, create more complex rela-
tionships between conductance and ISI variability than those ex-
pected from the theoretical work.

To address the issue of how conductance inputs alter ISI vari-
ability, we used dynamic clamp to introduce artificial synaptic
activity to layer III pyramidal cells in the MEC. Previous work in
the MEC has emphasized the ability for intrinsic neuronal prop-
erties to pace spike output and influence network behavior within
the hippocampal formation (Alonso and Llinás, 1989; Egorov et
al., 2002; Giocomo et al., 2007). Consequently, it is important to
understand how background synaptic conductance activity in-
fluences the regularity of spike output. To this end, we compared
the ability of conductance-based inputs to alter ISI variability in
two different types of layer III pyramidal neurons, discernable on
the basis of spike frequency adaptation, the magnitude of the
afterdepolarization (ADP), and membrane time constant. We
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demonstrate that the capacity of a high conductance state to in-
fluence the variability of the ISI distribution can depend on the
ability for changes in conductance to modify the ADP after a
spike and the gain of the frequency– current relationship. By re-
ducing the ADP and gain, increased leak conductance can reduce
ISI variability. Our results demonstrate that the effects of leak on
ISI variability can be more complex than predicated in past the-
oretical studies.

Materials and Methods
Tissue preparation. All experimental protocols were approved by the Uni-
versity of Utah Institutional Animal Care and Use Committee. Horizon-
tal sections of hippocampus and entorhinal cortex were prepared from
21- to 31-d-old Long–Evans rats. All chemicals were obtained from
Sigma unless otherwise noted. After the animals were anesthetized with
isoflurane and killed, brains were removed and immersed in 0°C artificial
CSF (ACSF) consisting of the following (in mM): 125 NaCl, 25 NaHCO3,
25 D-glucose, 2 KCl, 2 CaCl2, 1.25 NaH2PO4, and 1 MgCl2 (buffered to
pH 7.4 with 95% O2/5% CO2). Horizontal slices were cut to a thickness of
400 �m (Vibratome 1000�; Vibratome). Slices were incubated in a 32°C
bubbled ACSF for 30 min before being cooled to room temperature
(20°C). After the incubation period, slices were moved to the stage of an
infrared differential interference contrast-equipped microscope (Axio-
scope 2�; Zeiss). Slices were bathed in ACSF with 10 �M CNQX, 50 �M

picrotoxin, and 30 �M AP-5 to block ionotropic synaptic activity. All
recordings were conducted between 32 and 34°C.

Electrophysiology. Electrodes were drawn on a horizontal puller (P97;
Sutter Instruments) and filled with an intracellular solution consisting of
the following (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 7 diT-
risPhCr, 4 Na2ATP, 2 MgCl2, 0.3 Tris-GTP, and 0.2 EGTA, buffered to
pH 7.3 with KOH. Final electrode resistances were between 3 and 4 M�,
with access values between 4 and 12 M�. Electrophysiological recordings
were performed with a current-clamp amplifier (Axoclamp 2A; Molec-
ular Devices), and data were acquired using custom software developed
in Matlab (version 2007b; MathWorks) using the data acquisition
toolbox.

For dynamic-clamp experiments, the current-clamp amplifier was
driven by an analog signal from an 86� personal computer running
Real-Time Application Interface Linux and an updated version of the
Real-Time Linux Dynamic Clamp (Dorval et al., 2001) called Real-Time
Experimental Interface (Bettencourt et al., 2008). For all experiments,
the sample rate of the dynamic clamp was set between 5 and 10 kHz. A
measured junction potential of �10 mV was subtracted from all record-
ings and taken into account during dynamic-clamp experiments. Data
were collected at 2.5 kHz and filtered at 1 kHz. Gain measurements of the
frequency– current ( F–I) were made between frequencies above 0 Hz and
the last frequency value within the linear range of the F–I relationship
(usually below 15 Hz). For spike trains, the coefficient of variability (CV)
was measured as the SD of the interspike interval (ISI) distribution di-
vided by the mean of the distribution. Membrane resistance (Ri) and
time constant (�m) measurements were made in the linear region of the
voltage– current relationship (�90 to �75 mV). Significance was deter-
mined using a paired Student’s t test. Means are presented with the SEM.

Protocols. Synaptic protocols consisted of two independent Poisson
processes generating unitary synaptic events. Individual synaptic events
were modeled using a biexponential function. For inhibition the rise and
decay time constants were 0.5 and 5 ms, respectively, whereas for excita-
tion these values were 0.25 and 2.5 ms. Inhibitory and excitatory events
were delivered at a frequency of 1200 and 200 Hz, respectively. The
reversal value for excitation was set to 0 mV, whereas that for inhibition
was �75 mV. For excitation and inhibition, individual synaptic events
had the same maximal conductance, which ranged from 0.5 to 0.6 nS.
The ratio of inhibition to excitation is consistent with previous work in
vitro that has measured spontaneous activity in layer III MEC (Greenhill
and Jones, 2007). For current-based synaptic protocols, the reversal term
was not included and maximal current for individual events was set
between 10 and 13 pA. Note that individual maximal conductance or
current for simulated synapses was slightly varied to produce the same

fluctuation sizes (as determined by the SD of the membrane response) in
different cells. Under conditions in which a steady-state leak conduc-
tance was used, we added 6 nS of conductance with a reversal potential of
either �70 or �30 mV. Noise under conditions in which the leak was
added as a steady-state conductance was implemented as a Gaussian
current input with a cutoff at 100 Hz. Under control and with added leak
conductance, the current noise stimulus had an SD of 34.2 � 2 and 49 �
2 pA, respectively, to achieve an SD in membrane voltage between 2 and
2.5 mV near threshold (approximately �70 mV).

For the experiments using dynamic clamp to increase the size of the
afterhyperpolarization (AHP), we modeled the current using a voltage-
dependent gating and time constant variable expressed as I
� gmaxx�Vmembrane � 90�,

with x obeying
dx

dt
�

x	 � x

��V�
,

with x	 defined as
1

1 � e��V�Vhalf�/�k��Vhalf � � 35,k � 3�,

and �( V) defined as
200

e�Vmembrane�50�/ 2 � e�Vmembrane�6�/�50 � 10.

A maximum conductance of 5 nS was used for IAHP�.
Simulations. All simulations were solved in either Matlab or XPPAUT

version 5.86 (Ermentrout, 2002) using a fourth-order Runge–Kutta
solver at a time step of 0.002 ms. All phase-plane and bifurcation analyses
were performed in XPPAUT version 5.86.

Equations for model were as follows: for membrane voltage, C
dV

dt
� IE � gNa�m	h�V � ENa�� � gCa2�c	�V � ECa2�� � gK��1 � h�
� �V � EK�� � gadaptn�V � EK�� � gleak�V � Eleak�;

for Na � conductance activation, m	 �
1

1 � e��V�Vhalf�/�k��Vhalf �

� 15,k � 5�;

for Ca 2� conductance activation, c	 �
1

1 � e��V�Vhalf�/�k��Vhalf �

� 28,k � 6.5�;

for Na � conductance inactivation,
dh

dt
�

h	 � h

�h�V�
,h	

�
1

1 � e��V�Vhalf�/�k��Vhalf � � 16,k � � 5� �h�V� �
0.81

e�V�38�/5

� e�V�52�/�3 � 0.24;

and for slow, Ca 2� activated conductance K � current,
dn

dt

�
n	 � n

�n
��n � 70ms� n	 �

1

1 � e��
Ca2���0.018�/�0.000025�,
Ca2�� �

� 0.12�gCa2��V � ECa2���.
Additional model parameters were as follows: C � 1.5 �F/cm 2; gNa� � 20
mS/cm 2; gCa2� � 0.025 mS/cm 2; gK� � 3.65 mS/cm 2; gadapt � 0.18 mS/
cm 2; gleak � 0.02 mS/cm 2 (0.047 mS/cm 2for high conductance state);
ENa� � 45 mV; EK� � �95 mV; ECa2� � 120 mV; Eleak � �70 mV. IE in
the current balance equation refers to driving current.

The Na � and Ca 2� conductance activations were modeled using only
the steady state. These conductances are assumed to equilibrate instan-
taneously with membrane voltage. Also, the activation of the fast K �

conductance was modeled as 1 � h. These reductions allow for the model
to contain only three dynamic variables (V, h, n). All time constants are in
units of milliseconds. Noise in the model was implemented as a Gaussian
current input with a cutoff at 100 Hz. Under control and with added leak
conductance, the noise stimulus had an SD of 0.13 and 0.22 �A/cm 2,
respectively, to achieve an SD in membrane voltage (measured at �80
mV) of 2.5 mV under each condition.

Results
We started by comparing neuronal spike output in layer III py-
ramidal cells of MEC in response to synaptic input consisting of
either conductance- or current-based artificial synaptic stimuli
delivered via dynamic clamp. We could distinguish layer III py-
ramidal cells from neighboring layer II stellate cells because of an
absence of either spike clustering or subthreshold theta oscilla-
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tions (Klink and Alonso, 1993; Dickson et al., 1997; Erchova et al.,
2004). Furthermore, layer III cells had a higher membrane input
resistance (Ri) than layer II cells (Dickson et al., 1997; Klink and
Alonso, 1997).

Previous work has established the exis-
tence of heterogeneity in the electrophysi-
ological properties of layer III pyramidal
cells (Gloveli et al., 1997a,b). In support of
this, we found that layer III pyramidal cells
could be divided into two populations that
could be distinguished on the basis of the
expression of spike frequency adaptation
(Fig. 1A) and differences in passive mem-
brane properties. Under control condi-
tions, adapting cells had an Ri and time
constant (�m) of 207 � 15 M� and 66 � 6
ms (n � 9), whereas non-adapting cells
had values of 198 � 32 M� and 34 � 5 ms
(n � 8), respectively. Note that only the �m

differed significantly between the two cell
subtypes ( p � 0.002). Previous work has
also shown that a long ADP is a distin-
guishing characteristic of layer III pyrami-
dal cells (Yoshida and Alonso, 2007).
Hence, we quantified the ADP in adapting
and non-adapting cells. The size of ADP
was quantified as the integral of the mem-
brane voltage during the ADP. A 10 ms
pulse of current ranging in amplitude
from 0.4 to 0.6 nA was used to elicit a single
spike while holding cells at �70 mV. As
shown in Figure 1B, adapting cells pro-
duced a substantially larger ADP than
non-adapting cells (0.70 � 0.13 vs �0.1 �
0.14 mV � s; p � 0.003; n � 5). As a result of
these data, we treated adapting and non-
adapting cells within layer III as two sepa-
rate and electrophysiologically discernable
groups of neurons. This distinction al-
lowed us to contrast the response of each
cell type to the same conductance- and
current-based stimuli.

Cell stimuli consisted of excitatory and
inhibitory synapses driven at 200 and 1200
Hz, respectively, by independent Poisson
processes (see Materials and Methods).
Parameter values for synaptic size and ki-
netics were chosen so as to generate sub-
threshold fluctuations with an SD between
2.0 and 2.5 mV and a decrease in mem-
brane resistance of �50% for the conduc-
tance stimuli (Ri � 101 � 17 M� for
adapting and 110 � 17 M� for non-
adapting). The SD of the subthreshold
membrane response for adapting cells was
2.2 � 0.12 and 2.2 � 0.10 mV under
current- and conductance-based stimuli,
respectively (n � 6). Similarly, for non-
adapting cells, these values were 2.2 � 0.14
and 2.0 � 0.12 mV (n � 6). These values
are comparable with what has been re-
corded in vivo from other cortical regions
(Destexhe et al., 2003; Cardin et al., 2008).

Spike output variability under current- or conductance-based
synaptic stimuli was quantified using the CV (the ratio of the SD
to the mean) of the ISI distribution. Spike times were collected
from 200 s sweeps for each condition (current and conductance

Figure 1. Adapting and non-adapting layer III pyramidal cells respond differently to conductance-based synaptic input. A,
Example of voltage traces elicited with a square current step from an adapting (Ai) and non-adapting (Aii) pyramidal cell. B,
Comparison of the ADP in adapting and non-adapting pyramidal cells generated during a pulse-elicited spike (Bi). The ADP was
measured as the integral of the membrane voltage between the start and end (�800 ms after the spike) of the ADP relative to the
holding potential (Bii). C, Example of voltage traces from an adapting (Ci) and non-adapting (Cii) cell in the presence of a
current-based (I syn.) or conductance-based ( g syn.) stimulus in the subthreshold (bottom) or spiking (top) regime. D, Plots of the
average CV in adapting (Di) and non-adapting (Dii) cells driven with a current- or conductance-based stimulus. E, Cumulative
distribution plots of ISIs from adapting (Ei) and non-adapting (Eii) cells driven with a current-based (gray) or conductance-based
(black) stimulus. Cumulative distribution plots contain the aggregate of ISI values from all cells analyzed. For each panel, the insets
show a plot of the average fraction of ISI values below 0.25 s for each stimulus condition (I syn. vs g syn.).
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stimuli; adapting and non-adapting cells) from cells firing �2
Hz. This value of firing frequency is consistent with in vivo single-
unit recordings of excitatory cells from awake and behaving ani-
mals from the superficial layers of the MEC (Frank et al., 2001).
Average firing frequency values for adapting cells were 2.2 � 0.12
and 2.2 � 0.10 Hz (n � 8), whereas mean values in non-adapting
cells were 2.2 � 0.1 and 2.3 � 0.13 Hz (n � 8) under current- and
conductance-based stimuli, respectively.

The ability for the conductance-based stimulus to increase the
CV of the spike train above that of a comparable current-based
stimulus depended on the type of layer III pyramidal cell. In
adapting cells, the conductance stimulus decreased the CV from
0.77 � 0.03 to 0.66 � 0.02 ( p � 0.01; n � 8) (Fig. 1Di). However,
in non-adapting cells, the conductance stimulus increased the CV
from 0.59 � 0.04 to 0.68 � 0.02 ( p � 0.03; n � 8) (Fig. 1Dii). The
change in the CV of both cell types was caused by a corresponding
change in the number of high-frequency spike events. To illus-
trate this result, we plotted the total cumulative distribution of
ISIs for both types of cells under each stimulus condition (Fig.
1E). In adapting cells, the cumulative distribution curve indi-
cated a greater number of high-frequency events with a current-
based stimulus (Fig. 1Ei). Conversely, in non-adapting cells, the
cumulative distribution under the current-based stimulus con-
tained fewer high-frequency events (Fig. 1Eii). The conductance
stimulus decreased the fraction of ISIs below 0.25 s (4 Hz) from
0.33 � 0.03 to 0.26 � 0.03 in adapting cells ( p � 0.002; n � 8)
and increased this fraction from 0.18 � 0.03 to 0.29 � 0.03 ( p �
0.02; n � 8) in non-adapting cells (Fig. 1E, insets).

These results indicate that the ability of a high conductance state
to increase ISI variability depends on the subtype of pyramidal cell.
In non-adapting cells, the conductance-based stimulus increased the
CV relative to a current-based stimulus. This is in agreement with
previous theoretical work (Stein, 1965; Bernander et al., 1991; Koch,
1999) and can be explained by the shorter integration time under the
higher conductance state. A leakier membrane leads to faster decay
rates for synaptic inputs. As a result, more coincident activity is re-
quired to reach threshold as the neuron averages over fewer sub-
threshold inputs, which increases the variability of the spike output
(Stein, 1965; Bernander et al., 1991; Koch, 1999). The ability of this
mechanism to increase the CV, however, cannot be generalized to
adapting pyramidal cells, because the conductance stimulus pro-
duced a decrease in ISI variability. Although the synaptic conduc-
tance stimulus also reduced Ri and �m in adapting cells, and hence
also reduced the integration time of synaptic inputs, our data indi-
cate that additional factors must be changing with the addition of
leak conductance that are overcoming the potential increase in ISI
variability. For the remainder of the study, we focused on the mech-
anisms controlling ISI variability in adapting pyramidal cells.

Decrease in CV in adapting cells is caused by the increase in
membrane conductance associated with synaptic activity
To investigate the mechanism by which the synaptic conductance
stimulus reduced the CV in adapting pyramidal cells, we started
by introducing the increase in membrane conductance associated
with the synaptic conductance stimulus separate from the noise
component. The change in conductance was therefore intro-
duced as a steady-state leak conductance. For the noise compo-
nent of the stimulus, we used a current input consisting of a
Gaussian noise source rather than synaptic waveforms. In con-
trast to our previous experiments using the synaptic conductance
stimulus, this form of noise is additive because it is not multiplied
by the membrane voltage term (i.e., driving force). Hence, we
could test the effects of adding a leak conductance on cell firing

dynamics without adding a stochastic component. This also al-
lowed us to test whether our results with the synaptic conduc-
tance stimulus could be reproduced in a more general context
independent of specific synaptic waveforms.

We recorded 200 s sweeps from cells firing at �2 Hz in the
absence or presence of a steady-state leak conductance (2.2 �
0.06 Hz in control and 2.1 � 0.07 Hz with added leak) along with
a current-based Gaussian stimulus (see Materials and Methods).
To match the change in Ri associated with the synaptic conduc-
tance, we introduced a 6 nS steady-state leak conductance via
dynamic clamp (207 � 15 M� in control and 100 � 3 M� with
leak). As expected, the added leak conductance also reduced the
membrane time constant within the subthreshold range (less
than �75 mV) of the membrane voltage from 66 � 6 to 31.5 �
2.0 ms ( p � 0.0002; n � 9) (see Fig. 3D).

We initially set the reversal potential for the leak conductance at
�70 mV, which was equal to the total synaptic conductance stimu-
lus used in the previous section. The magnitude of the Gaussian
noise term was adjusted to maintain the same SD in subthreshold
membrane voltage in control and leak modified cells (2.3 � 0.16 mV
in control and 2.2 � 0.16 mV with added leak).

As with the synaptic conductance stimulus, the presence of the
added leak conductance reduced ISI variability relative to control
(Fig. 2B,C). Figure 2B shows four pairs of histograms of the ISI
distribution from cells under control and with the added leak con-
ductance. As indicated, the CV decreased from 0.70 � 0.03 in con-
trol to 0.53 � 0.02 with the added leak conductance (n � 17; p � 3 �
10�5) (Fig. 2C). The decrease in the CV with increased leak conduc-
tance was caused by a corresponding decrease in the number of
high-frequency spike events (Fig. 2D). The fraction of ISI values
below 0.25 s under control was 0.28 � 0.02, whereas with the added
leak conductance the value decreased to 0.16 � 0.02 ( p � 2 � 10�4;
n � 17) (Fig. 2D, inset). We repeated these experiments with a more
depolarized reversal potential (Erev � �30 mV) for the added leak
conductance to test whether the decrease in ISI variability was de-
pendent on the reversal potential. Because of the depolarizing nature
of the leak, we used a negative direct current input to maintain cells
at the same firing rate (2.0 � 0.15 Hz) and membrane potential as
before. Under control, the CV was 0.70 � 0.03, whereas in the pres-
ence of the depolarizing leak, the value decreased to 0.51�0.02 ( p�
9 � 10�4; n � 7). Hence, the reversal potential for the leak conduc-
tance was not a determinant of whether increased conductance re-
duced ISI variability.

From the voltage traces shown in Figure 2A, it appeared that,
under the spiking condition, the SD of the membrane voltage was
greater in control than with the added leak conductance despite
being the same in the subthreshold regime. To verify this, we
compared the SD under control and with added leak in the spik-
ing regime (Fig. 2E). In all cases, the membrane voltage distribu-
tion could be fit with a Gaussian function (r 2 
 0.98) (Fig. 2E). A
comparison of the SD during spiking confirmed that the value
was significantly greater in control than with the added leak con-
ductance (5.8 � 0.2 vs 4.5 � 0.16 mV; p � 0.01; n � 5) despite
being the same in the subthreshold regime (Fig. 2E). This result
suggested that the added leak conductance was uniquely altering
the neuron in the spiking regime.

We were also interested in the effects of added leak conduc-
tance on the rate of spike frequency adaptation in the absence of
a noisy stimulus, because previous work has shown that increas-
ing leak can increase the rate of spike frequency adaptation (Pres-
cott et al., 2006). Furthermore, a change in the rate of spike fre-
quency adaptation could be a potential contributor to the
changes observed in the ISI variability. To quantify the rate of
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adaptation, we provided cells with a step
depolarization such that steady-state firing
rate at the end of the current step was �5
Hz. We fit the firing frequency versus time
relationship with a single-exponential
function under control or with added leak
conductance (r 2 � 0.89 � 0.025; n � 7)
(Fig. 3B). Contrary to previous results in
hippocampal pyramidal cells (Prescott et
al., 2006), addition of the leak conduc-
tance increased the average time constant
of adaptation from 0.11 � 0.03 to 0.19 �
0.03 s ( p � 0.04; n � 7) (Fig. 3C).

In summary, adding a steady-state leak
conductance to adapting layer III pyrami-
dal cells increased spike output regularity,
reduced the SD in membrane voltage dur-
ing spiking, increased the time constant of
adaptation, and reduced �m.

Conductance-based model can
reproduce decrease in CV induced by
added leak conductance
In the previous section, we showed that the
SD in membrane voltage was reduced signif-
icantly during spiking with the addition of
leak compared with control. This result sug-
gests that factors associated with the spike
firing dynamics must be changing with the
addition of leak conductance. As a result of
changes associated with spike firing, an in-
crease in leak conductance could result in a
decrease in ISI variability. To begin to under-
stand how increased leak conductance can
decrease ISI variability, we started by build-
ing a conductance-based model that can ac-
count for the spike firing behavior in adapt-
ing pyramidal cells. Our goal was to build a
model that could reproduce the effects of
added leak conductance on ISI variability
and spike frequency adaptation but simple
enough that we could analyze using tools
from nonlinear dynamics (e.g., phase-plane
analysis, bifurcation theory). Using this
approach, we can analyze the effects of
adding leak conductance on the funda-
mental dynamics and output characteris-
tics of the model.

The model incorporates four voltage-
gated conductances, which include the fol-
lowing: Na� (INa), fast K� (IKF), Ca 2�

(ICa), and slow Ca 2� activated K� (IKCa)
currents. The model parameters were set
to match the membrane time constant, ad-
aptation rate, and membrane voltage
range observed in experimental results un-
der control conditions. To keep the model
sufficiently simple for analysis, we used
three differential equations to describe the
following dynamic variables in the model:
voltage, INa inactivation, and IKCa activa-
tion. Hence, the model has three dimen-
sions. Voltage and INa inactivation operate

Figure 2. Adding an artificial steady-state leak conductance in adapting layer III pyramidal decreases ISI variability. A, Example
of voltage traces from an adapting pyramidal cell under control conditions (Ai) or with 6 nS of added leak conductance (Aii) in the
subthreshold (bottom) and spiking (top) regimes. Under both conditions, spiking was driven with a zero mean Gaussian current
input (see Materials and Methods). B, Examples of four pairs of ISI histograms from cells eliciting spikes in response to Gaussian
current input in the absence (left column) or presence (right column) of an added leak conductance. Bin size for histograms was
0.15 s. C, Plot of the average CV values in adapting cells driven in the absence or presence of an added leak conductance. D,
Cumulative distribution plots of the ISI values in the absence (gray) or presence (black) of added leak conductance. The inset shows
a plot of the average fraction of ISI values below 0.25 s under each condition. E, Plot of the SD of membrane voltage in the spiking
and subthreshold regimes with or without an added leak conductance (left). Right shows examples of histograms of membrane
voltage distributions from a single cell in the subthreshold and spiking regime under control conditions or with added leak
conductance. All distributions of membrane voltage could be fit with a Gaussian function.
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on a fast timescale (fast subsystem),
whereas the variable controlling IKCa acti-
vation (n) is a slow variable (slow sub-
system). We used an adaptation mecha-
nism similar to previous models
(Ermentrout, 1998). In essence, ICa deter-
mines the steady-state activation level of
IKCa, which regulates the rate of adaptation
in the firing frequency. This form of adap-
tation is consistent with previous experi-
mental results showing a Ca 2�-dependent
adaptation mechanism in layer III pyrami-
dal cells (Dickson et al., 1997). To incor-
porate the change in membrane conduc-
tance, we simply increased the maximal
leak conductance of the model.

A significant constraint in constructing
the model was reproducing the increase in
the adaptation time constant of spike fre-
quency with added leak conductance. This
result was only observed under certain pa-
rameter regimes. Furthermore, we found
that the increase in the time constant of
spike frequency adaptation with added
leak conductance could not account for
the decrease observed in ISI variability. As
a result, changing the activation time con-
stant of the n variable, so that the rate of
spike frequency adaptation under control
matched that with added leak conductance
and vice versa, did not significantly change
the ISI variability (supplemental Fig. 1,
available at www.jneurosci.org as supple-
mental material). As a consequence, we
considered the changes in adaptation as secondary and not prin-
cipally involved in ISI variability but, nevertheless, an important
observation for constraining the model. In the model, achieving
the change in the spike frequency adaptation time constant and
simulating the high conductance state required increasing the
leak conductance from 0.02 to 0.047 mS/cm 2 (�m was 75 ms in
control vs 33 ms with extra leak). As shown in Figure 4, the model
is able to reproduce the change in spike frequency adaptation
with a time constant of 0.13 s in control and 0.18 s with the added
leak conductance (Fig. 4A,B).

We proceeded to test whether the model could reproduce the
effects of added leak conductance on ISI variability. We stimu-
lated the model using Gaussian noise under control and an in-
creased level of leak conductance (0.047 mS/cm 2) for 200 s while
maintaining an average firing frequency of �2.5 Hz. We adjusted
the magnitude of the noise input to maintain the SD of the sub-
threshold membrane voltage (measured at �80 mV) at 2.5 mV
under both conditions. The model with control levels of leak
produces a CV of 0.75, whereas with increased leak conductance
the CV decreases to 0.60 (Fig. 4C,D). Similar to the experimental
data, a plot of the cumulative ISI distribution shows a decrease in
high-frequency events with added leak conductance (Fig. 4E).

As with the experimental data, we measured the SD of the
membrane voltage during spiking under control and with the
added leak conductance (Fig. 4F). During spiking, the SD rises
from the set value of 2.5 mV in the subthreshold regime (with
Gaussian noise) to 5.8 mV in control and 5.3 mV with the added
leak conductance. As with the experimental data, the membrane
voltage distribution can be accurately fit with a Gaussian function

(r 2 
 0.98) (Fig. 4F). Hence, the model reproduces the qualita-
tive experimental results, although the decrease in the SD of the
membrane voltage in the spiking regime with added leak conduc-
tance is more modest than in the experimental data.

Increased leak conductance reduces the ADP of the fast
subsystem in the pyramidal cell model
To understand the dynamics in the model responsible for reduc-
ing ISI variability with increased leak conductance, we did a
phase-plane and bifurcation analysis under control and increased
leak conductance (for a review of these methods, see Izhikevich,
2007). The phase-plane analysis allows the nullclines, fixed points
(e.g., stable membrane potential states), and voltage trajectories
of the model to be simultaneously visualized. A bifurcation anal-
ysis allows the fixed points and limit cycles (e.g., spike firing
solution) to be tracked as a model parameter (e.g., IE) is changed.
Together, these forms of analyses can provide insight into bio-
physical and dynamical issues. In particular, these analyses can
track fundamental changes in the dynamics of a model and asso-
ciate them with the output characteristics of the model (e.g., F–I
relationship, phase response curve, oscillations), which can have
an important impact on spike output regularity.

As indicated by our experimental and modeling data, the de-
crease in CV with added leak conductance was caused by a cor-
responding decrease in high-frequency spike events. To help un-
derstand this phenomenon, we considered the fast subsystem of
the model. We froze the adaptation variable (n) controlling IKCa

at a value achieved during high-frequency spike events but below
the maximum value attained during the simulations with Gauss-

Figure 3. Adding a steady-state leak conductance in adapting pyramidal cells increases the rate of spike frequency adaptation.
A, Representative examples of voltage traces from adapting pyramidal cells under control conditions (Ai) and with added leak
conductance (Aii). Cells were stepped from a resting membrane voltage of approximately�80 mV to a depolarized level such that
steady-state firing frequency was �5 Hz. B, Plots of firing frequency as a function of time in adapting cells under control (Bi) and
with added leak conductance (Bii). Plots show data from seven cells under each condition. Lines denote a single-exponential fit to
individual adaptation rates under each condition. C, Plot of average time constant of adaptation under control conditions and with
added leak conductance.
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ian noise (n � 0.02) (Fig. 5A). We were particularly interested in
assessing the effect of added leak conductance on the fast sub-
system of the model, before the adaptation variable has signifi-
cantly changed and slowed spike firing. We considered this a

reasonable reduction, because the time
constant of adaptation is significantly
slower than any other process in the
model.

We started the analysis of the fast sub-
system of the model by considering the
voltage trajectory in response to a pulse of
current of sufficient magnitude to elicit a
single spike. This stimulus provides a di-
rect method of assessing the amount of ex-
citability after a single spike under control
and with added leak conductance. As indi-
cated in Figure 5B, a single pulse-elicited
spike produces a substantially larger ADP
under control conditions than with added
leak conductance. We hypothesized that
the decrease in the ADP with increased
leak conductance could influence the vari-
ability of spike output by decreasing the
excitability after a spike and reducing the
number of high-frequency spike events.
Because the fast subsystem is composed of
only two differential equations, we can
view the fast subsystem of the model in a
phase-plane portrait under control and
with added leak conductance (Fig. 5C).
The voltage dynamics of the fast subsystem
during the ADP can be understood if we
examine the voltage nullcline with and
without the extra leak during pulse-
elicited spiking. The voltage nullcline cor-
responds to a line in phase space in which
the membrane voltage is constant (dV/
dt � 0) (Fig. 5C). The closer the trajectory
of the system gets to the voltage nullcline,
the slower the voltage variable changes
with respect to time. Likewise, the h
nullcline corresponds to a line in phase
space where the h variable is constant (dh/
dt � 0) (Fig. 5C). In addition to the
nullclines, the phase-plane portrait also
shows two fixed points. One of these
points (blue circles) is a stable point (i.e.,
node) and corresponds to the resting
membrane voltage of the fast subsystem
(�68 mV in this case). The second point
(black squares) is an unstable point (i.e.,
saddle point). A closer look at the phase
portrait of the fast subsystem of the model
in the vicinity of the stable and unstable
point reveals that the voltage nullcline
changes shape and position with added
leak conductance (Fig. 5C). Under con-
trol, the parabolic shape of the voltage
nullcline (Fig. 5C, top) is shallower and is
positioned closer to the h nullcline than
with the added leak conductance (Fig. 5C,
bottom). Therefore, the slow change in
voltage associated with the ADP is caused

by the close proximity of the trajectory to the voltage nullcline as
it approaches the stable point. As a result, the voltage trajectory
associated with a single spike in response to a pulse of current
under the control scenario has a significantly greater amount of

Figure 4. Conductance-based model reproduces effects of added leak conductance on spike frequency adaptation and ISI
variability. A, Voltage traces of model in response to step depolarizations to a steady-state firing frequency of 5 Hz under control
conditions (top) and with added leak conductance (bottom). B, Plot of firing frequency as a function of time in model of adapting
pyramidal cell under control conditions (E) and with added leak conductance (f). Lines denote a single-exponential fit to
individual adaptation rates under each condition. C, Voltage traces of model driven with Gaussian current input under control
conditions (top) and with added leak conductance (bottom). D, Histograms of ISI values under control conditions (top) and with
added leak conductance (bottom). Bin size for histograms was 0.15 s. E, Cumulative distribution plot of the ISI values generated in
model under control conditions (gray) and with added leak conductance (black). F, Histograms of voltage distributions from
model in the subthreshold and spiking regime under control conditions or with added leak conductance. All distributions could be
fit with a Gaussian function.
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depolarization after the spike than a com-
parable trajectory with added leak conduc-
tance (Fig. 5B). In terms of biophysics, this
can be understood if we consider that a
large ADP is generated by the approximate
balancing of membrane currents, which
leads to a small flow of net current and
hence a slow change in membrane voltage.
Given larger values for leak conductance,
the balance in net current is disrupted and
membrane voltage returns to rest more
quickly, which results in a smaller ADP.

We followed by doing a bifurcation
analysis of the fast subsystem of the model
under control and with added leak con-
ductance using driving current (IE) as the
bifurcation parameter. A bifurcation con-
sists of the creation or elimination of fixed
points and limit cycles, which can often be
associated with important transitions in a
neuron (e.g., transition from rest to fir-
ing). A change in the bifurcation structure
of the model can result in a significant
change in the output characteristics of the
model. Consequently, if adding leak con-
ductance can change the bifurcation of the
model, it can have a major impact on the
output of the model (e.g., spike regular-
ity). The analysis consists of tracking the
fixed points of the model (or limit cycle) as
a function of IE. In both control and with
added leak conductance, the fast sub-
system of the model undergoes a saddle-
node bifurcation of fixed points in the
transition from rest to firing. As IE is in-
creased, the stable node point (thin solid
line corresponding to resting membrane
voltage) and unstable saddle point (thin
dashed line) coalesce, and, as a result, the
new stable solution becomes the limit cy-
cle (spike firing). Under control condi-
tions, however, the fast subsystem has a
small region of bistability (black dashed
lines) in which the limit cycle (thick solid
line, only the lower limit is shown) exists
before the coalescing of the stable and un-
stable fixed points (Fig. 5D). Also impor-
tant is the relative positions of the lower
voltage limit of the spike (thick solid line)
and spike threshold (asterisk). As indi-
cated, the lower limit of the spike trajec-
tory is above spike threshold under control
conditions. Conversely, with added leak,
the bistability is gone and spike threshold
is now above the lower limit of the spike
trajectory (Fig. 5E). The increased leak
conductance alters the relative positions of
spike threshold and the spike AHP mini-
mum. Hence, similar to the phase-plane
analysis of pulse-elicited spiking, the dy-
namics under steady-state firing suggest
an increase in the amount of positive feed-
back after a spike. From a dynamical sys-

Figure 5. Analysis of the fast subsystem of the model can account for decrease in ISI variability and high-frequency spike events
with increased leak conductance. A, Plot of the membrane voltage (top) and adaptation (bottom) variables in the three-equation
model under control conditions. Model was driven with a Gaussian current input (SD of 0.13 �A/cm 2) and a steady-state input
current (IE) of 0.065 �A/cm 2. B, Voltage trace of the fast subsystem of the model under control conditions (blue line) and with
added leak conductance (red line). Model was held at a steady-state voltage of �68 mV using 0.065 �A/cm 2 under control
conditions and 0.1 �A/cm 2 with increased leak conductance. A square pulse of current of 5 �A/cm 2 magnitude and 10 ms
duration was used to elicit a single spike under each condition. C, Phase-plane portraits of the fast subsystem of the model in the
vicinity of the node and saddle point under control conditions (top) and with added leak conductance (bottom). Light blue and
light red lines denote the voltage nullclines, whereas the h nullclines are denoted with dark blue and dark red. Blue circles denote
a stable node point (resting potential), and the black squares denotes the unstable saddle point. D, E, Bifurcation diagrams of the
fast subsystem of the model under control conditions (D) and with added leak conductance (E). Thin solid lines and thin dashed
lines denote the stable node and unstable saddle points, respectively. Thick solid lines denote the lower voltage limit of the limit
cycle (spike). Asterisks denote the onset (spike threshold) of the limit cycle in the transition from rest to firing with increasing IE.
F, G, Plots of the F–I relationship of the fast subsystem of the model under control conditions (F ) and with added leak conductance
(G). The part of the F–I curve shown with a gray line in F denotes the region of bistability, which is associated with a discontinuity
in the F–I plot when the system is taken from rest to firing (black arrows). When the system is taken from firing to rest, however,
the region of the F–I curve denoted by the gray line can be observed (an example of hysteresis). Inset in G shows a comparison of
the F–I plots (blue line corresponds to control). For comparison, the plots were shifted so as to have a common origin.
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tems perspective, the model has undergone a change in how the
limit cycle is terminated in the transition from firing to rest as IE

is decreased (Izhikevich, 2007). Under control, the model under-
goes a saddle homoclinic bifurcation, whereas with added leak
conductance, the transition from firing to rest is mediated
through a saddle-node on invariant circle bifurcation.

Previous work on dynamical systems has shown that the gain
(slope) of the F–I relationship of model neurons decreases as the
limit cycle bifurcation transitions from a saddle homoclinic to a
saddle-node on invariant circle (Izhikevich, 2007). Furthermore,
this transition has been associated with biophysical parameters
that decrease the level of depolarization in the post-spike period
(Fernandez et al., 2007; Izhikevich, 2007). Thus, because the size
of the ADP is reduced significantly with added leak conductance,
there is a corresponding decrease in the gain of the F–I relation-
ship of the fast subsystem of the model (Fig. 5F,G). A high gain
has been shown to result in a more variable spike train in leaky
integrate-and-fire (LIF) models driven with noisy stimuli
(Troyer and Miller, 1997). Therefore, the decrease in the CV of
the model with added leak conductance can be explained as a
consequence of a lower gain in the F–I relationship resulting from
the changes in the ADP and bifurcation in the fast subsystem of
the model.

We also performed a bifurcation analysis of the full three-
equation model. This analysis indicates an absence of bistability
in the model (supplemental Fig. 2, available at www.jneurosci.org
as supplemental material). The dynamics of the fast subsystem
represent a snapshot of the three-equation model that does not
apply once the adaptation variable is fully activated. Nevertheless,
the fast subsystem can be considered relevant in trying to account
for differences in high-frequency spike events in response to
noisy stimulus in which the adaptation variable is expected to
decrease transiently.

In summary, increased leak conductance significantly reduces
the size of the ADP of the fast subsystem of the model. This effect
is associated with a change in the limit cycle bifurcation, which is
also associated with a change in the gain of the F–I relationship. In
particular, the reduction in gain provides a link between in-
creased leak conductance and reduced ISI variability. By reducing
the gain of the F–I relationship of the first ISI, adding leak can
decrease the number of high-frequency spike events in response
to noisy stimuli and decrease the variability of spike output in the
model. In particular, we would expect the gain in response to
high-frequency fluctuations to be dampened by added leak.

Increased leak conductance reduces the ADP and gain in
adapting pyramidal cells
A testable prediction arising from the analysis of the fast sub-
system of the model is that the size of the ADP after a single spike
in adapting pyramidal cells should be greater in control than with
the added leak conductance. Moreover, this process should result
in a substantially larger gain in the F–I relationship in control
compared with the added leak conductance. Specifically, the gain
measured from the first ISI should be substantially reduced. The
change in gain is an important and unique prediction arising
from the analysis of the model because previous theoretical and
experimental work has established that increased leak conduc-
tance at the soma does not normally change the gain of the F–I
relationship (Gabbiani et al., 1994; Holt and Koch, 1997; Doiron
et al., 2001; Mitchell and Silver, 2003; Prescott and De Koninck,
2003; Mehaffey et al., 2005).

We first tested the response of pyramidal cells to pulses driv-
ing individual spikes under control and with added leak conduc-

tance (Fig. 6B). For comparison, we have provided the results for
the model under the same stimulus conditions (Fig. 6A). Pulse
frequency was set to 10 Hz in both cases so that the effect of the
adaptation current on the magnitude of the ADP could be ob-
served. Under these conditions, we measured the magnitude of
the ADP as the minimum voltage after the spike within the 100
ms window afforded by the 10 Hz stimulus.

Under control conditions, both the model and cell produced a
large ADP after the first few ISIs that progressively decreased and
eventually reached a steady-state voltage attributable to the ad-
aptation process (Fig. 6A,B). In the experimental data, the dif-
ference between the depolarization values after the first and last
spike was 4.1 � 0.7 mV in control and 1.5 � 0.2 with added leak
( p � 0.01; n � 6). Similarly, the model produces a difference of 4
and 1.6 mV under control and with added leak conductance,
respectively. We should note that we also measured the ability for
added leak conductance to alter the post-spike period in non-
adapting cells. Unlike the results in adapting cells, adding leak
conductance had a relatively small effect on the size of the AHP in
these cells (supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). Hence, whereas in adapting cells the in-
tegral of the ADP decreased from 0.70 � 0.13 to 0.28 � 0.08
mV � s ( p � 0.01; n � 5) with added leak conductance, the AHP
only changed from �0.1 � 0.14 to 0.01 � 0.07 mV � s ( p � 0.3;
n � 5) in non-adapting cells (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material).

We next measured the F–I relationship and gain in adapting
pyramidal cells. The F–I relationship was measured at the begin-
ning (“initial”) and end of the spike train once spike frequency
reached a steady value (“steady state”). As stated previously, the
prediction from the fast subsystem of the model is that the gain
measured from the initial ISI should be greater in control than
with added leak, whereas the difference in gain at the end of the
spike train should be reduced as a result of the adaptation process.
The F–I relationship was measured using square current pulses of
5 s duration in control or in the presence of 6 nS of added leak
conductance (Erev � �70). Gain was calculated using a linear fit
to the F–I relationship (r 2 
 0.95) (Fig. 6C,D).

In the three-equation model, leak reduces the initial gain from
91 to 48 Hz � cm 2/�A and the steady-state gain from 26 to 17
Hz � cm 2/�A. A measurement of the initial and steady-state gain
in the cell produced similar qualitative changes in gain between
control and with the added leak conductance. The initial gain in
the cell under control conditions was 201 � 22 Hz/nA, whereas
with extra leak, the value decreased to 138 � 14 Hz/nA ( p �
0.003; n � 8) (Fig. 6E). Likewise, the steady-state gain in control
was 87 � 11 Hz/nA, whereas with added leak, gain decreased to
67 � 12 Hz/nA ( p � 0.004; n � 8) (Fig. 6E). The average decrease
in the initial and steady-state gain caused by adding leak was 63 �
14 and 20 � 5 Hz/nA, respectively ( p � 0.03; n � 8) (Fig. 6F).
Although the changes in gain associated with adaptation were
larger than those induced by leak on the initial gain, the initial
change is important because it changed substantially with leak
and is more relevant under noisy stimuli. These data confirmed
the prediction of our model of a lower gain value with added leak
conductance.

Ability of leak to decrease the gain and CV of spike output
depends on ADP dynamics
To help substantiate our understanding of the dynamics of the
cell, we considered experimental manipulations that could elim-
inate the ability for leak to reduce the CV and gain. A prediction
arising from the model is that a decrease in the ADP (or a larger
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AHP under steady-state firing conditions)
will diminish the ability for the added leak
conductance to modulate the gain of the
neuron. Essentially, a smaller ADP should
convert the dynamics of adapting layer III
cells to a more conventional behavior,
whereby adding leak does not reduce the
gain of the F–I relationship nor the CV of
the ISI distribution. In fact, a decrease in
the ADP might also result in a higher CV
with added leak conductance attributable
to the decrease in �m and the correspond-
ing decrease in integration time of the neu-
ron. In the presence of a reduced ADP,
adapting pyramidal cells should behave
more similar to non-adapting cells with
respect to increased leak conductance and
its effect on ISI variability.

As before, an analysis of the fast sub-
system of the model can explain how de-
creasing the ADP can alter the dynamics of
the model such that adding leak fails to
alter the CV and gain once the ADP is ar-
tificially reduced. As shown in Figure 7, an
increase in the current underlying the
AHP in the model (IKF was increased by 50
to 5.48 mS/cm 2) eliminates the ability for
added leak conductance to reduce the CV
(Fig. 7A,B). A comparison of the ADP af-
ter a single spike reveals that, once the ADP
is decreased, the ability for added leak con-
ductance to change the ADP is reduced
(compare Figs. 5B, 7C). Once again, an
analysis of the fast subsystem of the model
during the post-spike period can account
for this observation. An increase in the
current underlying the AHP reduces the
time spent close to the voltage nullcline
and hence the amount of depolarization
after a spike (Fig. 7D). By reducing the
amount of time spent close to the voltage
nullcline, increasing IKF reduces the po-
tential influence that changes in the volt-
age nullcline brought on by increasing leak
conductance can have on the voltage tra-
jectory. A bifurcation analysis of the fast
subsystem of the model indicates that in-
creasing IKF changes the relative positions
of threshold and the lower voltage limit of
the spike such that threshold is slightly
above the lower voltage limit (Fig. 7E) and
similar to the fast subsystem with added
leak conductance (Fig. 5E). Furthermore,
adding leak conductance no longer
changes the relative positions of threshold
and the lower voltage limit of the spike
(Fig. 7F). A measurement of the F–I rela-
tionship of the fast subsystem shows that
decreasing the ADP prevents an increase in
leak conductance from decreasing the gain
(Fig. 7G,H). Therefore, decreasing the
ADP causes the same change in bifurca-
tion that adding leak alone induced before.

Figure 6. Increased leak conductance reduces the gain of the F–I relationship in adapting pyramidal cells. A, B, Response of three-
equation model (A) and pyramidal cell (B) to a 10 Hz stimulus eliciting single spikes. Model and cell were held at approximately�80 mV
before delivery of 10 Hz stimulus (total of 20 pulses). The stimulus pulse (10 ms duration) had a magnitude 6�A/cm 2 in the model and 0.6
nAinthepyramidalcell.ThemagnitudeofADPelicitedinresponsetothestimulus inthemodel(Ai)andcell (B)wasquantifiedandplotted
as the voltage minimum between pulses (Aii, Bii). C, D, Initial and steady-state F–I plots under control conditions (blue line) and with
addedleakconductance(redline)forthethree-equationmodel(C)andpyramidalcell (D).Bothmodelandcellwereheldatapproximately
�80 mV before delivery of square current steps of 5 s duration. Initial spike frequency was measured from the first ISI, whereas steady-
state frequency was taken as the average of the last two ISI once firing frequency reached a steady-state value. In C and D, the insets show
a comparison of the linear fits of the F–I relationships. For comparison, lines were shifted so as to have a common origin. E, Plot of the
average initial and steady-state gain of the F–I relationship of pyramidal cells under control conditions and with added leak conductance.
F, Plot of the average difference in gain between the control condition and with added leak conductance for the initial and steady-state F–I
relationships in pyramidal cells.
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As a result, adding leak conductance after
the ADP has been decreased no longer
causes an additional change in the bifurca-
tion structure and hence does not result in
a decrease in the gain and CV of the ISI
distribution. In biophysical terms, the in-
crease in the hyperpolarizing current un-
derlying the AHP disrupts the balance in
conductances associated with a small net
current flow and a large ADP. Once the
post-spike period is dominated by the hy-
perpolarizing current, increasing leak con-
ductance has a smaller effect on the size of
ADP.

We followed by testing the prediction
resulting from the analysis of the model. In
essence, a reduction of the ADP of the cell
should eliminate the ability for added leak
conductance to decrease ISI variability. To
decrease the ADP and increase the AHP in
adapting pyramidal cells, we introduced a
high-voltage-activated K� current
(IAHP�) using dynamic clamp (see Materi-
als and Methods). In Figure 8, we show the
ADP (Fig. 8A) and average AHP (Fig. 8B)
under control and with added leak con-
ductance in the presence (black line) or
absence (gray line) of the IAHP�. Under
these conditions, the difference in the ini-
tial gain of the F–I relationship between
control and with added leak conductance
was only 14 � 2 Hz/nA (n � 7). As before,
we measured the CV from 200 s sweeps in
cells stimulated with Gaussian noise under
control or with 6 nS of added leak conduc-
tance (firing at �2 Hz). Under control
conditions, without the modified AHP,
the average CV was 0.78 � 0.05, whereas
with added leak, this value decreased to
0.63 � 0.03 ( p � 0.007; n � 6) (Fig. 8C–
E). Under the same stimulus conditions
and set of cells but now with the modified
AHP, the CV under control was 0.52 �
0.03, whereas with added leak, the value
was 0.58 � 0.03 ( p � 0.1; n � 6) (Fig.

Figure 7. Increasing the size of the AHP in the three-equation model eliminates the ability for added leak conductance to
increase spike output regularity. A, Voltage traces of the model driven with a Gaussian current input under control conditions (Ai)
and with added leak conductance (Aii) in the presence of increased repolarizing K � current (IKF; AHP�). Histograms of ISI values
under control conditions (Bi) and with added leak conductance (Bii) in the presence of increased IKF. Bin size was 0.15 s. C, Voltage
trace of the fast subsystem of the model under control conditions (gray line) and with added leak conductance (black line) in the
presence of increased IKF. Model was held at a steady-state voltage of �68 mV using 0.065 �A/cm 2 under control conditions and
0.1 �A/cm 2 with increased leak conductance. A square pulse of current of 5 �A/cm 2 magnitude and 10 ms duration was used to
elicit a single spike under each condition. D, Phase-plane portraits of the fast subsystem of the model in the vicinity of the node and
saddle point under control conditions (top) and with added leak conductance (bottom) in the presence of increased IKF. Light blue

4

and light red lines denote the voltage nullclines, and the h
nullclines are denoted with dark blue and dark red. Blue cir-
cles denote a stable node point (resting potential), and the
black squares denotes the unstable saddle point. E, F, Bifur-
cation diagrams of the fast subsystem of the model under
control conditions (E) and with added leak conductance (F )
in the presence of increased IKF. Thin solid lines and thin
dashed lines denote the stable node and unstable saddle
points, respectively. Thick solid lines denotes the lower volt-
age limit of the limit cycle (spike). Asterisks denote the onset
(spike threshold) of the limit cycle in the transition from rest
to firing with increasing IE. G, H, Plots of the F–I relationship
of the fast subsystem of the model under control conditions
(G) and with added leak conductance (H ) in the presence of
increased IKF. Inset in H shows a comparison of the F–I plots
(blue line corresponds to control). For comparison, the plots
were shifted so as to have a common origin.
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8C–E). Consequently, the average change
in the CV induced by adding leak was
�0.15 � 0.04 without the modified AHP
and 0.06 � 0.04 with the modified AHP
( p � 0.003; n � 6) (Fig. 8F). These data
support the hypothesis that the interaction
between the ADP dynamics and leak con-
ductance are critical in determining ISI
variability.

Discussion
Using dynamic-clamp experiments and
conductance-based modeling, we have
shown that the capacity of increased leak
conductance to alter ISI variability depends
on the neuron type. In the examples pro-
vided in our study, the ability to increase the
variability of the spike train through a high
conductance state hinges on the ADP dy-
namics present in the neuron. As a result, a
synaptic conductance stimulus can decrease
the CV of spike output relative to a compa-
rable synaptic current stimulus.

Previous work in vitro has shown that
Poisson distributed conductance-based syn-
apses can only account for a portion of the
high ISI variability observed in vivo (Harsch
and Robinson, 2000). Additional work has
suggested that accounting for a greater por-
tion of ISI variability observed in vivo re-
quires taking into account more complex
forms of statistics in the synaptic input deliv-
ered to neurons, such as correlations in the
stimulus (Stevens and Zador, 1998; Harsch
and Robinson, 2000; DeWeese and Zador,
2006). Before this study, the ability for a
Poisson-distributed conductance-based in-
put to increase the ISI variability above that
of a comparable current-based input, how-
ever, had not been tested experimentally. As
a result, it was unclear whether the high con-
ductance state by itself contributed to an in-
crease in ISI variability in neurons, as sug-
gested by the theoretical and modeling work
(Stein, 1965; Bernander et al., 1991; Koch,
1999; Moreno-Bote and Parga, 2005). By
systematically comparing ISI variability un-
der comparable current- and conductance-
based stimuli in two different cell types, we
have shown that increased conductance can
contribute to either an increase or decrease
in ISI variability.

Decrease in ISI variability is caused by a
reduction in gain and high-frequency
spike events
The decrease in ISI variability in adapting
pyramidal cells is a direct result of a lower
gain with increased leak conductance. A
previous study of cortical neurons using an LIF model has linked
gain, AHP reset, and ISI variability (Troyer and Miller, 1997). By
providing a more positive reset value for the AHP in the LIF
model, the authors found that ISI variability could be signifi-

cantly increased over previous models, which provided a closer
match to experimental results (Troyer and Miller, 1997). Our
data and model support these conclusions, although the dynam-
ics underlying the AHP can be modified with increased leak con-

Figure 8. Increasing the size of the AHP in adapting layer III pyramidal cells eliminates the ability for added leak conductance
to increase ISI variability. A, Comparison of ADP under control conditions (Ai) and with added leak conductance (Aii) in the
presence (black line) or absence (gray line) of the AHP modifying current. B, Average AHP under control conditions (Bi) and with
added leak conductance (Bii) in the presence (black line) or absence (gray line) of the AHP modifying current. For each cell, the AHP
was taken as the average during the 200 s sweeps used to calculate the CV for a period of 0.25 s after spike threshold. Line widths
denote extent of error bars. C, Examples of voltage traces from a single cell in control (Ci, Ciii) and with added leak conductance
(Cii, Civ) in the presence (Ciii, Civ) or absence (Ci, Cii) of the AHP modifying current. D, Examples of histograms of ISI values from
a single cell under conditions described in C. Bin size for histograms was 0.2 s. E, Plot of average CV under conditions described in
C. F, Plot of average change in CV induced by adding leak conductance in the absence or presence of the increased AHP.
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ductance. Consequently, the initial gain of the model and neu-
ron, before adaptation has reached its maximum magnitude, is
significantly reduced with added leak conductance.

Previous experiments have failed to demonstrate a change in
gain with different levels of steady-state leak conductance intro-
duced via dynamic clamp (Chance et al., 2002; Mitchell and Sil-
ver, 2003; Prescott and De Koninck, 2003). Our model and data
suggest that the ability of leak to alter gain will depend on the
specific dynamics present in the neuron. Accordingly, within the
vicinity of the transition between the two types of limit cycle
bifurcations (homoclinic vs invariant cycle), leak can alter the
gain of the neuron. Once the neuron is far from this transition
point, as happens when the AHP is increased artificially, increas-
ing leak fails to reduce the gain and decrease the CV.

ADP dynamics can be significantly influenced by increased
leak conductance
The analyses of the adapting pyramidal cell model and experimental
data show that increased leak conductance can significantly change
the ADP. Under control levels of leak conductance, the fast sub-
system of the model generates a large ADP, bistability, and is associ-
ated with a high gain in the F–I relationship. The large ADP and
bistability are the result of weak repolarizing dynamics (IKS and INa

inactivation) and a large �m, which permit a significant amount of
depolarization to follow a single spike. In models with true threshold
behavior and incorporating a reset mechanism to simulate the AHP,
bistability can be introduced by setting the reset voltage after a spike
to a value more positive than threshold (Izhikevich, 2003). The gen-
eration of a spike leads to persistent activity. If the spike reset is set
below threshold, however, the bistability is eliminated. By decreasing
the magnitude of the ADP, added leak conductance eliminates bist-
ability in the fast subsystem in a manner analogous to using a more
negative voltage reset.

Modeling work in cerebellar Purkinje cells has shown that
increased leak conductance can eliminate bistability by reducing
the ADP (Fernandez et al., 2007). Similar to the fast timescale of
adapting pyramidal cells, Purkinje cells have been found to have a
large ADP caused, in part, by a large �m (Fernandez et al., 2007).
Furthermore, bistability in Purkinje cells has been shown to be
caused by a saddle homoclinic bifurcation (Fernandez et al.,
2007), similar to the fast subsystem of the adapting pyramidal cell
model under control conditions.

Although our analysis indicates a degree of bistability within
the fast timescale of adapting pyramidal cells, neither the model
nor the cell expressed bimodality in the membrane voltage or ISI
distributions. In the model, the lack of any characteristic signa-
tures of bistability is a result of two factors. First, the bistability in
the fast subsystem of a model occurs over a small region of IE, and
hence is relatively weak. Second, the K� current responsible for
adaptation (IKS) decreases the post-spike depolarization within a
few spikes, eliminating bistability at timescales longer than the
first ISI. Thus, the bistable behavior present in the fast subsystem
is relevant only within brief epochs of activity. This said, the
model and data suggest that a small region of bistability in the fast
subsystem can have a significant impact on the number of high-
frequency spike events and degree of spike output regularity
through the associated consequences on the ADP and gain. A
previous study has shown experimental evidence consistent with
a degree of bistability in layer III pyramidal cells. In a study by
Yoshida and Alonso (2007), in which the ADP was increased
pharmacologically, it was found that a single brief current pulse
could elicit a prolonged depolarization that produced spiking
over several seconds. These results are consistent with the pres-

ence of weak bistable dynamics that can be expressed more ro-
bustly once the ADP is enhanced.

The ADP of non-adapting cells was not significantly changed
by the addition of a steady-state leak conductance (supplemental
Fig. 3, available at www.jneurosci.org as supplemental material).
In non-adapting cells, the post-spike period often consisted of a
brief hyperpolarization, with the average integral of the mem-
brane voltage being negative. This suggests that, in non-adapting
cells, hyperpolarizing currents are more dominant in the post-
spike period than in adapting cells. The ability for added leak to
modify the post-spike voltage depends on the degree to which any
single conductance dominates. Under conditions in which, for
example, a K� conductance is the only major contributor to
membrane conductance, increased leak conductance will have a
small effect. However, under conditions in which membrane
conductances are balanced and net current flow is near zero, such
as during a prominent ADP or plateau potential, adding leak can
have a significant effect on the membrane voltage trajectory by
disrupting the balance in net current. Hence, once the ADP was
artificially decreased with dynamic clamp, adding leak had a mi-
nor effect on the ADP magnitude (Fig. 8A).

Previous work in hippocampal pyramidal cells, as well other
cell types, has shown that the ADP associated with pulse-elicited
spike generation can contribute to burst generation (Thompson
and Smith, 1976; Lemon and Turner, 2000; Metz et al., 2005; Yue
et al., 2005). A decrease in the amplitude of the ADP induced
through pharmacological agents have been associated with sig-
nificant reductions in the bursting behavior of neurons (Metz et
al., 2005; Yue et al., 2005). This line of work has tended to em-
phasize the ability of voltage-gated conductances to sustain the
ADP. In contrast, our work shows that the amount of leak con-
ductance can also play a significant role in the size of the ADP. As
a result, the amount of leak conductance associated with back-
ground synaptic activity may exert an influence on the likelihood
of generating burst events.

Implications for entorhinal cortical activity in vivo
Experimental work has shown that, in the presence of a musca-
rinic receptor agonist, lateral entorhinal cortical (LEC) layer III
pyramidal cells are capable of producing persistent activity in a
form similar to the activity noted previously in cerebellar Pur-
kinje cells (Tahvildari et al., 2007, 2008). A large ADP mediated
by a nonspecific cation current is believed to underlie persistent
activity in LEC pyramidal cells. A more complex form of graded
persistent activity, also evoked with muscarinic receptor activa-
tion and mediated by an ADP, has been reported in layer V MEC
pyramidal cells (Egorov et al., 2002; Fransen et al., 2006). Our
results suggest that these types of dynamics could be susceptible
to changes in membrane conductance provided that a fine bal-
ance in membrane conductances is a contributing factor to the
voltage trajectory of the ADP. However, if any single conductance
dominates the generation of the ADP, the effects of leak will be
less. Consequently, it is possible that certain types of bistability
and graded persistent activity are abolished under more realistic
in vivo levels of activity.
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