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Summary
Epidemiological investigations of health effects related to chronic low-level exposures or other
circumstances often face the difficult task of dealing with levels of biomarkers that are hard to detect
and/or quantify. In these cases instrumentation may not adequately measure biomarker levels.
Reasons include a failure of instruments to detect levels below a certain value or, alternatively,
interference by error or ‘noise’. Current laboratory practice determines a ‘limit of detection (LOD)’,
or some other detection threshold, as a function of the distribution of instrument ‘noise’. Although
measurements are produced above and below this threshold in many circumstances, rather than
numerical data, all points observed below this threshold may be reported as ‘not detected’. The focus
of this process of determination of the LOD is instrument noise and avoiding false positives.
Moreover, uncertainty is assumed to apply only to the lowest values, which are treated differently
from above-threshold values, thereby potentially creating a false dichotomy.

In this paper we discuss the application of thresholds to measurement of biomarkers and illustrate
how conventional approaches, though appropriate for certain settings, may fail epidemiological
investigations. Rather than automated procedures that subject observed data to a standard threshold,
the authors advocate investigators to seek information on the measurement process and request all
observed data from laboratories (including the data below the threshold) to determine appropriate
treatment of those data.
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Introduction
Biomarkers are commonly used for biological assessments in a variety of settings. Clinically,
medical tests use biomarkers for diagnosis (e.g. blood glucose for gestational diabetes), and
for risk stratification (e.g. age and chorionic villi sampling for genetic disorders) at the subject
level. Biomarkers are also commonly utilised in population studies for surveillance.
Epidemiological investigations increasingly rely on laboratory tests for assessment of
biomarkers of exposure and/or outcome. Population studies often aggregate individual levels
to estimate summary statistics of interest, such as mean and variance or median and range, or
regression parameters (e.g. estimated odds or hazard ratios).
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When a biomarker is subject to a detection limit that affects measurement, decisions are
required concerning how to handle values at or below the threshold in order to avoid biasing
parameter estimates. Such low biomarker levels are likely to be encountered in various settings
including investigations of health effects from chronic low-level exposures, or when study
subjects are infants or children, whose levels of some biomarkers are inherently low.
Alternatively, this difficulty can occur as a result of the biological specimen type used for
testing. For example, serum levels of lipophilic xenobiotics have been observed at substantially
lower levels than are found in adipose tissue samples from the same individuals.1

Possible reasons for failures of instrumentation to adequately measure low biomarker levels
include an inability to detect levels below a certain value – false negatives. Alternatively, when
instrumentation fails to differentiate the biomarker of interest from ‘noise’, a false positive
signal may obscure measurement. Current laboratory practice experimentally determines a
lower ‘limit of detection (LOD)’ and rather than numerical data, results observed below that
value may be reported as ‘not detected’.

Thresholds such as the LOD or limit of quantification (LOQ) are determined as a function of
the error or ‘noise’ involved in the measurement process. Generally, samples with known
biomarker levels (usually 0, or ‘blanks’) are measured in series. From these measurements the
standard deviation of the instrument noise (σε) is estimated. Importantly, variation does not
only occur when a true signal is absent, as in a zero blank. In some cases estimation of σε
utilises samples spiked with a known biomarker level in the expected range for study samples,
suggesting that error is not constrained to only the lowest values of the biomarker. 2 The
International Union of Pure and Applied Chemistry (IUPAC) definition for the LOD is the
concentration or quantity ‘… derived from the smallest measure, XL, that can be detected with
reasonable certainty for a given analytical procedure’, where XL equals the mean of the blanks
plus k times the standard deviation of the blanks; for the LOD, IUPAC suggests k equal to 3,
and generally the LOQ is set with k equal to 10.3,4

The LOD can be seen as a random variable itself, and may be calculated for each use of an
assay, although information supplied by the manufacturer is sometimes used as a fixed
threshold. Although the LOD is used for decision making regarding biomarker measurements,
determination of the LOD is performed explicitly without any biomarker present in samples.
This approach narrowly focuses on not assigning a biomarker value where there is only noise,
and may fail the purposes of epidemiological investigations. Biomarker assessment in
epidemiological studies entails a more complete treatment of error that includes consideration
of false positives as well as false negatives.

Sources of error in lab tests
For many laboratory assays, the LOD is determined as previously described, using serial blank
measures to describe measurement error.2 All assays include a number of possible sources of
reproducibility and/or measurement error. With antibody-based assays, pipetting errors,
incomplete mixing of samples and/or reagents, contamination, non-specific binding, and
random instrument processes may contribute to both inconsistency and inaccuracy. The
possible sources of test–retest variability and/or measurement error in chromatography/
spectrometry primarily include sample preparation, contamination and random instrument
processes.

These sources of error may be broadly placed into two bins. First consider all observations,
Zi, represented as
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where Xi are the true biomarker values, and the εi are sums of all sources of error influencing
the measurement of the biomarker. Traditional measurement error models consider a mean-
zero distribution for εi and rather focus on its variance, whereas bias in measurement will cause
a shift in εi from the origin. The error may be either a function of the biomarker value whereby
error exists only when Xi is less than some value (e.g. the LOD), or it may apply across
biomarker levels. The amount of error may be related to the biomarker level or it may occur
regardless of biomarker level. For many of the previously described sources of error, the latter
is likely to be the case and error will apply across biomarker levels. For example, it is not
reasonable to believe that contamination only exists when the biomarker is scarce. Use of
spiked blanks to set the LOD indicates an implicit acknowledgement that test–retest variability
exists even at elevated biomarker levels.

Traditionally, discussions of detection limits in analytical chemistry have focused on the
decreasing precision of measurements as the true signal decreases, as reflected by the relative
standard deviation. However, this does not imply error constrained to low biomarker levels,
but rather that error will be higher relative to signal towards the left tail of the distribution.
Conventional application of the LOD suggests a belief that the separation between signal and
noise is important only for low biomarker levels. Diagnosis based on an individual’s biomarker
level when the signal to noise ratio is very low is ill-advised, but these data points may be
important for epidemiological investigations of population parameters.

Impact of traditional detection limit methods on estimation
When laboratory data are presented to investigators as a combination of ‘nondetects’ and
numerical data for observations below and above the threshold, respectively, a false dichotomy
may be created. If an error that occurs in the measurement process is independent of the true
biomarker level, then all observations should be similarly considered. The substantial body of
work regarding left-truncated data has largely considered a differential error that exists only
below some threshold. As a result, data with a detection threshold are cast as a missing data
issue, and solutions are aimed at whether and how to replace these missing data. Suggested
methodologies include truncation of the data at the threshold or imputation of a constant – zero
or a function of the LOD is commonly employed – for below-threshold observations, which
are attractive in their simplicity. More complex approaches model the missing data, generally
under some distributional assumptions, and include maximum likelihood estimations of below-
threshold observations or Tobit regression.2,5–9 These methods are appropriately employed
when the error is a function of the biomarker level and is indeed applicable to data only below
the threshold. However, blanket use of any of these approaches may be an oversimplification
of the situation and may lead to biased estimates when used for epidemiological studies.

Addressing the problem
In the situations we have discussed, numerical data can be observed below the established
detection threshold. Conventional approaches for determining the threshold treat observations
below this threshold as unreliable. As a result, these data may not reach the data analyst of the
epidemiological study. In turn, the data analysts may believe that the LOD is related to
sensitivity and that no data can be observed below that threshold. In truth, observations at all
biomarker levels are subject to measurement error or background noise.

Appropriate treatment of biomarker data depends upon the nature of the background noise. It
should be established whether the same amount of error exists across the whole distribution of
the biomarker of interest. This is not unlike a test for heteroscedasticity in linear regression. If
error is subject to a threshold such that
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then it is appropriate to treat below-threshold data one way and those above the threshold
another. Conversely, if the error is equally distributed, then all the data may be treated similarly
with regard to error. For conventional determination of the LOD, use of true blanks in
combination with blanks of mid- and high-range known values may serve as a ‘validation set’,
and provide information regarding the error distribution. In order to make this determination,
one should compare measures of error variance (standard deviation, relative standard deviation,
coefficient of variation) across the range of standards. Generally, information regarding the
measurement of standards is not provided by laboratories – a request would need to be made
in order to have access to this information.

However, a simpler approach is available without deviating from current laboratory practice;
replicates are frequently utilised and can be included in datasets to provide the same information
at all relevant biomarker levels. If the error (the variance of replicates) is primarily constrained
to low biomarker levels, then traditional LOD methods should be used; if it is the same across
levels, then techniques for addressing measurement error are more appropriately employed.
Many such methods are available and have been extensively described in the literature.5,6,8,9
In the case that measurement error (i.e. variance of replicates) is unconstrained but varies with
biomarker levels, nonlinear calibration function models can be used to address bias.10 Common
imputations applied to data below the threshold result in minimally biased estimates when the
distribution of data can be accurately described. Caution should be taken, as available data
must be sufficient to allow for correct distributional specification; discrepancies between the
assumed and actual distributions may give rise to bias dependent upon the accuracy of the
assumed distribution.2,5–7,9

By the same token, biomarkers measured with an upper measurement threshold may be
considered. In such situations, there is less uncertainty regarding the presence of biomarker
information, but the exact value is not established owing to issues with quantification. Although
not explicitly discussed herein, the approaches for dealing with left-censored biomarker data
can be used for biomarker data that are right censored.

Examples
Table 1 and Fig. 1 illustrate two circumstances of data subject to a lower measurement
threshold. Example 1 illustrates the use of a calibration series to assess the distribution of error,
and uses data from a study evaluating the risk of pregnancy outcomes associated with certain
immunological biomarkers.11,12 Serum samples from the Collaborative Perinatal Project13

were selected and multiplex ELISA assays used for measurement. Table 1 displays assay results
for the standards used to generate the calibration curve for the protein, granulocyte colony
stimulating factor. As per protocol, from a standard of known high concentration, threefold
serial dilutions were added in replicates to the first 14 wells of a 96-well plate; a diluent-only
blank was also measured in replicate. The manufacturer-determined lower threshold for this
assay is 0.57 pg/mL, which was determined as the mean plus 2 standard deviations from
measurements of analyte levels in 20 blank samples. The data shown in Table 1 display a source
of error that applies across all levels of the protein, suggesting that non-constrained error
techniques, such as regression calibration, be employed rather than censoring and imputation.

The data for Example 2 are from a study of the effect of exposure to polychlorinated biphenyls
(PCBs) on the risk of endometriosis as determined by laparoscopy.14 In a subset of study
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participants, serum samples and adipose tissue samples were taken, and PCB levels measured
by gas chromatography-mass spectrometry (GC-MS). Owing to their lipophilic nature, PCBs
are concentrated in fat; however, they are often measured in more easily attainable biological
matrices such as blood. A correlation between values obtained in different specimens is
required for these matrices to be used interchangeably, and was the subject of a small
methodological sub-study.1 Figure 1 shows data produced by GC-MS. When all observations
are unaltered, shown in panel A, there is a clear relationship between serum and adipose tissue
values, with a correlation coefficient equal to 0.65, and a 95% confidence interval [CI] of [0.21,
0.87]. Panel B illustrates the result of following a common practice for treatment of data below
the detection threshold – imputing half the LOD for all such data – and the correlation
coefficient drops to 0.54 [95% CI 0.03, 0.82]. In this case, the linear relationship differs only
somewhat and 95% CIs overlap between the two approaches, and the same conclusions would
be reached. This is not the case had investigators used (99% CIs [0.03, 0.91] in panel A; [−0.14,
0.87] in panel B); use of all observations results in a statistically significant correlation, whereas
substitution does not. Moreover, there has been reluctance to evaluate congeners measured
below the LOD in a large proportion of samples.15,16 In this case 75% of serum values were
less than the LOD and were those observations to be considered as missing; PCB 105 might
not be considered for investigation.

Conclusions
Many measurement protocols entail experimental determination of an LOD and will yield
numerical observations above and below the LOD. Elimination of data points below a LOD
may be appropriate in some settings, such as clinically when providing diagnoses to patients,
or in surveillance studies focused on establishing the presence or absence of a biomarker.
However, in epidemiological studies a more nuanced approach to measurement error should
be utilised to avoid biasing estimates. Rather than automated procedures that subject observed
data to a standard threshold, investigators are encouraged to seek information on the
measurement process and request all observed data from laboratories (including generation of
the standard curve and the data below the threshold). Laboratory personnel should provide
these data in order to determine appropriate treatment of these data cooperatively. Given this
information, it is elementary to determine if error exists only below a threshold, above and
below the threshold as a function of the true biomarker value, or completely independently of
the biomarker values. When error is constrained to apply only to a certain range of biomarker
levels (i.e. below the LOD), then conventional methods that differentiate between data above
and below a threshold as previously described for handling left-censored data are appropriate.
However, an error that exists across all biomarker levels suggests use of other measurement
error approaches, familiar to epidemiologists.10,17–20
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Figure 1.
The data as observed and after imputation for below-threshold values – polychlorinated
biphenyl congener number 105 in paired serum and adipose tissue samples as measured by gas
chromatography-mass spectrometry, and after blank subtraction and recovery adjustment. ■,
observations; ——, estimated regression line; •, observations after imputation; - -·- -, estimated
regression line after imputation; ┋, limit of detection (LOD). Most data points are below the
LOD at 0.02159 pg/mL serum. Utilising all observed data points regardless of the LOD results
in an estimated regression line with intercept equal to 3.3 and slope equal to 139.3. The
estimated regression line after imputation of 0.01080 (LOD/2) for below-threshold points has
intercept equal to 2.6 and slope equal to 161.0.
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