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We report the first thermodynamic analysis of parallel B-sheet formation in a model system that folds
in aqueous solution. NMR chemical shifts were used to determine B-sheet population, and van’t Hoff
analysis provided thermodynamic parameters. Our approach relies upon the D-prolyl-1,1-
dimethyl-1,2-diaminoethane unit to promote parallel p-sheet formation between attached peptide
strands. The development of a macrocyclic reference molecule to provide chemical shift data for the
fully folded state was crucial to the quantitative analysis.

Protein folding patterns are dominated by two regular substructures, a-helix and B-sheet. The
origins of conformational stability for these secondary structures, a subject of intense interest,
can be explored with peptides that form a helix or sheet in the absense of a tertiary context.
Design rules for medium-length peptides that form autonomous a-helices in aqueous solution
were delineated in the 1980s,! and comparable achievements for autonomous antiparallel p-
sheets were reported in the 1990s.2 In both cases, the development of strategies for determining
folded populations has allowed thermodynamic analysis of secondary structure formation.3

An autonomously folding parallel B-sheet (in contrast to an autonomous antiparallel -sheet
or a-helix) cannot be created exclusively from a-amino acid residues because the N-terminus
of one strand in a parallel B-sheet does not lie near the C-terminus of a neighboring strand.
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Many groups have explored non-peptide units that promote parallel sheet interactions, most
commonly by linking C-termini with a short turn-forming diamine.* We have previously
reported that the D-prolyl-1,1-dimethyl-1,2-diaminoethane (D-Pro-DADME) supports
formation of a two-stranded parallel B-sheet in water, as indicated by 2D NMR data.> Here we
show that the thermodynamics of parallel B-sheet formation can be evaluated in such a model
system. This accomplishment provides a foundation for exploring sequence-stability
relationships in the parallel B-sheet structural manifold, which would fill a significant gap in
our understanding of proteins and protein aggregates.

NMR chemical shifts provide the most reliable insight on folded populations among
antiparallel B-sheet model systems,3:6 and we therefore aimed for a chemical shift-based
analysis of parallel B-sheet folding. Most autonomous helix or sheet systems are not fully folded
under accessible conditions; therefore, chemical shifts for such systems are population-
weighted averages of the contributions from the limiting folded and unfolded states. To analyze
1 we have built upon the strategy previously developed for antiparallel B-sheets by constructing
model compounds intended to provide empirical estimates of chemical shifts in the fully folded
and fully unfolded states.3® The unfolded state is represented by diastereomer 2; changing
proline configuration from D to L completely disrupts parallel B-sheet formation.>:” The folded
state is represented by cyclic molecule 3, an analogue of 2 in which the N-termini of the strand
segments have been linked via a succinyl-glycine unit. Cyclization is intended to enhance the
propensity for parallel B-sheet formation in 3 relative to linear molecule 2. Among antiparallel
model systems, two-stranded B-sheet conformations have been stabilized by cyclization
strategies involving either the backbone (capping a p-hairpin with a p-turn) or side chains
(disulfide formation between terminal Cys residues).322:8 We focused on backbone cyclization
because Cys disulfide crosslinks are not compatible with parallel B-sheet secondary structure.
9 The succinyl-glycine linker in 3 allows formation of a 10-membered ring H-bond [C=0O
(Succ-18) to H-N (Ser-2)], which is analogous to the H-bond common among B-turns.

NMR analysis indicated that 3 adopts the intended parallel B-sheet conformation in aqueous
solution, and the data suggest that the extent of folding is greater for cyclic 3 than for linear
analogue 1. Four unambiguous interstrand NH--C,H NOEs were observed in the center of the
intended B-sheet region of 3 (Figure 1); the Val-8/Arg-11 NOE, if present, would have been
obscured by the residual solvent resonance. These NOEs are consistent with the expected
parallel p-sheet hydrogen bonding registry.19 The lack of interstrand NH--C,H NOEs near the
succinyl-glycine linker, however, suggests that this region is not as well folded as the rest of
molecule. A large set of side chain-side chain NOEs was observed for 3, all consistent with
the intended parallel B-sheet conformation. For linear molecule 1, a comparable set of cross-
strand NOEs was seen for only the eight strand residues nearest to the D-Pro-DADME unit
(Phe-5to Val-8 and Arg-11 to Leu-14), but not for the three residues at each strand terminus.
" The difference in interstrand NOE patterns observed for 1 vs. 3 suggests that the parallel p-
sheet secondary structure encompasses nearly the entire strand length for 3, but only the strand
residues closer to the turn segment in 1. The behavior of 1 is consistent with evidence that the
termini of antiparallel B-sheet model systems tend to be unfolded (“frayed™) in aqueous
solution.2 As intended, macrocyclization, in 3, strongly discourages terminal fraying.

Downfield shifts in a-proton chemical shifts (§C,H), relative to a random coil reference value,
indicate participation in B-sheet secondary structure.5 We use 2 to provide the “random coil”
dC,H values for assessment of folding in the strand regions of 1 and 3 because 2 shows no
sign of folding (no NOEs between sequentially non-adjacent residues),” and the 3C,H values
measured for 2 account for the effects of sequence context. Nearly all strand residues in 3 show
ASC,H [= 8C,H(3) - 3C,H(2)] > +0.1 ppm in aqueous solution at 287 K, which suggests
extensive B-sheet formation along the entire length of each strand segment. This conclusion
matches that reached from the interstrand NOEs observed for 3. In contrast, the outermost
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residues of linear molecule 1, Ser-2 to Thr-4 and Val-15 to Lys-17, display random coil-like
ASC,H values. The strand segments nearer the linker in 1, Phe-5to Val-8 and Arg-11to Leu-14,
display A6C,H values consistent with B-sheet formation, although each A3CH value is smaller
than the corresponding value for 3. Thus, parallel B-sheet structure is well-developed only for
the segments of 1 near the linker, and this region is only partially folded. Based on these
observations, we regard strand segments Phe-5 to VVal-8 and Arg-11 to Leu-14 as the folded
core of 1, and we focus on this core in the analysis below.

We examined the effect of 2,2,2-trifluoroethanol (TFE) on ASCH for 3 in an effort to
determine whether 3 is fully folded in aqueous buffer. Addition of increasing proportions of
TFE to aqueous solutions has been shown to induce progressively larger extents of antiparallel
B-sheet folding in several designed peptides.1 The ASC,H value for each strand residue of 3
became larger as the TFE content was raised from 0% to 30%,’ suggesting that the parallel p-
sheet conformation is not fully populated in purely aqueous solution. Further increases in TFE
proportion to 40% or 50% had relatively little effect,” suggesting that B-sheet population is
maximal at 30% TFE. We used 5C,H values obtained with 3 in 50% TFE to represent the fully
folded state in our population analysis of 1. Parallel B-sheet population at a particular residue
of 1 in aqueous solution at a given temperature was estimated by interpolating the observed
8C,H value between the 6C,H value for the corresponding residue in unfolded reference
compound 2 under the same conditions and the §C,H for folded reference compound 3 at 287
K in 50% TFE. For each of the eight residues in the parallel B-sheet core of 1 we compared
folded populations determined at 287 K and 354 K in aqueous buffer.” The apparent population
change is reasonably consistent across this set of residues, which suggests that the eight-residue
core can be analyzed in terms of a two-state model, unfolded vs. parallel B-sheet. We used the
nonlinear fitting method developed by Searle et al.3a for van't Hoff analysis of two-state folding
(Figure 3), which provided the following thermodynamic parameters for parallel -sheet
formation at 298 K: AH°® = - 1.1+0.1 kcal/mol, AS°® = -2.5+0.2 cal/mol K, AC,° = -73+2 cal/
mol K.12 The thermodynamic signature for parallel B-sheet folding in 1 is qualitatively similar
to that observed for a number of antiparallel B-hairpins in that B-sheet formation is enthalpically
favorable and entropically unfavorable near room temperature.3:13 This signature differs from
that of a classical hydrophobic effect, but the observation of a significant and negative heat
capacity change upon folding suggests that there is a hydrophobic contribution to the drive for
folding, presumably from interstrand side chain-side chain interactions.

The results reported here lay the groundwork for thermodynamic analysis of the factors that
control parallel B-sheet folding preferences. Such studies should provide fundamental insight
on a structural motif that is very common in proteins and in protein aggregates associated with
human diseases.14
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Figure 1.
Chemical structures of linear compounds 1 and 2. The numbering scheme was chosen to allow

easy comparison between the linear and cyclic molecules.
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Figure 2.

NOEs observed in 3 between residues non-adjacent in sequence. Light arrows (red) indicate
backbone-backbone NOEs. Heavy arrows indicate multiple NOEs between side chain pairs (at
least 3 NOEs for each pair).
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Figure 3.

Change in folded population of 1 as a function of temperature, calculated from 6CaH data by
the method of ref. 33, See Supporting Information for details. *: Data for 3 at 287 K and 50%
TFE.
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