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ABSTRACT

Retroviral insertional mutagenesis has been instru-
mental for the identification of genes important in
cancer development. The molecular mechanisms
involved in retroviral-mediated activation of proto-
oncogenes influence the distribution of insertions
within specific regions during tumorigenesis and
hence may point to novel gene structures. From a
retroviral tagging screen on tumors of 1767 SL3-3
MLV-infected BALB/c mice, intron 2 of the AP-1
repressor Jdp2 locus was found frequently targeted
by proviruses resulting in upregulation of non-
canonical RNA subspecies. We identified several
promoter regions within 1000 bp upstream of exon
3 that allowed for the production of Jdp2 protein
isoforms lacking the histone acetylase inhibitory
domain INHAT present in canonical Jdp2. The
novel Jdp2 isoforms localized to the nucleus and
over-expression in murine fibroblast cells induced
cell death similar to canonic Jdp2. When expressed
in the context of oncogenic NRAS both full length
Jdp2 and the shorter isoforms increased ancho-
rage-independent growth. Our results demonstrate
a biological function of Jdp2 lacking the INHAT
domain and suggest a post-genomic application
for the use of retroviral tagging data in identifying
new gene products with a potential role in
tumorigenesis.

INTRODUCTION

The cJun dimerization protein 2 (Jdp2) gene encodes a
163-amino-acid protein, Jdp2, initially discovered as an
inhibitor of AP-1/TRE (TPA response element)- and
AP-1/CRE (cyclic AMP response element)-mediated

transcription through heterodimerization with Jun and
ATF2, respectively (1,2). Additionally, Jdp2 may form
homodimers and heterodimerize with JunD, JunB, the
CCAAT /enhancer-binding protein C/EBPy and C/EBP
homologous protein (CHOP) (1,3-5). Jdp2 has been
shown to inhibit p300/ATF2-mediated transactivation of
c¢Jun upon retinoic-acid-induced commitment of murine F9
cells by recruiting histone deacetylase 3 (HDAC3) to the
promoter of c¢Jun (6), and to inhibit the histone acetyltrans-
ferase activity (7). This inhibition of histone acetyltransfer-
ase (INHAT) activity is associated with the N-terminal
domain encoded by exon 2. In addition to acting as
a transcriptional repressor, Jdp2 also directly associates
with the progesterone receptor (PR) and potentiates
ligand-dependent PR-mediated transactivation (8).
Furthermore, Jdp2 in a complex with CHOPI0 was
recently shown to strongly enhance TRE but not CRE-
dependent transcription (5).

Jdp2 is involved in diverse processes. Over-expression
in vitro leads to differentiation of osteoclast (9) and myo-
blast (10) cell lines, and recent information from knock-
out mice has shown that Jdp2 works as a repressor of
adipocyte differentiation (11). The underlying mechanism
was shown to involve the inhibition of histone H3 acetyla-
tion of the promoter of the adipogenesis-related gene
C/EBPS (11). In other settings, Jdp2 appears to be
involved in the inhibition of apoptosis (12,13), as well as
in pl6™“-mediated induction of replicative senescence
(14). Finally, general inhibition of the AP-1 complex by
expression of Jdp2 specifically in the heart correlates with
the induction of atrial dilatation (15).

Depending on the context, Jdp2 displays both onco-
genic (16-20) and tumor-suppressive (10,21) properties.
The regulation of Jdp2 is poorly understood. At the
RNA Ievel, a ubiquitous expression pattern involving sev-
eral mRNA species is observed (2,18). Furthermore, upon
exogenic insults the C-terminus of the Jdp2 protein is
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specifically phosphorylated by the c-Jun N-terminal
kinase (JNK) (22,23).

The murine leukemia virus (MLV) is a non-oncogene
bearing retrovirus, which induces lymphomas in suscepti-
ble mice by insertional mutagenesis of host genes.
Assuming random integration, superimposing retroviral
insertion sites from a cohort of infected mice reveals
common integration sites (CIS), loci defined as having
significantly more insertions than would be expected by
chance (24). CISs point to potential cancer-associated
genes that have been deregulated by the integrated retro-
virus. Various modes of activation have been proposed
according to the position and transcriptional orientation
of the virus relative to the activated gene. Two commonly
observed activation mechanisms are enhancer and pro-
moter activation (25). In the latter case, transcription initi-
ates from the provirus promoter resulting in a virus-host
fusion mRNA. Enhancer activation refers to positive
influence from cis-elements in the proviral enhancer on
the promoter of the host gene. Enhancer activation may
occur over large distances, and for unknown reasons there
appears to be a selection for the opposite (integration
upstream of the host gene) or the same (integration
downstream of host gene) transcriptional orientation of
provirus as compared to host gene.

We here describe the usage of integration distribution
patterns in Jdp2 to identify novel transcriptional struc-
tures in the second intron of the Jdp2 gene resulting
in the activation of Jdp2 protein isoforms. Using assays
for cell survival and colony formation, we demonstrate
a functional activity of these novel isoforms that lack
the N-terminal INHAT domain. Our results suggest a gen-
eral approach of using retroviral tagging data to identify
transcriptional structures and possible protein isoforms
of genes involved in cancer development.

MATERIALS AND METHODS
Identification of integration sites

Newborn BALB/c mice were infected with SL3-3 MLV
and treated as described previously (26). On sickness or
observation of tumors, mice were sacrificed, and splenic
and thymic tumors removed and stored at —80°C.
Genomic DNA from tumors was isolated using DNeasy
Tissue Kit (Qiagen) and provirus integration sites were
identified using the Splinkerette-based PCR method as
described (26).

PCR screening of the 3" end of Jdp2 intron 2 for inte-
grations was done on 0.05-0.5 pg genomic tumor DNA
using recombinant Taqg DNA polymerase (Invitrogen) fol-
lowing the manufacturer’s recommendations, and using
virus LTR-specific primers (either LTR-2620, 5'-gaattcga
tatcgatccecggtcatetggg-3’ or LTR-440, 5'-ttcataaggettagee
agctaactgcagt-3’) together with a reverse exon 3-specific
primer Exon3-52, 5'-ttcttcttgttccggeatet-3'.

RT-PCR and quantitative real-time PCR

Total RNA was extracted from tumor samples using
TRIZOL (Invitrogen) and stored immediately at —80°C
until use. The integrity of the isolated RNA was assessed

by visual inspection of the intensity of the 28S and 18S
ribosomal bands on a non-denaturating ethidium-
bromide-stained agarose gel. RNA quantity was deter-
mined spectrophotometrically. Two pg total RNA was
reverse transcribed using the First Strand cDNA
Synthesis Kit (Fermentas) following the manufacturer’s
recommendation with the provided poly(dT) oligo. To
look for alternative splicing between published exons la
through 1d, PCR reactions were done with forward pri-
mers Exonla-154 (5'-tgggcaccgcgectgeageag-3'), Exonlb-
148 (5'-ggaggagcgcgagceat-3'), Exonlc-70 (5'-gctctggetgggt
taggagggaac-3') or Exonld-150 (5-cagctgcectctetecatett-37)
and reverse primer Intron2-87 (5'-tccttcgetettettectegtetag
ctt-3") using 1/500 of the cDNA (corresponding to 4ng
of total RNA) per PCR reaction (Taq polymerase,
Invitrogen). Each PCR reaction consisted of an initial
melting step at 95°C for Smin followed by 35 cycles of
amplification, each consisting of a 30s melting step at
95°C, annealing at 55-60°C for 30s and elongation at
72°C for 45s. A final elongation step at 72°C was done
for 10 min. Quantitative real-time PCR (QRT-PCR) was
done using Platinum SYBR Green QRT-PCR SuperMix
UDG (Invitrogen) following the manufacturer’s recom-
mendations. Reactions in Figures 5 and 6 were run in
triplicates at least two times on a Mx3005 apparatus
(Stratagene) with cDNA corresponding to 10ng of total
RNA, whereas the initial screen in Figure 2 was done
two times in duplicate. Relative quantification was done
with the Window-of-Linearity-based method applying
LinReqPCR software (version 11) using an averaged
amplification efficiency per amplicon per run (27). We
estimated an approximate copy number (absolute quanti-
fication) by relating threshold cycles of unknown samples
to a standard curve made from amplicon-containing plas-
mid dilutions. The signal was normalized to the expression
level of the TATA box binding protein (7hp) or the
geometric mean of Thp and Actb (B-Actin) (28). Primers
in Jdp2 were: Exon2-51, 5-gaggtgaaactgggcaagag-3';
Exon3-52, 5-ttcttcttgttecggeatet-3'; Intron2-55, 5'-tttgetg
agatgtgggtgag-3’; Exond-57, 5'-gcggttgagcatcaggataa-3/;
Ele-161, 5'-ggtgtctaatcggtggetet-3'; E1f-164, 5'-tgtgttgaaa
ggatctgtcaaget-3' (underscored base pairs are specific
to the first bases in exon 3 to guarantee specificity to
exon 1f-exon3 mRNA; this was ensured by the inability
of amplification of plasmid-containing exon le under the
applied PCR conditions (data not shown)). Primers in Thp
and Acth were Tbp-60, 5-agagagccacggacaactg-3'; Tbp-
61, S-actctagcatattttettgetget-3'; Actin-165, 5'-acacagtget
gtetggtget-3';  Actin-166,  5'-ctggaaggtggacagtgagg-3'.
PCR conditions consisted of an initial melting step of
95°C for 10min, and then amplification was conducted
through 40 repetitions of a 95°C step for 15s and a com-
bined annealing and extension step at 60°C for 30s. In
case of amplicon E1f-E4, the annealing/extension step
was at 62°C. Lack of unspecific amplification was ensured
with a final melting curve analysis from 55°C to 95°C.

5" RACE

5" Rapid amplification of cDNA ends (5 RACE) was done
utilizing the SMART™ RACE kit (Clontech) following



the manufacturer’s recommendations. One pg total RNA
from tumor 1161, uninfected BALB/c bone marrow and
brain were reverse transcribed with PowerScript™
Reverse Transcriptase using an oligo(dT) primer during
each SMART RACE reaction. 5 RACE PCR was subse-
quently done on 1/120 of the cDNA (corresponding to
8ng total RNA) with the PCR conditions: Smin initial
melting step at 95°C, then 6 cycles of annealing step-
touch-down from 74 to 68°C followed by 30 cycles of
amplification with annealing temperature at 67°C and a
final 10 min elongation step. Each amplification cycle con-
sisted of a 30s melting step, 30s annealing step and 30s
elongation at 72°C. Primers were a mixture of linker-
specific (UPM) forward primers (comes with the Kkit)
and either of the gene-specific reverse primers Exon3-96
(5'-gcatctggetgeagegactttgt-3'), Exon3-46 (5'-gcagaaactctg
tgcgttecttette-3') or intron2-86 (5'-cgattagacaccatgggtggaa
ctgage-3’). The transcription start site (TSS) distribu-
tion in tumor tissue was similar when using either exon
3-specific reverse primer, and hence the TSS data were
pooled. A control reaction was carried out with a reverse
primer in Actb (Actin-104, 5'-ctggaaggtggacagtgagg-3').
With regard to bone marrow and brain, a nested
PCR was done subsequently with forward and reverse
primers NUP (comes with the kit) and Exon3-97 (5'-gctg
cagcgactttgttcett-3'), respectively. Of each 50 ul S RACE
PCR, 2ul was cloned into pCR4 using the TOPO TA
cloning kit (Invitrogen) and transformed into One
Shot TOP10 competent cells (Invitrogen). Bacteria were
selected on ampicillin and screened for insert using
TEMPase Hot Start DNA Polymerase (Ampliqon) with
vector primers MI13-110 5'-gtaaaacgacggccag-3’ and
M13-111 5-caggaaacagctatgac-3’. The same primers
were used for sequencing PCR products from positive
colonies on an ABI3130 capillary sequencing set-up
(Applied Biosystems) wusing BigDye 3.1 chemistry
(Applied Biosystems).

Northern blotting

Ten pg total RNA from tumor samples were separated on
a formaldehyde denaturating agarose gel in a morpho-
lino—propane sulphonate (MOPS) buffer and capillary
transferred onto a ZetaProbe membrane (Bio-Rad) in
10x SSC for ~12h. An exon 3—exon 4 Jdp2 probe gener-
ated by PCR using primers Exon3-47 (5'-ctagacgaggaag
aagagcgaag-3’) and Exon4-50 (5'-tactacctggtttggcacctct
ctg-3') was randomly labeled with [¢->*P]JdATP and used
for hybridization at 65°C in a 0.25M sodium phosphate
buffer/7% SDS, and washed in 0.1x SSC/0.1% SDS.
Membranes were finally developed after being exposed
to Konica X-Ray AX medical films (Santax Medico) for
an appropriate time.

Protein extraction and western blotting

Total protein was extracted on ice from ~20 mg tissue in a
radioimmunoprecipitation assay buffer (50 mM Tris—HCI
pH 8, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycho-
late, 0.1% SDS) complemented with 1 mM PMSF and
complete Mini, EDTA-free (Roche) protease inhibitor
cocktail using a glass homogenizer. Samples were briefly
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subjected to sonication, incubated on ice for 30 min and
protein collected after centrifugation for 30min at
13000 x g. Total protein concentrations were determined
according to a bovine serum albumin standard curve using
the BCA kit (Pierce). Forty (tumor samples) or 25 (tissue
samples) pg protein were separated by 15% SDS-PAGE,
and electro-transferred onto a 0.2 uM PS? polyvinylidene
fluoride (PVDF)-membrane (Millipore). Membranes were
blocked at room temperature in TBS (20mM Tris—HCI,
200 mM NaCl pH 7.6) containing 5% (w/v) fat-free milk
for 1h, incubated with a primary antibody overnight at
4°C in TBS-T (TBS with 0.05% Tween-20) containing 5%
(w/v) fat-free milk (polyclonal anti-Jdp2, 1:1200 dilution,
and anti-B-Actin (I-19), 1:6666 dilution Santa Cruz
Biotechnology, sc-1616) or TBS-T (monoclonal anti-
Jdp2, 1:500 dilution, and monoclonal anti-H2B, 1:5000
dilution), washed three times in TBS-T, incubated with a
secondary antibody for 45min at room temperature in
TBS-T with 5% fat-free milk (goat anti-rabbit IgG-
HRP, 1:10000 dilution, Santa Cruz Biotechnology sc-
2004; rabbit anti-goat IgG-HRP, 1:5000 dilution, Santa
Cruz Biotechnology sc-2768; rabbit anti-mouse IgG-
HRP, 1:2000 dilution, DAKO P0260) and finally washed
three times in TBS-T. Membranes were developed using
ECL PLUS Western Blotting Detection System (GE
Healthcare) and exposed to medical film (Konica X-Ray
AX medical films Santax Medico). After Jdp2 detection,
the membranes were stripped in 25 mM glycine—-HCI pH 2,
1% SDS for 15min and washed several times in TBS
before being immunoblotted with an anti-B-Actin anti-
body. Rabbit polyclonal anti-Jdp2 serum was kindly pro-
vided by Dr A. Aronheim, Haifa, Israel (1). The
monoclonal antibodies were isolated from hybridoma
cell lines J#176-3.2 and J#249-1.1, kindly provided by
Dr K. Yokoyama, Ibaraki, Japan (6), using the Nab
spin kit (Thermo Scientific).

Vectors

For transient transfections, PCR fragments of Jdp2
full length and isoforms ORFs were cloned into a
pSGS5-modified pSG5-FLAGnt vector using restriction
enzymes Xhol and BamHI. Cloning fragments were gen-
erated using forward primers wt-66 (5'-ggggctcgagatgatgce
tgggcagatc-3), 132-64 (5'-ggggctcgagatgtgggtgagaaaggg
geat-3'), 119-65 (5-ggggctcgagatgtgtcaggtgggaagetgt-3')
or 107-114 (5-ggggctcgagatggagtggtatgtgttga-3’) and
reverse primer jdp2stop-67 (5'-cccecggatcctcacttcttgtccaget
gcteca-3'). For transduction experiments, PCR fragments
were made using appropriate Jdp2 pSG5-FLAGnt vectors
as template with forward primer p231-143, 5-atcgtatgcgtc
tcccatggactacaaagacgat-3’ and p231-jdp2-145, -atcgtatgg
acattgctcacttettgtccag-3’ and inserted into the bicistronic
vector AKV-neo-IRES (29). PCR fragments for human
NRAS and human NRAS G12D were made using primers
p231-144, 5-atcgtatgecatggactacaaagacgatgacgataaaatgac
tgagtacaaactggtg-3’, and p231-146, 5'-atcgtatggacattgcttac
atcaccacacatg-3’, on appropriate vectors carrying human
NRAS or NRAS GI2D (kindly provided by Dr. Borja
Ballarin-Gonzalez) and inserted into AKV-neo-IRES.
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An Avrll-fragment deletion of AKV-neo-IRES lacking
the IRES element was used as mock control.

Cell cultures and experiments

NIH 3T3 cells were grown in Dulbecco’s Modified Eagle’s
medium containing glutamax (Gibco) and supplemented
with 10% new born calf serum (Invitrogen) and 1% penin-
cillin—streptomycin. Localization studies were conducted
by growing NIH 3T3 cells on gelatin-coated glass cover
slips and transfecting them using Lipofectamine 2000
(Invitrogen). Cells were then fixed in 4% para-formalde-
hyde/PBS at room temperature for 10 min, washed in PBS
and permeabilized in 0.2% Triton X-100/PBS at room
temperature for 10 min. After two washes, cells were left
in a blocking solution (0.1% Tween-20/3% BSA/PBS) for
1 h at room temperature. Then, cells were incubated with
an anti-FLAG monoclonal antibody (1BI11, 1:400 dilu-
tion) in the blocking solution for 1h at room temperature
and washed three times in 0.1% Tween-20/PBS. Finally,
cells were incubated sheltered from light with a TRITC-
conjugated secondary antibody (1:500 dilution) in the
blocking solution for 1h at room temperature before
being washed three times in PBS containing 0.1%
Tween-20, and two times in PBS. Cover slips were
mounted on object glasses using the ProLong antifade
mounting solution with DAPI (Invitrogen), and kept
at 4°C in dark until analyzed on a Zeiss Axiovert M200
fluorescence microscopy within 24 h.

For cell-growth inhibition analysis, NIH 3T3 cells were
transfected as described above and grown for 24 h post-
transfection before culturing in puromycin (2.0 pg/ml)
for 3 weeks.

Soft agar assay was done by transducing NIH 3T3
cells at a multiplicity of infection (m.o i.) of 1 with
AKV-neo-IRES expressing the indicated protein 36h
before seeding 4.2 x 10* into 10cm® dishes. Cells were
seeded onto a 0.6% bottom layer [complete medium
including 0.6% LMP agarose (NuSieve)] and grown in
0.5% top layer for 2 weeks. From each dish, 100 pictures
were taken by a Leica DFC 300 FX microscopy and the
number of colonies larger than 200 um were counted using
in-house developed software (30).

RESULTS
Integrations into Jdp2

Genomic DNA from tumors induced by SL3-3 murine
leukemia virus in 1767 newborn BALB/c mice was
isolated and the host-provirus DNA PCR amplified and
sequenced. Results from this cohort have previously been
published (26,31-33). We wanted to look for integration
loci in which the distributions of insertions could indicate
novel transcriptional structures and focused on the Jdp2
locus, which is targeted by retroviral insertions in 125
(7%) individual animals (Figure 1A). The locus has pre-
viously been described as being an insertional target in
murine T-cell lymphomas induced by Moloney MLV
(17,19,20) and SL3-3 MLV (18). Retroviral integrations
within this locus appeared in clusters, here abbreviated
clusters A through F, of which B, D and F were

predominant in terms of density and frequency of integra-
tions. Cluster A, B and C were positioned upstream of
Jdp2 predominantly in the opposite transcriptional orien-
tation whereas cluster E was positioned downstream of
Jdp2. Cluster F consisted of positively orientated pro-
viruses in or near the 3’ UTR in exon 4. In this study,
our focus was drawn in particular to cluster D consisting
of 25 integrations in the 3’ end of intron 2 of the Jdp2
gene. The predominant inverse transcriptional orientation
of the proviruses as compared to Jdp2 suggested a retro-
viral enhancer activation of a cellular promoter situated in
the 3’ end of the integration cluster. The notion was fur-
ther strengthened by the positive orientation of a few inte-
grations in the 3’ end of cluster D, which could be
indicative of promoter activation. To test for such a pro-
moter insertion mechanism of Jdp2 deregulation in tumors
carrying a positively orientated provirus within cluster D,
we did RT-PCR with primers in the viral U3 region and
Jdp2 exon 3 and 4 on tumor cDNA. We indeed found
chimeric transcripts consisting of viral and Jdp2 sequences
in four out of twenty tumors including one already iden-
tified by the initial retroviral tagging (tumor 1363)
(Figure 1B). A similar result although at a much higher
frequency was found recently by Stewart et al. (20).

To estimate the frequency of cluster D insertions, we
performed directed PCR on control tumors in which no
Jdp2 locus integrations were found by retroviral tagging
using virus LTR-specific primers and an exon 3 reverse
primer. From this we estimated the frequency of integra-
tions into cluster D to be as many as 25% implying
subclonality with regard to cluster D insertions, a notion
supported by the fact that some control tumors show
elevated expression of Jdp2 (see below). Again we found
predominant integrations in the opposite orientation as
compared to Jdp2. No cluster D insertions in either direc-
tion were found in tumors from BALB/c mice infected
with the B-cell lymphomagenic Akv MLV signifying the
relevance of retroviral Jdp2 intron 2 insertions specifically
in T-cell lymphomagenesis (data not shown).

Intragenic integration into Jdp2 correlates with the
high expression level of mRNA species including
Jdp?2 intron 2 sequences

We tested for expressional deregulation of Jdp2 in tumors
with MLV insertions within the Jdp2 locus by northern
blotting using a probe covering exon 3 and part of exon 4
(Figure 2A). The northern blot analysis included tumors
with integrations into cluster D and cluster B (upstream of
Jdp2 in opposite orientation), as well as some randomly
selected control tumors in which no integration in the Jdp2
locus was detected by the retroviral tagging protocol.
In both cluster B and cluster D tumors, the mRNA level
of the neighboring genes ¢Fos and Batf were less than
three times higher than that observed in control tumors
as assessed by quantitative RT-PCR (QRT-PCR)
(Figure S1 and data not shown), and hence we conclude
that these genes are not targeted by insertions. This is in
agreement with the conclusions reached previously by our
group (18) and by Hwang et al. (17) using SL3-3 MLV and
Moloney MLV, respectively. Consistent with previous
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Figure 1. The Jdp2 locus. (A) The number of integration events around Jdp2 as identified by retroviral tagging are shown in 5000 bp bins from
positions 86370000 to 86555000 on chromosome 12 (UCSC mm8 February 2006) (top). The bars below and above the horizontal axis represent
negative and positive, respectively, transcriptional orientation of the proviruses relative to that of the Jdp2 gene. Proviral integration clusters
A through F are shown with clusters B and D highlighted in gray. A structure of the Jdp2 gene based on RefSeq NM_030887 is depicted at its
chromosomal location (marked with a bracket) with the coding sequence indicated by black coloring (bottom). (B) Close-up on integration cluster
D [genome coordinates 86 509 000-86 523 000, marked with a bracket in (A)] in the 3’ end of intron 2 and exon 3 with provirus position and
transcriptional orientation depicted as in (A) using 500 bp bins. Schematic examples of provirus-host chimeric transcripts identified are shown with
black and gray boxes indicating Jdp2 exon 3 and intron 2 sequences, respectively.

results, upregulation of Jdp2 mRNA was observed as
compared to control tumors in most cases. However, we
note that some tumors with proviral integration into the
Jdp2 locus have no Jdp2 upregulation, which could be
attributed to tumor sample heterogeneity with many sub-
clonal Jdp2 integrations as mentioned above. The size of
the detected Jdp2 mRNA was consistent with the pub-
lished species (1.5-1.7kb, see Table 1) (Figure 2B and
C). Strikingly, we observed in several cluster D tumors
upregulation of small Jdp2 sub-species of which an
~1.3kb species was the most common (Figure 2B).
These subspecies were not observed in the tumors with
integration into cluster B (Figure 2C). We also note
expression of larger mRNA species in some tumors.

To investigate whether the observed 1.3 kb Jdp2 mRNA
isoforms in cluster D tumors were generated by tran-
scription from intron 2 as suggested by the integration
distribution, we measured the level of canonical versus
intronic Jdp2 mRNA (amplicon E2-E3 and 12-E4, respec-
tively, in Figure 2A) with quantitative real-time PCR
(QRT-PCR) on a panel of cluster B and cluster D.
Tumors without known integrations in the Jdp2 locus as
found by retroviral tagging were included as controls

(Figure 2D and E). Six out of nine cluster B tumors had
>10 times the amount of exon 2—exon 3 Jdp2 mRNA
found in control tumors (Figure 2D, bottom). In general
accordance with the northern blot, increased mRNA levels
were not observed in tumors 959, 150 and 1534. In half of
the cluster D tumors (tumors 474, 978, 1908 and 1161), a
5- to 8-fold increase of exon 2-exon 3 mRNA was
observed as compared to the controls. In the remaining
tumors, mRNA levels were comparable to control tumors
(Figure 2D, top). With regard to intronic transcription, an
opposite pattern was observed (Figure 2E). Only one clus-
ter B tumor (tumor 645) appeared to have an increased
amount of intron 2—exon 4 mRNA as compared to control
tumors (Figure 2E, bottom), while five cluster D tumors
(tumors 474, 1571, 1833, 1908 and 1161) had 445 times
higher levels of intronic mRNA (Figure 2E, top). In tumor
978, the high levels of Jdp2 sub-species observed by north-
ern blotting (Figure 2B) was not reflected by amplicon
12-E4 amplification (Figure 2E, top) suggesting a more
complex transcriptional structure of Jdp2. Taken together,
these data indicate increased transcription of sequence
in the 3’ end of intron 2 in tumors harboring intron 2
retroviral integrations (cluster D integrations) compared
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Figure 2. Correlation of intragenic provirus insertion and appearance of Jdp2 intron 2 including transcripts. (A) Schematic representation of the
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integration in clusters D (B) and B (C) according to the retroviral tagging data. Control samples (Ctrl) are thymic tumors from retrovirus-infected
animals of the same cohort in which no integrations were found by retroviral tagging. The distance between integration and the beginning of Jdp2
exon 3 for each tumor is shown above the lanes. Ethidium bromide staining of ribosomal bands 28S and 18S was used to evaluate even loading and
RNA integrity. (D and E) QRT-PCR on a subset of D tumors and B tumors amplifying either Refseq Jdp2 mRNA (E2-E3) (D) or intron 2-including
alternative mRNA (I2-E4) (E). The signal was normalized to Thp and shown as fold difference to the average of control tumor samples (Ctrl).

to tumors with cluster B integrations and tumors with
integration outside the Jdp2 locus.

A complex transcriptional structure resides within
intron 2 of Jdp2

Two immediate explanations can account for the expres-
sion of mRNA including the 3’ end of Jdp2 intron 2.
One possibility is that transcription starts upstream of
exon 2 and utilizes a cryptic splice acceptor site in the 3’
end of intron 2. An alternative hypothesis would invoke
the existence of alternative promoters within intron 2.

We tested for alternative splice donor sites with PCR
on cDNA from a range of tumors using forward primers
situated in upstream Jdp2 exons together with reverse pri-
mers in the 3’ end of intron 2. However, we repeatedly
failed to find cDNA representing alternative splicing
between any of the four possible exons 1 (supported
by transcription data on http://genome.ucsc.edu/) and
the 3’ end of intron 2 (data not shown).

To search for a possible novel transcription start
site immediately upstream of exon 3, we performed 5
RACE on RNA from tumor tissue. We used the tumor
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Exon® Coordinate® Size (bp) Transcription initiation® Splice donor sequence®

la 86488519 199 gccacagcct GCGGGAGGGA CTTCTGCACGgtgggttcac
1b 86488208 123 gggageegegGGCGGGGCGC GGAGGTGAAGgtcagtgggt
Ic 86489121 65 aaccaacaggGCTTCCTTCG ATATAAGAAGgtaagcagge
1d 86491329 85 ctetgtagaaGACATCTTTC AGCCAAAGAGgtaaaagata
le 86520704 149 agetgtgctcAGTTCCACCC TCTGCAGAGGgtgagtgggg
le-2 86520617 236 tetecgactcAGCAGTCACA TCTGCAGAGGgtgagtgggg
If 86519979 23 atggagtggtGTGTGTTGAA ATCTGTCAAGgtaagcagga
1f-2 86519976 26 agaatggagtGGTGTGTGTT ATCTGTCAAGgtaagcagga
lg 86520512 116 agecccagat ATTCTGGCTG GCAGTCACAGgtgtttgcetg
1h 86520110 76 gtettgctt ATGAGTCCTG GTCCATCCAGgtgagaagge
li 86520625 22 tcagcagtctACAGGTGTTTG TGAGATGTGGgtgagaaagg
1j 86511034 274 tectggttct GCAGACAGCA AGGGCCAAGGgtgagttcag
1k 86520513 128 gececagataTTCTGGCTGA TTGCTGAGATgtgggtgaga

“Data on exons la (RefSeq NM_030887), 1b (mRNA bc019780), 1c (mRNA ab034697) and 1d (EST by317195) are based on UCSC mm 8 February
2006. Minor secondary TSSs found for exons le and 1f are denoted le-2 and 1f-2, respectively. Exon 1k was only identified in tumor tissue.
position on chromosome 12 of the transcription start site according to UCSC mm8 February 2006.

“Exon sequence is in capital case.

sample identified as having the highest level of intron 2
containing mRNA among the tumors as determined by
QRT-PCR (tumor 1161, 45-fold higher as compared to
control tumors, see Figure 2E). In addition, we performed
5" RACE on RNA from bone marrow (BM) and whole
brain tissue from uninfected BALB/c mice. During SL3-3
MLV infection of newborn mice, BM cells are a likely
reservoir for early integration events whereas brain
tissue is unrelated to infection. 5 RACE PCR on tumor
tissue was done with either of three reverse primers (oligo
86 locates in intron 2, and oligo 96 and 46 are specific to
exon 3), whereas 5 RACE on BM and brain tissue was
done using a single primer (oligo 96) (see Figure 3). As a
control, 5 RACE PCR was done with a reverse primer in
the 5" end of the gene for B-Actin (Acth). PCR products
were cloned and between 50 and 100 bacterial colonies
from each 5YRACE PCR representing individual tran-
scription start sites (TSS) sequenced. The result of the
analysis is summarized in Table 1. As expected, 5
RACE PCR for Actb yielded a sharp band in agreement
with a single predominant transcription initiation site
(Figure 3A, lane 5). In contrast, we always detected
smeared bands in both the Jdp2 intron 2 and exon
3-specific YRACE PCRs suggesting existence of multiple
5 ends for the intron 2 including mRNA species
(Figure 3A, lanes 2-4).

When using an intron 2-specific 5 RACE PCR on
tumor tissue we found several TSSs within a 110 nucleo-
tide window located ~150 base pair upstream of exon 3.
Transcripts from this region all continue without splicing
into exon 3 giving rise to mRNA species with an alterna-
tive intron 2-derived 5" terminus in place of the normal
exon 1 and exon 2 of Jdp2 (corresponding to exon le
in Figure 3B).

TSSs cloned from the exon 3-specific 5 RACE PCR
identified the same 110 window as found above. In addi-
tion, a variety of transcripts utilizing intron 2 splice donor
sites and the canonical exon 3 splice acceptor site were
identified. The transcripts were denoted exons le, If, lg,
1h, 1i, 1j and 1k based on their splicing structure (Table 1

and Figure 3B and 3C). Two less abundant initiation sites
upstream of the major initiation sites in exon le
(brain tissue) and 1f (bone marrow) were denoted le-2
and 1f-2, respectively. We reserve the terms exons la
through 1d for the four alternative exons 1 that currently
are supported by public transcript records (http://genome
.ucsc.edu/), and which are all situated outside the region
considered here (see Table 1). While exon 1k was exclu-
sively observed in tumor tissue, exon 1j, situated in intron
2 almost 10kb upstream of exon 3, was found only in
normal tissue (brain). The far most predominant tran-
scripts in all three tissues were exons 1f and le accounting
for 74% (tumor tissue), 88% (brain) and 98% (bone
marrow) of all transcripts. Since the translation initiation
codon of Jdp2 is encoded by exon 2, the alternative sub-
species identified here could produce protein isoforms with
an altered N-terminus. Interestingly, a methionine codon
in frame with Jdp2 was present in exons le, 1f and i from
tumors as well as in exon 1j from brain (Figure 3B and C).
Transcription from exon le may give rise to either a
132-amino-acid isoform, Jdp2-132, or, using a second
methionine codon, a 119-amino-acid isoform, Jdp2-119.
Transcription from exons 1f, 1i and 1j generates Jdp2 iso-
forms of 107-, 98- and 117-amino-acid, respectively. In
this line, it should be noted that exon 2 of Jdp2 encodes
a protein domain responsible for the inhibition of histone
acetylation (7). Except for one sequence (a brain exon le
sequence), exon le and exon If TSS tags from normal
tissue are situated 3’ to the methionine codons and
hence cannot give rise to Jdp2-132/119 or Jdp2-107 pro-
duction. Transcription in tumor tissue, in contrast,
initiated close to the integrated provirus and mostly
upstream of the positions found in normal tissue.
Thereby, the provirus-activated transcripts disclose
upstream Jdp2-in-frame methionine codons (compare
exons le and If in Figure 3B with Figure 3C).
Figure 3D summarizes the different predicted protein
structures.

In support of our data, we note that all eight different
TSS positions identified in uninfected tissue had a
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Figure 3. Identification of Jdp2 intron 2 mRNAs. (A) Ethidium bro-
mide-stained agarose gel showing representative PCR products with
linker-specific forward primer on 5 RACE ¢cDNA from tumor 1161
using different reverse primers in Jdp2 (oligos 96, 46 and 86, lanes 2, 3
and 4, respectively) and Acth exon 3 (lane 5); in lane 1 no cDNA
template was added. (B) and (C) Schematic structure of the alternative
Jdp2 exon le through 1k as found by 5 RACE in tumor tissue (B) and
normal tissue (C). Positions of exon 1-specific splice donor sites relative
to exon 3 are given in base pairs. Putative start codons (M) in frame
with the ORF of Jdp2 are indicated, while an asterisk indicates that no
ORF is present in frame with Jdp2. (D) Protein structure of Jdp2 as
generated from exon la through 1d, and predicted Jdp2 isoforms gen-
erated from exon le, 1f, 1i and 1j. The INHAT domain as well as the
basic DNA binding domain (DBD) and the leucine zipper (ZIP) regions
are indicated. Methionines are indicated (M) and the N-terminal pep-
tides are shown for the isoforms.

pyrimidine-purine dinucleotide at the —1/+1 transcrip-
tion start site positions (CpA, TpA or TpG in Table 1),
in line with the accepted view on the initiator motif (Inr) in
mammalian polymerase II transcribed genes (34,35). In
tumor tissue, 32% of the cloned TSSs were non-PyPu

dinucleotides as exemplified in exon 1k (Table 1 and
data not shown).

We conducted a bioinformatic analysis to look for
cis-regulatory elements in 1200 base pairs covering the
region between 300 bp 5’ to the TSS of exon If and exon
3 using the DiAlign software (36) (Figure S2). The region
is not conserved between mammals and avian species since
the similarity between mouse and chicken was confined
to the exon 3 sequence (data not shown). As would be
expected, the relative conservation score is generally
higher when only including mouse and rat; larger patches
(50-150bp) of differences exist in chimpanzee (insertion),
dog (insertion) and cow (insertion and deletion) and in
human, chimpanzee, macaque, cow and dog as a group
(insertion) as compared to mouse and rat (data not
shown). Despite this, minor peaks of conservation
when considering all species are found around the tran-
scriptional initiation regions of exons le, If and Ig
(Figure S2). When only considering mouse and rat, con-
servation peaks are seen on all the transcription start sites
of the alternative exon Is in the region (Figure S2). Other
potential start sites of transcription or regulatory modules
such as enhancers or splice regulatory sequences may
reside within peaks of conservation, which are not over-
lapping the TSSs found here. To this end, we used
Matlnspector to identify possible conserved transcription
factor-binding motifs within the considered regions (37)
(Figure S3-S5). The regions indeed have several conserved
transcription factor motifs including binding sites for
SP1, YY1 and ETS factors. We note the absence of obvi-
ous conserved TATA-box sequences within the sequence
immediately in front of the TSS sequences.

Jdp2 protein isoforms are expressed in T-cell tumor
tissue and normal tissue

The identification of multiple mRNA forms with the
potential to encode for novel protein isoforms of Jdp2
prompted us to investigate mRNA levels of the abun-
dantly found alternative transcripts le-3-4 and 1f-3-4 in
comparison with Jdp2 protein levels. QRT-PCR specific
for exon le and specific for the splicing between exons 1f
and exon 3 was done with amplicons Ele-E4 and E1f-E4,
respectively (Figure 2A). Amplicon Ele-E4 lies down-
stream of the two AUG codons and thus does not distin-
guish the longer and shorter le exons (exons le-2 and le
in Table 1). Figure 4A—C shows the results from some of
the most differentially expressed tumor samples as com-
pared to the normal thymus expression (set to 1). Of the
three cluster D tumors (763, 1363 and 1161), tumor 763
had >100-fold increased levels of the canonical wild-type
transcript similar to the cluster B tumors (20 and 181)
(Figure 4A). As suggested by northern blotting
(Figure 2C), control tumor 1046 also displayed highly
increased wild-type levels. PCR using virus and cluster
D-specific primers in tumor 1046 in fact detected integra-
tion into cluster D while the proviral status of cluster B
was not investigated. Levels of the 1e-3-4 RNA were >50
times higher in the three cluster D tumors and tumor 1046,
whereas cluster B tumors only displayed a moderate
increase (~10-fold) as compared to control thymus
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Figure 4. Jdp2 isoforms are highly expressed in T-cell tumors. (A—C) QRT-PCR was done in triplicates on tumor tissues to detect full length (A),
exon le-3-4 (B) and exon 1f-3-4 (C) mRNA. Expression signal was normalize with Tbp and shown as fold difference to uninfected control thymus.
The figures are representative of two to three experiments. (D) Two separate western blot experiments using 0.2 uM PVDF membranes were done on
crude protein extracts from the same tumors as in (A—C) using either polyclonal anti-Jdp2 antibody (#489) (top) or a mix of monoclonal anti-Jdp2
antibodies J176 and J249 (bottom). Membranes were subsequently immunoblotted using anti-B-Actin antibody. Open and closed arrows indicate
position of full length (~20kDa) and isoform Jdp2 (~14 and 17 kDa), respectively.

(Figure 4B). Expression of the 1f-3-4 RNA was
>1000-fold higher in tumors 1363 and 1161 while between
50 and 150 times higher in tumors 763, 20, 181 and 1046
as compared to control thymus.

Jdp2 protein levels in the same tumor samples were then
investigated by western blotting using a rabbit polyclonal
anti-Jdp2 protein (Figure 4D, top). The relative signal of
full length Jdp2 (~20 kDa) between tumors corresponded
to the relative exon 2-3 mRNA levels. Smaller bands
(at ~17 and 14kDa) were detected in all samples except
control tumor 1980 with the highest signal in tumors 763
and 1161. To confirm that the smaller bands represent
alternative Jdp2 isoforms, the same protein samples
were subjected to a separate SDS-PAGE immunoblot
using Jdp2 murine monoclonal antibodies (Figure 4D,
bottom). Full-length Jdp2 was readily detected in the
same samples as when using the polyclonal antibody.
Further, in samples 763 and 1161, a band corresponding
to the lower 14kDa Jdp2 isoform was evident as was,
although more weakly, the 14kDa band in sample 20
and the 17kDa band in samples 763, 1161 and 1046.
Tumor 1363 is a special case in which the provirus is
transcriptionally orientated similar to Jdp2. This allows
for the formation of chimeric spliced or unspliced
mRNAs containing viral sequences, which may have an
impact on the ratio between levels of protein isoforms and
RNA (compare Figure 4B and C with D for tumor 1363).
Together with the mRNA expression data, these data
support the notion of the expression of Jdp2 isoforms
in T-cell tumor tissue.

We next analyzed the expression level of canonical Jdp2
and truncated Jdp2 in a panel of tissues from BALB/c

mice not infected with MLV. In order to minimize effects
from sample heterogeneity, relative expression signal was
normalized to the geometric mean of Acth and Thp (28)
(Figure SA—C, black bars). In some cases, this had a dra-
matic effect on the relative expression level as compared to
normalization to total RNA (38,39) (Figure 5B, gray
bars), as is evident, for instance, for amplicon Ele-E4 in
testis and brain. The following is based on interpretation
using Thp and Actb normalizations. Full-length Jdp2
mRNA was relatively highly expressed in the brain
and lung tissue, while an intermediate expression level
was seen in spleen, heart, bone marrow and kidney
(Figure 5A). The expression of exon le was relatively
highest in the brain (Figure 5B), while exon 1f was most
prominently expressed in heart tissue (Figure 5C). We also
estimated the absolute copy number of transcripts by
using standard curve generated from Jdp2 amplicon-con-
taining plasmids of known concentrations (see ‘Materials
and Methods’ section). Canonical Jdp2 E2-E4 was 6
(in testis) to 100 (in heart) times more abundant than
Jdp2 Ele-E4, and between 3 (in liver) and 400 (in lung)
times more abundant than Jdp2 E1f-E4 (data not shown).
Next, we did western blot analysis using a polyclonal anti-
Jdp2 antibody on tissue samples extracted from BALB/c
mice (Figure 5D). Immunoblotting against B-Actin and
histone H2B (a marker for nuclear content) was subse-
quently done to evaluate for protein loading. Highest
full-length Jdp2 signal was seen in the skeletal muscle
and, to a lesser extent, in testis, heart and liver. A smaller
band of similar size as the larger one seen in tumor
samples (~17kDa) was most prominently observed in
heart although also in testis, liver and skeletal muscle.



4666 Nucleic Acids Research, 2009, Vol. 37, No. 14
Ao Jdp2 E2-E3 mRNA 14

© 12

N

10

Q
- 8 z
g w &
5 ¢ 3
wo= 4 U
i b
.- L o

- all _= 0

§ 2 ¢ 5§ 5§ & ¢ 5 2 3§

B Jdp2 E1e-E4 mRNA

© 3

E1e-E4/(Tbp+Act)
(4]
B E1e-E4/(Total RNA)

o
(&)

| .I“Ll. ?

o

ver

heart

o)
c
=

spleen
thymus
testis
brain

>
o)
=

=]

o

sk. muscle

Jdp2 #498

Jdp2 E1f-E4 mRNA

30

25

20

5 3
I 3
£ =
g © 2
R 3
o 4w
N I
© 2
- ELba_ 5 "
. ‘_-i - 0
:wggtgggm>.
§ ¢ § § § & 3 5 £ %
a = £ <o < > o
e~
[}
o
]
c 3 3
Q@ £ » £ E £
¢ 2 2 35 368 - g 2
v = Q0 5§ <& =2z % g 3

Actin

H2B

Figure 5. Jdp2 isoforms are differentially expressed in the normal tissue. (A—C) QRT-PCR was done in triplicates as described for Figure 5 on the
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representative of two—three experiments. (D) Western blotting on 0.2uM PVDF membranes using polyclonal anti-Jdp2 and, subsequently, anti-p-
Actin and anti-H2B antibody on crude protein extracts from the same panel of BALB/c tissue. Open and closed arrows indicate the position of full

length and isoform Jdp2.

In liver tissue, a protein of smaller size was evident. Using
monoclonal antibodies, however, we could only detect the
full-length Jdp2 in the skeletal muscle upon long exposure
time (data not shown). This may be due to the relatively
low expression level as compared to tumor samples with
integrations in combination with lower reactivity of
monoclonal antibodies. In summary, these data indicate
that Jdp2 intragenic MLV insertions upregulate Jdp2 iso-
forms from intron 2 promoters, which are active in various
non-infected murine tissues.

Jdp2 isoforms localize to the nucleus similar to
full-length Jdp2

Jdp2 localizes to the nucleus when expressed from a het-
erologous promoter specifically in the heart (15), yet any
nuclear localization signal remains undefined. The Jdp2
isoforms identified here have the N-terminal part replaced
by a short peptide encoded by the various alternative
exons 1. To investigate the subcellular localization of
Jdp2 and to see if the Jdp2 isoforms had an altered local-
ization pattern, full length as well as Jdp2-132, Jdp2-119
and Jdp2-107 was cloned into a pSGS5-derived vector,

pFLAGnt, and expressed in mouse fibroblast as N-term-
inal FLAG fusion proteins. Protein localization was then
visualized by immunofluorescence using an anti-FLAG
antibody. Full-length Jdp2 localized exclusively to
the nucleus (Figure 6A). The same localization was
observed for isoforms Jdp2-132, Jdp2-119 and Jdp2-107
(Figure 6B-E) whereas no signal was seen in cell trans-
fected with the same vector but without Jdp2 transgene
(Figure 6F). We note that in some Jdp2-132 transfected
cells, increased signal intensity was observed asymmetri-
cally near the nuclear rim (Figure 6B). This localization
pattern was not a consequence of high expression
of FLAG-Jdp2-132 as the proportion of cells with this
localization pattern was equal between high and low
level Jdp2-132 expressing cells.

Ectopic expression of Jdp2 and Jdp2 isoforms increase
tumorigenic potential of oncogenic NRAS G12D

The role of Jdp2 in apoptosis and cell cycle control is
subject to debate and seems to vary with cellular context
(10,12,13,21). To test if the cell growth inhibitory effect
ascribed previously to full-length Jdp2 also was present
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Figure 6. Jdp2 isoforms localize to the nucleus. NIH3T3 cells were
transiently transfected with vectors expressing N-terminally FLAG
tagged full length Jdp2 (A) or either of three N-terminally Jdp2 iso-
forms, Jdp2-132 (B-C), Jdp2-119 (D) or Jdp2-107 (E). As controls are
shown cells transfected with empty vector (F). The subcellular localiza-
tion was revealed by immunocyotchemistry using an anti-FLAG

primary antibody (left). Cells were co-stained with DAPI dye (right).
The results are representative of three independent experiments.

for the 132-, 119- and 107-amino-acid isoforms we trans-
fected NIH3T3 cells with the respective expression vectors
and added puromycin 24h post-transfection to select
for the capacity to form colonies. Whereas we readily
observed colonies among cells transfected with the
empty plasmid (pFLAG), cells transfected with Jdp2,
Jdp2-132, Jdp2-119 or Jdp2-107 died (Figure 7A).
Importantly, the ectopic expression level was several
orders of magnitude higher than that observed in the
tumor samples (Figure S6). Thus, Jdp2-mediated cell
growth inhibition under these conditions is not only
restricted to the full-length Jdp2 isoform but is also evi-
dent for protein isoforms lacking the N-terminal INHAT
domain.

Since full-length Jdp2 has been reported to inhibit
RasV12-induced focus formation (21), we tested the
effect Jdp2 and Jdp2 isoforms on anchorage-independent
growth in the context of human NRAS and oncogenic
NRAS GI2D. In order to minimize possible apoptotic
effects observed in Figure 7A, Jdp2, Jdp2-119 and
Jdp2-107 was expressed from an internal ribosomal
entry site (IRES) within the LTR-driven retroviral
vector AKV-Neo-IRES. Figure S7 demonstrates that
the transduced cells exhibit moderate over-expression as
compared to endogenous full-length Jdp2, while a more
prominent over-expression was observed under the transi-
ently expressing conditions used in Figure 7A. NIH 3T3
fibroblasts co-transduced with a retroviral vector expres-
sing NRAS and a retroviral vector expressing Jdp2 or
either isoforms did not sustain colony growth significantly
different from the NRAS-expressing vector alone when
seeded in a complete medium supplemented with 0.5%
agar (Figure 7B). Expression of Jdp2, Jdp2-119 or Jdp-
107 alone also did not result in colony formation signifi-
cantly different from either mock transduction or NRAS
transduction (data not shown). In contrast, when we
co-transduced NRAS GI12D together with either Jdp2
forms, a significant increase of ~50% in colony formation
was seen as compared to NRAS G12D alone (P <0.05,
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Figure 7. Phenotypic effects of ectopic expression of Jdp2 isoforms.
(A) NIH3T3 cells were transiently transfected with vectors expressing
N-terminally FLAG tagged full length Jdp2 or either of three
N-terminally Jdp2 isoforms, Jdp2-132, Jdp2-119 or Jdp2-107. Twenty-
four hours after transfection, cells started growing in a selective
medium containing puromycin. Three weeks later, the cells were fixed
in methanol and colonies stained with methylene blue. The results are
representative of two independent experiments, each done in duplicate.
(B and C) NIH 3T3 cells were co-transduced with the indicated vectors
(m.o.i. = 1) 48 h before being seeded in the medium supplemented with
0.5% agar. After 2 weeks of growth, 100 pictures per dish were taken,
and the number of colonies larger than 200 um were counted. Error
bars indicate the standard error of the mean from four independent
experiments of which representative pictures are shown. The black scale
bar—insert in each pictures—corresponds to 500 pm. A significant dif-
ference (P <0.05) to ‘G12D + Vector’ by two-tailed Student’s r-test is
shown with an asterisk.

two-tailed Student’s z-test) (Figure 7C). Thus, both Jdp2
proteins with and without the N-terminal part harboring
the INHAT activity can increase transformation by onco-
genic NRAS GI12D but not NRAS.

DISCUSSION

Here, we have described the identification of a novel
region within the second intron of the AP-1 repressor
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Jdp2 from which several alternative mRNA species are
expressed in T-cell lymphomas of mice and in normal
tissue. Some, but not all, of the alternative mRNAs
encode for protein N-terminal isoforms of Jdp2.

The existence of intragenic promoter activity could be
hypothesized from the distribution of retroviral integra-
tions in the Jdp2 locus as found by retroviral tagging on
T-cell tumors induced by SL3-3 MLV in 1767 mice. When
integrated in opposite transcriptional orientation of the
proto-oncogene being activated the provirus is typically
situated upstream of the cellular promoter. This mecha-
nism has been termed ‘enhancer activation’ and is exem-
plified by activation of Gfil (17,40), Rras2 (41,42) and
Rasgrpl (20,24) in various models (data from (43)), as
well as integration clusters A, B and C reported here
and elsewhere (17,18). By analogy, oppositely orientated
proviruses within the transcriptional unit of a cellular gene
such as cluster D in Jdp2 may reveal novel promoters 3’ to
the integrations. A recent publication from our group on
insertional activation of Bach2 in B-cell lymphomas (44),
as well as unpublished data, indicates a more general phe-
nomenon of proviral activation of ‘hidden’ intragenic pro-
moters, and we propose that large-scale transcription start
site mapping in provirally targeted genes will contribute in
finding new structures of already known cancer genes.
Using existing retroviral tagging data such as from
RTCGD (43) additional promoter regions are envisioned
to be identified. It would be of interest to investigate
whether such alternative transcripts have a regulated
expression in normal tissue, as in case of Jdp2, or require
cis-regulatory elements such as from provirus insertion or
chromosomal translocation.

It is now evident that the transcriptome of higher mam-
mals is far more complex than earlier anticipated (45-50).
A significant contribution to increased transcriptional
complexity comes from the usage of alternative promoters
and accordingly first exons among polymerase II tran-
scribed genes (34,51-53). Current database records
(http://genome.ucsc.edu/) support the existence of four
non-overlapping initiating non-coding exons of Jdp2
that splice to a common splice acceptor site in exon 2
(exons la—1d in Table 1), although it should be kept in
mind that the precise transcription start sites of exons la,
1b and 1d await final verification. The novel Jdp2
transcript structures identified here within intron 2 add
to the complexity of Jdp2 transcriptional regulation.
All lack TATA-box consensus elements surrounding the
30 bp upstream regions from the TSS. This result is not
unexpected according to recent transcriptome analyses
showing that the presence of TATA-box sequences is an
exception rather than a rule and that numerous alternative
initiation sequences must exist (34,54-56).

The transcripts including Jdp2 intron 2 sequences con-
stituted either a 5 extension of a common exon (in case
of exon le) or mutually exclusive exons inside an existing
intron (in case of exons If through 1k) and belong to the
most common classes of alternative first exons among
both humans and mice (51,57). We have by RT-PCR on
mouse tumor tissue identified potential intron 2-initiating
exons in addition to those reported here by 5 RACE, as
well as one in the region harboring the known exons la

through 1d (data not shown). We do not at present know
if these are expressed in normal tissue as well. Generally,
alternative promoter usage and subsequent use of alterna-
tive exons 1 is related to tissue- and temporal-specific
expressions (58—63). The molecular regulation of Jdp2
transcription is largely unknown except for the observa-
tion that several uncharacterized transcripts of various
sizes have been described in different tissues (2,18). It is
thus tempting to connect the identified complex transcrip-
tion pattern of Jdp2 with the regulated expression of full-
length and truncated transcripts. Although we have not
addressed Jdp2 regulation specifically, the presented
expression analyses indicate tissue-specific expression of
both canonical and alternative Jdp2 mRNAs. For
instance, while skeletal muscle expresses relatively high
levels of both canonical and alternative transcripts
le-3-4 and 1f-3-4 Jdp2, in brain tissue levels of 1f-3-4,
were relatively low while canonical and le-3-4 Jdp2
levels were high. Along this line, the absolute copy
number of isoform transcripts was judged to be in the
similar range as the canonical mRNA for some tissues,
such as Jdp2 1f-3-4 in skeletal muscle, which may indicate
a specific role in this tissue. Interestingly, Jdp2 has been
implicated in the differentiation of C2 myoblast cells (10).

Several factors influence the discrepancies observed
between mRNA and protein signal in some tissues such
as testis. First, we focused on the two most abundantly
expressed alternative transcripts as found in one tumor
and two normal tissue samples (bone marrow and brain)
by 5 RACE, and acknowledge that our expression
analyses were far from exhaustive. Hence, some of the
observed protein species are likely to derive from
sequences other than exons le and 1f. Our 5 RACE ana-
lysis intriguingly showed most alternative exons le and 1f
transcripts in bone marrow and brain to be initiated after
the start codons that were disclosed in tumor tissue.
Although an in-frame methionine codon exists in exon 4
allowing for production of a 54-amino-acid peptide by
these transcripts, any biological function of such peptide
is not obvious since it would lack part of the leucine zipper
domain of Jdp2. It should be mentioned, however,
that ATF3, which is the bZIP transcription factor most
related to Jdp2 (64), encodes a naturally occurring splice
variant ATF3AZip lacking the leucine zipper domain (65).
Despite lacking the ability to bind DNA, this isoform
antagonized ATF3 repression in a way that was specu-
lated to involve sequestering of inhibitory co-factors
(65). Second, different involvement of post-transcriptional
regulation in various tissues is expected. Finally, the
sequence around the start AUG codon differs among the
investigated transcripts. According to the most coherent
model for eukaryotic translation initiation ribosome pre-
initiation components are recruited near the 5’ cap of the
mRNA and scan the SUTR for the first AUG codon to
start translation (reviewed in (66)). According to phyloge-
netic and genetic evidence (67-71) the ‘optimal’ nucleotide
context in terms of translation initiation efficiency is
GCC(A/G)CCAUGG (bold nucleotides are envisaged to
be the most important). From this the AUG context
in exon 1f (UGGAGAAUGG) would be predicted to be
considerably stronger than in the two encoded by exon le




(GCUGAGAUGU for Jdp2-132, and CUGUCCAUGU
for Jdp2-119). It will be important to thoroughly charac-
terize the expression pattern of Jdp2 alternative exons
1 under various stress stimuli known to involve Jdp2
function.

Since little is known about the subcellular localization
of Jdp2 (15), we compared the localization pattern of full-
length and isoform Jdp2 by immunofluorescence. We also
considered the possibility that the alternative N-termini
of the isoforms, and in particular the long alternative
N-terminus of Jdp2-132, could harbor signals involved
in subcellular localization. However, both Jdp2 and
Jdp2-132, Jdp2-119 and Jdp2-107 isoforms accumulated
exclusively to the nucleus on over-expression in murine
fibroblasts. Hence, our results indicate that the N-termi-
nus of neither Jdp2 (residues 1-68) nor of the isoforms
contain important determinants involved in nuclear trans-
port. These, then, are likely to locate within the basic
DNA-binding region as for other AP-1 factors.

Retroviral activation of Jdp2 in T-cell lymphomas
of mice is currently the strongest evidence for a gain-of-
function potential of Jdp2 in cancer development in the
hematopoietic system. The observation that truncated
transcripts in some tumors were almost exclusively
up-regulated indicate a tumorigenic potential of Jdp2 iso-
forms lacking the N-terminus, which is involved in making
associations to histones and contributes a histone acetyla-
tion inhibitory (INHAT) capacity to Jdp2 (7). Other
tumor samples (mainly cluster B tumors) apparently
resulted in elevation of only canonical Jdp2. These obser-
vations are in line with the finding of increased anchorage-
independent growth potential of NRAS G12D both when
expressed together Jdp2 and Jdp2 isoforms lacking the
INHAT. It should be noted that in contrast to our find-
ings, Heinrich et al. (21) reported full-length Jdp2
to repress oncogenic RasV12 transformation (21). We
speculate that a possible explanation could be related to
highly different ectopic levels of Jdp2; by applying a LTR/
IRES-mediated expression strategy after retroviral trans-
duction, we dramatically lowered ectopic Jdp2 protein
levels as compared to SV40 promoter-driven expression
after plasmid transfection, and hence may have been
below a certain threshold for cellular toxicity responses,
or minimized squelching of Jdp2-dimerization partners by
ectopic Jdp2 not bound to DNA (72). In our clonogenic
assays, which were based upon plasmid transfection of
SV40 promoter-driven Jdp2 expression constructs fol-
lowed by selection for high transgene expression, we
observed lack of cell survival in the case of full-length as
well as isoform Jdp2 proteins. This result independently
demonstrates an effect of Jdp2 isoforms lacking the
N-terminal INHAT domain.

The finding of a similar potential of full-length and
truncated Jdp2 in colony formation in the presence of
Nras G12D raises the possibility that the tumorigenic
role of retroviral activation of Jdp2 is independent of
the N-terminal repressive domain. Since some tumors
samples had low canonic RNA levels but high intron
2-derived transcripts (e.g. tumors 1161 and 1363), such a
scenario would predict that selection for MLV integra-
tions within Jdp2 be attributed solely to the ability to
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activate the intron 2 promoters. An alternative possibility
is that full-length and truncated Jdp2 have separate roles
during T-cell lymhomagenesis. In favor of this model are
several indirect connections between transformation and
the Jdp2 N-terminus. For instance, Blazek et al. (16) found
the N-terminus of Jdp2 indispensable for transformation
of chick embryo fibroblasts and proposed the Jdp2-Fos
heterodimer as a likely candidate for this activity (16).
Also, the N-terminus, together with the DNA-binding
domain of Jdp2, was important in Jdp2-stimulated pro-
gesterone-dependent transcriptional activation by PR (8),
linking this part of Jdp2 to the homeostasis of female
reproductive tissue. Recently, Jdp2 was found to repress
transcription through consensus ATF/CRE sites of the
immediate early gene ATF3 (73), which in some models
appears to act as a tumor suppressor of Ras-mediated
tumorigenesis (74,75). Although the involvement of
Jdp2 N-terminus was not specifically addressed, based on
well-established work on Jdp2 transcription repression
through ATF/CRE (1,2,7,16), ATF3 repression is likely
to require the INHAT domain of Jdp2 also. It thus
remains to be clarified whether Jdp2 isoforms lacking an
inhibitory N-terminal domain but have retained the basic
and zipper domain encoded by exons 3 and 4 contribute
a dominant negative or a loss of function effect to cellular
Jdp2-including protein complexes. In that regard, it would
be important to investigate how a deregulated balance
of Jdp2 isoforms, as found here in T-cell lymphomas,
impacts on AP-1 complex constituents and Jdp2 target
genes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors are grateful to Dr Ami Aronheim and Dr Kaz
Yokoyama for anti-Jdp2 antibodies, and to Dr Borja
Ballarin-Gonzalez for providing Nras vectors. They also
thank Lone Hgjgaard Nielsen for excellent technical
assistance.

FUNDING

The Danish Cancer Society, Dansk Kreftforsknings Fond
and The Danish Agency for Science, Technology, and
Innovation; in part by a scholarship from the Danish
Research School in Molecular Cancer Research (to
M.H.R.); a Hallas—Moller fellowship from the NovoNor-
disk Foundation (to A.L.N.); NIH grant RO1A141570 (to
M.W.). Funding for open access charge: Danish Agency
for Science, Technology, and Innovation.

Conflict of interest statement. None declared.

REFERENCES

1. Aronheim,A., Zandi,E., Hennemann,H., Elledge,S.J. and Karin,M.
(1997) Isolation of an AP-1 repressor by a novel method for
detecting protein—protein interactions. Mol. Cell Biol., 17,
3094-3102.



4670

2.

(55

wn

[=))

oo

Nel

10.

—_

12.

14.

15.

17.

18

19.

20.

Nucleic Acids Research, 2009, Vol. 37, No. 14

Jin,C., Ugai,H., Song,J., Murata,T., Nili,F., Sun,K., Horikoshi,M.
and Yokoyama,K.K. (2001) Identification of mouse Jun
dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett.,
489, 34-41.

. Broder,Y.C., Katz,S. and Aronheim,A. (1998) The ras recruitment

system, a novel approach to the study of protein—protein interac-
tions. Curr. Biol., 8, 1121-1124.

. Cherasse,Y ., Chaveroux,C., Jousse,C., Maurin,A.C., Carraro,V.,

Parry,L., Fafournoux,P. and Bruhat,A. (2008) Role of the repressor
JDP2 in the amino acid-regulated transcription of CHOP. FEBS
Lett., 582, 1537-1541.

. Weidenfeld-Baranboim, K., Bitton-Worms,K. and Aronheim,A.

(2008) TRE-dependent transcription activation by JDP2-CHOP10
association. Nucleic Acids Res., 36, 3608-3619.

.Jin,C., Li,H., Murata,T., Sun,K., Horikoshi,M., Chiu,R. and

Yokoyama,K.K. (2002) JDP2, a repressor of AP-1, recruits a
histone deacetylase 3 complex to inhibit the retinoic acid-induced
differentiation of F9 cells. Mol. Cell Biol., 22, 4815-4826.

.Jin,C., Kato,K., Chimura,T., Yamasaki,T., Nakade,K., Murata,T.,

Li,H., Pan,J., Zhao,M., Sun,K. er al. (2006) Regulation of histone
acetylation and nucleosome assembly by transcription factor JDP2.
Nat. Struct. Mol. Biol., 13, 331-338.

. Wardell,S.E., Boonyaratanakornkit,V., Adelman,J.S., Aronheim,A.

and Edwards,D.P. (2002) Jun dimerization protein 2 functions as
a progesterone receptor N-terminal domain coactivator. Mol. Cell
Biol., 22, 5451-5466.

. Kawaida,R., Ohtsuka,T., Okutsu,J., Takahashi, T., Kadono,Y.,

Oda,H., Hikita,A., Nakamura,K., Tanaka,S. and Furukawa,H.
(2003) Jun dimerization protein 2 (JDP2), a member of the AP-1
family of transcription factor, mediates osteoclast differentiation
induced by RANKL. J. Exp. Med., 197, 1029-1035.
Ostrovsky,O., Bengal,E. and Aronheim,A. (2002) Induction of
terminal differentiation by the c-Jun dimerization protein JDP2 in
C2 myoblasts and rhabdomyosarcoma cells. J. Biol. Chem., 277,
40043-40054.

. Nakade,K., Pan,J., Yoshiki,A., Ugai,H., Kimura,M., Liu,B., Li,H.,

Obata,Y., Iwama,M., Itohara,S. er al. (2007) JDP2 suppresses
adipocyte differentiation by regulating histone acetylation. Cell
Death Differ, 14, 1398-1405.

Lerdrup.M., Holmberg,C., Dietrich,N., Shaulian,E., Herdegen,T.,
Jaattela,M. and Kallunki,T. (2005) Depletion of the AP-1 repressor
JDP2 induces cell death similar to apoptosis. Biochim. Biophys.
Acta, 1745, 29-37.

. Piu,F., Aronheim,A., Katz,S. and Karin,M. (2001) AP-1 repressor

protein JDP-2: inhibition of UV-mediated apoptosis through p53
down-regulation. Mol. Cell Biol., 21, 3012-3024.

Nakade,K., Pan,J., Yamasaki,T., Murata,T., Wasylyk,B. and
Yokoyama,K.K. (2009) JDP2 (Jun dimerization protein 2)-deficient
mouse embryonic fibroblasts are resistant to replicative senescence.
J. Biol. Chem., 284, 10808-10817.

Kehat.I., Heinrich,R., Ben-Izhak,O., Miyazaki,H., Gutkind,J.S. and
Aronheim,A. (2006) Inhibition of basic leucine zipper transcription
is a major mediator of atrial dilatation. Cardiovasc. Res., 70,
543-554.

. Blazek,E., Wasmer,S., Kruse,U., Aronheim,A., Aoki,M. and

Vogt,P.K. (2003) Partial oncogenic transformation of chicken
embryo fibroblasts by Jun dimerization protein 2, a negative
regulator of TRE- and CRE-dependent transcription. Oncogene, 22,
2151-2159.

Hwang,H.C., Martins,C.P., Bronkhorst,Y., Randel,E., Berns,A.,
Fero,M. and Clurman,B.E. (2002) Identification of oncogenes
collaborating with p27Kipl loss by insertional mutagenesis and
high-throughput insertion site analysis. Proc. Natl Acad. Sci. USA,
99, 11293-11298.

. Rasmussen,M.H., Serensen,A.B., Morris,D.W., Dutra,J.C.,

Engelhard,E.K., Wang,C.L., Schmidt,J. and Pedersen,F.S. (2005)
Tumor model-specific proviral insertional mutagenesis of the Fos/
Jdp2/Batf locus. Virology, 337, 353-364.

Sauvageau,M., Miller,M., Lemieux,S., Lessard,J., Hebert,J. and
Sauvageau,G. (2008) Quantitative expression profiling guided by
common retroviral insertion sites reveals novel and cell type-specific
cancer genes in leukemia. Blood, 111, 790-799.

Stewart,M., Mackay,N., Hanlon,L., Blyth,K., Scobie,L.,
Cameron,E. and Neil,J.C. (2007) Insertional mutagenesis reveals

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

w2
—

32.

33.

34.

35.

36.

37.

38.

39.

40.

progression genes and checkpoints in MYC/Runx2 lymphomas.
Cancer Res., 67, 5126-5133.

Heinrich,R., Livne,E., Ben-Izhak,O. and Aronheim,A. (2004) The
c-Jun dimerization protein 2 inhibits cell transformation and acts
as a tumor suppressor gene. J. Biol. Chem., 279, 5708-5715.
Katz,S. and Aronheim,A. (2002) Differential targeting of the stress
mitogen-activated protein kinases to the c-Jun dimerization protein
2. Biochem. J., 368, 939-945.

Katz,S., Heinrich,R. and Aronheim,A. (2001) The AP-1 repressor,
JDP2, is a bona fide substrate for the c-Jun N-terminal kinase.
FEBS Lett., 506, 196-200.

Mikkers,H., Allen,J., Knipscheer,P., Romeijn,L., Hart,A., Vink,E.
and Berns,A. (2002) High-throughput retroviral tagging to identify
components of specific signaling pathways in cancer. Nat. Genet.,
32, 153-159.

Uren,A.G., Kool,J., Berns,A. and van Lohuizen,M. (2005)
Retroviral insertional mutagenesis: past, present and future.
Oncogene, 24, 7656-7672.

Wang,C.L., Wang,B.B., Bartha,G., Li,L., Channa,N., Klinger,M.,
Killeen,N. and Wabl,M. (2006) Activation of an oncogenic
microRNA cistron by provirus integration. PNAS, 103,
18680-18684.

Ruijter,J.M., Ramakers,C., Hoogaars,W.M., Karlen,Y., Bakker,O.,
van den Hoff,M.J. and Moorman,A.F. (2009) Amplification
efficiency: linking baseline and bias in the analysis of quantitative
PCR data. Nucleic Acids Res., 37, e45.

Vandesompele,J., De Preter,K., Pattyn,F., Poppe,B., Van Roy,N.,
De Paepe,A. and Speleman,F. (2002) Accurate normalization of
real-time quantitative RT-PCR data by geometric averaging of
multiple internal control genes. Genome Biol., 3, RESEARCHO0034.
Bahrami,S., Jespersen,T., Pedersen,F.S. and Duch,M. (2003)
Mutational library analysis of selected amino acids in the receptor
binding domain of envelope of Akv murine leukemia virus by
conditionally replication competent bicistronic vectors. Gene, 315,
51-61.

Lovmand,J., Justesen,J., Foss,M., Lauridsen,R.H., Lovmand,M.,
Modin,C., Besenbacher,F., Pedersen,F.S. and Duch,M. (2009) The
use of combinatorial topographical libraries for the screening of
enhanced osteogenic expression and mineralization. Biomaterials,
30, 2015-2022.

. Beck-Engeser,G.B., Lum,A.M., Huppi,K., Caplen,N.J., Wang,B.B.

and Wabl,M. (2008) Pvtl-encoded microRNAs in oncogenesis.
Retrovirology, 5, 4.

Glud,S.Z., Serensen,A.B., Andrulis,M., Wang,B., Kondo.E.,
Jessen,R., Krenacs,L., Stelkovics,E., Wabl,M., Serfling,E. et al.
(2005) A tumor-suppressor function for NFATc3 in T-cell
lymphomagenesis by murine leukemia virus. Blood, 106,
3546-3552.

Lum,A.M., Wang,B.B., Li,L., Channa,N., Bartha,G. and Wabl, M.
(2007) Retroviral activation of the mir-106a microRNA cistron in T
lymphoma. Retrovirology, 4, 5.

Carninci,P., Sandelin,A., Lenhard,B., Katayama,S., Shimokawa,K.,
Ponjavic,J., Semple,C.A., Taylor,M.S., Engstrom,P.G., Frith,M.C.
et al. (2006) Genome-wide analysis of mammalian promoter
architecture and evolution. Nat. Genet., 38, 626-635.

Frith,M.C., Valen,E., Krogh,A., Hayashizaki,Y., Carninci,P. and
Sandelin,A. (2008) A code for transcription initiation in mammalian
genomes. Genome Res., 18, 1-12.

Brudno,M., Chapman,M., Gottgens,B., Batzoglou,S. and
Morgenstern,B. (2003) Fast and sensitive multiple alignment of
large genomic sequences. BMC Bioinformatics, 4, 66.
Cartharius, K., Frech,K., Grote, K., Klocke,B., Haltmeier,M.,
Klingenhoff,A., Frisch,M., Bayerlein,M. and Werner,T. (2005)
MatlInspector and beyond: promoter analysis based on transcription
factor binding sites. Bioinformatics, 21, 2933-2942.

Bustin,S.A. (2000) Absolute quantification of mRNA using real-
time reverse transcription polymerase chain reaction assays. J. Mol.
Endocrinol., 25, 169—-193.

Bustin,S.A. (2002) Quantification of mRNA using real-time
reverse transcription PCR (RT-PCR): trends and problems. J. Mol.
Endocrinol., 29, 23-39.

Lund,A.H., Turner,G., Trubetskoy,A., Verhoeven,E., Wientjens,E.,
Hulsman,D., Russell,R., DePinho,R.A., Lenz,J. and van
Lohuizen,M. (2002) Genome-wide retroviral insertional tagging



41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

S5.

of genes involved in cancer in Cdkn2a-deficient mice. Nat. Genet.,
32, 160-165.

Hansen,G.M., Skapura,D. and Justice,M.J. (2000) Genetic profile
of insertion mutations in mouse leukemias and lymphomas. Genome
Res., 10, 237-243.

Kim,R., Trubetskoy,A., Suzuki,T., Jenkins,N.A., Copeland,N.G.
and LenzJ. (2003) Genome-based identification of cancer genes by
proviral tagging in mouse retrovirus-induced T-cell lymphomas.

J. Virol., 77, 2056-2062.

Akagi,K., Suzuki,T., Stephens,R.M., Jenkins,N.A. and
Copeland,N.G. (2004) RTCGD: retroviral tagged cancer gene
database. Nucleic Acids Res., 32, D523-D527.

Liu,J., Sorensen,A.B., Wang,B., Wabl,M., Nielsen,A.L. and
Pedersen,F.S. (2009) Identification of novel Bach2 transcripts and
protein isoforms through tagging analysis of retroviral integrations
in B-cell lymphomas. BMC Mol. Biol., 10, 2.

Carninci,P., Kasukawa,T., Katayama,S., Gough,J., Frith, M.C.,
Maeda,N., Oyama,R., Ravasi,T., Lenhard,B., Wells,C. et al. (2005)
The transcriptional landscape of the mammalian genome. Science,
309, 1559-1563.

Birney,E., Stamatoyannopoulos,J.A., Dutta,A., Guigo,R.,
Gingeras,T.R., Margulies,E.H., Weng,Z., Snyder,M.,
Dermitzakis,E.T., Thurman,R.E. e al. (2007) Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE npilot project. Nature, 447, 799-816.

Denoeud.F., Kapranov,P., Ucla,C., Frankish,A., Castelo,R.,
Drenkow,J., Lagarde,J., Alioto,T., Manzano,C., Chrast,J. et al.
(2007) Prominent use of distal 5 transcription start sites and
discovery of a large number of additional exons in ENCODE
regions. Genome Res., 17, 746-759.

Kapranov,P., Drenkow,J., Cheng,J., Long,J., Helt,G., Dike,S. and
Gingeras,T.R. (2005) Examples of the complex architecture of the
human transcriptome revealed by RACE and high-density tiling
arrays. Genome Res., 15, 987-997.

Ravasi,T., Suzuki,H., Pang,K.C., Katayama,S., Furuno,M.,
Okunishi,R., Fukuda,S., Ru,K., Frith, M.C., Gongora,M.M. et al.
(2006) Experimental validation of the regulated expression of large
numbers of non-coding RNAs from the mouse genome. Genome
Res., 16, 11-19.

WuJ., DuJ., Rozowsky,J., Zhang,Z., Urban,A., Euskirchen,G.,
Weissman,S., Gerstein,M. and Snyder,M. (2008) Systematic analysis
of transcribed loci in ENCODE regions using RACE sequencing
reveals extensive transcription in the human genome. Genome Biol.,
9, R3.

Kimura,K., Wakamatsu,A., Suzuki,Y., Ota,T., Nishikawa,T.,
Yamashita,R., Yamamoto,J.-i., Sekine,M., Tsuritani,K.,
Wakaguri,H. et al. (2006) Diversification of transcriptional modu-
lation: Large-scale identification and characterization of putative
alternative promoters of human genes. Genome Res., 16, 55-65.
Trinklein,N.D., Karaoz,U., Wu,J., Halees,A., Force Aldred,S.,
Collins,P.J., Zheng,D., Zhang,Z.D., Gerstein,M.B., Snyder,M. et al.
(2007) Integrated analysis of experimental data sets reveals many
novel promoters in 1% of the human genome. Genome Res., 17,
720-731.

Cooper,S.J., Trinklein,N.D., Anton,E.D., Nguyen,L. and
Myers,R.M. (2006) Comprehensive analysis of transcriptional
promoter structure and function in 1% of the human genome.
Genome Res., 16, 1-10.

Bajic,V.B., Tan,S.L., Christoffels,A., Schonbach,C., Lipovich,L.,
Yang,L., Hofmann,O., Kruger,A., Hide,W., Kai,C. et al. (2006)
Mice and men: their promoter properties. PLoS Genet., 2, e54.
Schug,J., Schuller,W.P., Kappen,C., Salbaum,J.M., Bucan,M. and
Stoeckert,C.J. Jr. (2005) Promoter features related to tissue
specificity as measured by Shannon entropy. Genome Biol., 6, R33.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Nucleic Acids Research, 2009, Vol. 37, No. 14 4671

Yang,C., Bolotin,E., Jiang,T., Sladek,F.M. and Martinez,E. (2007)
Prevalence of the initiator over the TATA box in human and
yeast genes and identification of DNA motifs enriched in human
TATA-less core promoters. Gene, 389, 52-65.

Nagasaki,H., Arita,M., Nishizawa,T., Suwa,M. and Gotoh,O.
(2005) Species-specific variation of alternative splicing and
transcriptional initiation in six eukaryotes. Gene, 364, 53-62.
Amoui,M., Baylink,D.J., Tillman,J.B. and Lau,K.H. (2003)
Expression of a structurally unique osteoclastic protein-tyrosine
phosphatase is driven by an alternative intronic, cell type-specific
promoter. J. Biol. Chem., 278, 44273-44280.

Rigault,C., Le Borgne,F. and Demarquoy,J. (2006) Genomic
structure, alternative maturation and tissue expression of the human
BBOXI1 gene. Biochim. Biophys. Acta, 1761, 1469-1481.
Streb,J.W., Kitchen,C.M., Gelman,l.H. and Miano,J.M. (2004)
Multiple promoters direct expression of three AKAP12 isoforms
with distinct subcellular and tissue distribution profiles. J. Biol.
Chem., 279, 56014-56023.

Turner,J.D., Schote,A.B., Macedo,J.A., Pelascini,L.P. and
Muller,C.P. (2006) Tissue-specific glucocorticoid receptor expres-
sion, a role for alternative first exon usage? Biochem. Pharmacol.,
72, 1529-1537.

Walsh,N.C., Cahill,LM., Carninci,P., Kawai,J., Okazaki,Y.,
Hayashizaki,Y., Hume,D.A. and Cassady,A.I. (2003) Multiple
tissue-specific promoters control expression of the murine
tartrate-resistant acid phosphatase gene. Gene, 307, 111-123.
Zhang,T., Haws,P. and Wu,Q. (2004) Multiple variable first exons:
a mechanism for cell- and tissue-specific gene regulation. Genome
Res., 14, 79-89.

Vinson,C., Myakishev,M., Acharya,A., Mir,A.A., MollJ.R. and
Bonovich,M. (2002) Classification of human B-ZIP proteins based
on dimerization properties. Mol. Cell Biol., 22, 6321-6335.
Chen,B.P., Liang,G., Whelan,J. and Hai,T. (1994) ATF3 and
ATF3 delta Zip. Transcriptional repression versus activation by
alternatively spliced isoforms. J. Biol. Chem., 269, 15819-15826.
Preiss, T. and Hentze,M.W. (2003) Starting the protein synthesis
machine: eukaryotic translation initiation. Bioessays, 25, 1201-1211.
Kozak,M. (1987) An analysis of 5'-noncoding sequences from

699 vertebrate messenger RNAs. Nucleic Acids Res., 15,
8125-81483.

Kozak,M. (1987) At least six nucleotides preceding the AUG
initiator codon enhance translation in mammalian cells. J. Mol.
Biol., 196, 947-950.

Kozak,M. (1999) Initiation of translation in prokaryotes and
eukaryotes. Gene, 234, 187-208.

Kozak,M. (2002) Pushing the limits of the scanning mechanism for
initiation of translation. Gene, 299, 1-34.

Nakagawa,S., Niimura,Y., Gojobori,T., Tanaka,H. and Miura,K.
(2008) Diversity of preferred nucleotide sequences around the
translation initiation codon in eukaryote genomes. Nucleic Acids
Res., 36, 861-871.

Gill,G. and Ptashne,M. (1988) Negative effect of the transcriptional
activator GAL4. Nature, 334, 721-724.

Weidenfeld-Baranboim,K., Hasin,T., Darlyuk,I., Heinrich,R.,
Elhanani,O., Pan,J., Yokoyama,K.K. and Aronheim,A. (2009)
The ubiquitously expressed bZIP inhibitor, JDP2, suppresses the
transcription of its homologue immediate early gene counterpart,
ATF3. Nucleic Acids Res., 37, 2194-2203.

Lu,D., Wolfgang,C.D. and Hai,T. (2006) Activating transcription
factor 3, a stress-inducible gene, suppresses Ras-stimulated
tumorigenesis. J. Biol. Chem., 281, 10473-10481.

Yan,C., Lu,D., Hai,T. and Boyd,D.D. (2005) Activating
transcription factor 3, a stress sensor, activates p53 by blocking
its ubiquitination. EMBO J., 24, 2425-2435.



