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ABSTRACT

The number of known alternative human isoforms
has been increasing steadily with the amount of
available transcription data. To date, over 100 000
isoforms have been detected in EST libraries,
and at least 75% of human genes have at least
one alternative isoform. In this paper, we propose
that most alternative splicing events are the result
of noise in the splicing process. We show that the
number of isoforms and their abundance can be
predicted by a simple stochastic noise model that
takes into account two factors: the number of
introns in a gene and the expression level of a
gene. The results strongly support the hypothesis
that most alternative splicing is a consequence of
stochastic noise in the splicing machinery, and
has no functional significance. The results are also
consistent with error rates tuned to ensure that an
adequate level of functional product is produced
and to reduce the toxic effect of accumulation
of misfolding proteins. Based on simulation of
sampling of virtual cDNA libraries, we estimate
that error rates range from 1 to 10% depending
on the number of introns and the expression level
of a gene.

BACKGROUND

The number of human genes with alternative splicing
is presently not well established. Early estimates based
on expressed sequence tag (EST) data suggested that
around 35–40% of all genes have at least one alternative
isoform (1,2). Current estimates based on a larger collec-
tion of EST libraries, high-throughput sequencing and
microarray experiments show numbers as high as 95%
(3). It is now clear that nearly every gene with potential
for splicing produces alternative isoforms.

Numerous bioinformatics studies have analyzed tissue
specificity, species conservation, domain architecture,
sequence properties and structural properties of isoforms

(2,4–7). Most studies relate the probability of an alterna-
tive splice isoform having function to tissue specificity,
abundance, or conservation across species. It is estimated
that �10–20% of all of alternative splicing events are
conserved across two or more species (8–12). Conserved
alternative splicing events are found to be enriched
in characteristics consistent with generation of novel
molecular function, such as increased coding frame pre-
servation, increase in abundance and preference for
changes in functional regions (13). While some of these
conserved isoforms likely have function, it is by no
means clear that all do. Additionally, the functional
properties of the much larger set of low-abundance spe-
cies-specific isoforms are left open.
There are essentially four hypotheses that can explain

the presence of these isoforms: (i) alternative isoforms
produce novel protein sequence and thus generate new
functionality (4,14–16); (ii) alternative isoforms that do
not code for functional proteins but rather regulate the
total abundance of functional isoform(s) by nonsense-
mediated decay (NMD) or protein degradation pathways
(17,18); (iii) alternative isoforms are consistently pro-
duced, but have no functional consequences; and (iv)
alternative isoforms are the result of stochastic noise in
the splicing process (15,19–21).
As noted above, there is clear evidence that hypotheses

1 and 2—that splicing products produce proteins with
alternative functions or serve to regulate the level of
production of functional protein—are partially correct.
Hypotheses 3 and 4—that alternative splicing products
are mostly nonfunctional—are suggested by the large frac-
tion of splice forms that are of low abundance and not
conserved across species. These are unlikely to code for
functional protein products, but as long as they do not
negatively impact the normal function of a gene there is
little selection pressure to limit their production. It has
been proposed that alternative isoforms might serve as
a testing ground for molecular evolution (22–24).
In this paper, we explore the consequences of hypothesis

4, that stochastic noise largely determines the number of
alternative isoforms and their transcript abundance.
Random fluctuations in various environmental and cellu-
lar and molecular factors result in nonperfect selection of
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splice sites, and as a consequence a single gene will pro-
duce low-level expression of many different alternative
products. In this context, biologically meaningful alterna-
tive splicing can be viewed as regulated selection of splice
sites, in the background of a much larger set of all possible
variations. We will refer to instances of unregulated splice
site selection as ‘errors’, and an ‘error rate’ as a frequency
with which such events occur.
We make two key observations supporting the noisy

splicing hypothesis: The number of isoforms increases
as a function of the expression level of a gene and with
the number of introns in a gene. That is, the greater the
number of splicing reactions—the greater the number of
opportunities to select alternative splice sites—the greater
is the number of isoforms produced. We find that there is
large variability in implied error rates and that genes with
many splicing reactions have reduced error rates. Based
on these observations, we propose that there is selection
pressure on highly expressed genes and genes with a large
number of introns to maintain low levels of alternative
splicing.
To more quantitatively investigate the validity of the

noise hypothesis, we have developed three models of
error rate per splicing reaction: (i) a constant error rate
model; (ii) error rates varying with the number of introns
in a gene; and (iii) error rates varying with the number of
introns and transcripts of a gene. Each model was tested
by simulating the production and experimental sampling
of transcripts from virtual complementary DNA (cDNA)
libraries. The observed data are most consistent with the
error model that takes into account the number of introns
and the relative abundance of a gene. Furthermore, we
find that the density of predicted exon splicing enhancers
increases with the number of splicing reactions, implying
better-determined splice sites in genes undergoing many
splicing reactions. The success of the model in reproducing
nontrivial observed trends in the experimental data
strongly supports the view that a large fraction of minor
isoforms are indeed nonfunctional.

METHODS

Data sources

The human genome sequence (25) was downloaded from
NCBI (NCBI Human Genome Build 35). The transcript
data were obtained from Refseq (26) (Release 17; May
2006; 29 475 sequences), and Unigene (26) (May 2006;
6 586 000 sequences). The location of genes on chromo-
somes was taken from Refseq database annotation. For
each gene, all sequences were aligned to a human genomic
contig using the sim4 algorithm (27) and then checked for
alignment errors (see list of rules below).

Alignment quality control

The following five rules are used to identify sequences
containing likely alignment and sequencing errors.

(i) All implied splice sites must conform to the spliceo-
some pattern - 0GT/AG0.

(ii) All exons must have >90% identity with the corre-
sponding genomic sequence.

(iii) Alignment to genomic sequence must not contain
any missing segments.

(iv) The sequence around exon junctions (6 nt into each
exon) must have 100% identity with the correspond-
ing contig.

(v) The cDNA must not contain any introns of size
<30 nt.

Two additional filters were applied to minor isoforms:
(a) minor isoforms must share at least one exon with the
corresponding major isoform (overlap of >1 nt); and (ii)
minor isoforms must not contain an intron retention event
relative to the major isoform.

Selection of major isoform

For each gene, we identified one of the cDNAs as the
major isoform—that is, the isoform whose splicing pat-
terns are most frequently observed across all Unigene
EST libraries. The exon structure of major isoforms is
used as a reference to which the exon structures of
minor isoforms are compared. To determine major iso-
forms, sequences are sorted using the following procedure.
First, we created a list of introns and all sequences that are
associated with those introns. For each intron in a cDNA,
we calculate the number of EST sequences and number of
unique EST libraries that contain this intron. For each
cDNA we then compute three values: sequence length,
number of ESTs containing one or more of its introns
and the number of unique EST libraries containing any
of its introns. Finally, we sort the cDNAs using these
values in the following order: (i) number of unique EST
libraries; (ii) total number of ESTs; and (iii) sequence
length.

The top ranking sequence is selected as the major
isoform.

Data sets

Complete set. EST sequences from all Unigene EST
libraries (8674 libraries in total) that have a unique map-
ping to a Refseq gene entry. The data set contains 15 342
genes with 5 313 618 EST sequences that have passed qual-
ity-control checks.

CGAP set. Subset of 325 libraries from the ‘complete
set’. Only nonnormalized libraries derived from normal
tissue samples are included. (14 397 genes, 530 618 EST
sequences).

CGAP lung set. A subset of 16 libraries from the ‘com-
plete set’. Only non-normalized libraries derived from
a normal lung tissue are included. (6728 genes, 21 894
EST sequences)

Lib8840. The single largest UNIGENE EST library, from
normal pancreatic islet cells (4447 genes, 40 083 EST
sequences, NCBI dbEST Library #8840).
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Identification of alternative splicing events

For each gene, we compare the intron structure of the
major isoform with the intron structure of each EST
sequence. If an EST sequence contains at least one
intron that differs from the corresponding major isoform
intron at the 50 or 30 splice site, that EST is counted as an
alternative transcript. The total number of alternative
transcripts is defined as the total number of ESTs contain-
ing alternative splicing. The fraction of alternative tran-
scripts is defined as the number of ESTs with alternative
splicing divided by the total number of ESTs for a gene.
The number of isoforms for a gene is defined as the
number of unique intron patterns discovered in the EST
libraries. We also defined the number of detected splicing
reactions as the total number of introns observed in all
EST sequences of a gene (illustrated in Figure 1).

EST-based abundance measure

To estimate the abundance of transcripts for a gene
per cell based on the EST library collection, we used the
following formula:

NðtranscriptÞ ¼ C �
NðgeneÞ

NðtotalÞ
1

where N(gene) is the number of observed ESTs for a given
gene, N(total) is the size of the CGAP EST library, and
C is a scaling constant (�1.5 in CGAP 325 library subset)
to make the total number of generated transcripts equal
to 800 000, approximately the content of a single human
cell (28).

Microarray-based abundance measure

Microarray data from the NCBI GEO Series GSE3526
were used in this study. These data cover over 100

different normal tissues from 10 human subjects. The com-
parison between microarray signal values and ESTs
counts per gene in the CGAP subset is shown in
Supplementary Figure 4. For each gene, we compute aver-
age signal values across 353 samples from the microarray
series. The genes were grouped into 100 equal-size bins,
based on the average signal values, and within each group,
the mean number of observed ESTs and the mean micro-
array signal were calculated. The signal value is a measure
of probe intensity and it has been shown (28) that log
(probe intensity) is linearly proportional to log(transcripts
per cell). We find a strong correlation between number of
ESTs per gene and microarray signal values (correlation
0.93, P-value <2e-16) on a log–log scale. Based on the
fit between microarray signal and ESTs per gene, we use
the following formula to estimate the number of tran-
scripts of each gene in a cell:

NðtranscriptÞ ¼ C � � � Sk 2

Where S is the microarray signal value, �=0.34 and
k=0.91 are values obtained from the fit of EST counts
to microarray signal (Supplementary Figure 4), and C=2
is a scaling constant to make the total number of
generated transcripts equal to 800 000, approximately the
content of a single human cell (28).

Binary transcript representation

Using the intron counts, error rate and numbers of tran-
scripts per cell, we simulate the intron structure of a set of
transcripts for each gene, as many transcripts as in a single
cell. Figure 5 gives an illustrative example, for a gene with
six introns and 10 transcripts. The intron structure of a
given transcript is encoded as a binary string of length
equal to the number of introns in the major isoform.
The alternative introns—introns that differ from the
major isoform in location of the 50 or 30 splice site—are
represented by the symbol ‘1’, while introns with same
genomic coordinates as the major isoform are represented
by the symbol ‘0’. In this schema, transcripts 1, 3, 6 and 10
encode the major isoform of the gene, producing the string
‘000000’. Transcripts 2, 4 and 5 contain exon skips that
are different from the major isoform for two introns, thus
producing ‘01000’, ‘00001’ and ‘00001’ strings. Transcripts
7–9 contain alternative 50 and 30 splicing events that
modify only one intron, thus producing ‘000010’,
‘000001’ and ‘001000’ strings respectively. In generating
the strings, exon indels are chosen �49% of the time,
alternative 50 splice sites are chosen �25% and alternative
30 splice sites are chosen the remaining �26% of the time,
in accordance with the overall ratio found in 56 419 com-
pletely sequenced cDNAs (7). There are two drawbacks to
binary representation of isoforms. First, events that
modify both 30 and 50 ends of an intron are not taken
into account. Second, the binary representation cannot
distinguish between an alternative 30 isoform and an alter-
native 50 of the isoform of the same intron. As a conse-
quence, we occasionally undercount the number of unique
isoforms for a given gene. We tested a number of alterna-
tive alphabet representations, and found no significant

Major Isoform

EST1

EST2

EST3

EST4

EST5

EST6

EST7

Figure 1. Example analysis of EST sequences. In this hypothetical
example, the major isoform of a gene has six introns and seven ESTs
have been observed in a library. Three of the ESTs sequences (EST3,
EST4, EST5) contain alternative introns—introns that differ at the 30

and/or 50 end from corresponding intron in the major isoform. The
fractional abundance of alternative transcripts is 42% (3 out of 7).
The number of isoforms for this gene is 3 (major isoform, EST3
isoform and EST5 isoforms). EST4 is not counted as an additional
isoform because it has the same pattern as EST3. There are a total
of 13 detected splicing reactions (count of all introns from all ESTs)
and 3 of these splicing reactions are classified as alternative. The
implied error rate for this gene is 0.23 (3 out of 13 splicing reactions).
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difference in results, as the frequency of these events tends
to be low.

Simulation of sampling

Given the number of cells N in the simulation, each
cell containing 800 000 transcripts, with the transcript
per gene distribution obtained from microarray- or EST-
based estimates, we simulate clone selection by randomly
pooling out X number of transcripts from the pool.
For example, in the simulations shown in Figures 6–8,
we generated 800 000 000 virtual transcripts (1000 cells),
and randomly selected �530 000 of them for virtual
sequencing (the number in the CGAP EST library).
Each selected virtual transcript is then truncated, to

include only Y of its introns, where Y is obtained from
the observed introns per EST distribution, thus simulating
the partial coverage of message by ESTs. In the hypothet-
ical example shown in Figure 5, there are 10 transcripts.
Each virtual transcript is truncated to include the same
number of introns as found in a randomly chosen real
EST sequence for this gene. In cases where experimental
EST sequence contains no introns, the virtual transcript
was truncated to an empty string (represent by the ø
symbol in the illustration).
The truncated patterns containing at least one ‘1’

symbol represent detected alternatively spliced transcripts.
For example, the full intron pattern of transcript 2 is

‘01000’, but since only two introns are covered in the
corresponding EST sequence the pattern is truncated to
‘00’, thus resulting in an undetected alternatively spliced
isoform.

We obtain the number of alternative splicing transcripts
for a gene by counting the number of transcripts with at
least one detected alternative splicing event. We calculate
the number of alternative isoforms by counting number of
unique splicing patterns. For example, in the hypothetical
gene in Figure 5, there are a total of three detected alter-
native transcripts (transcripts 4, 5 and 7). The number
of detected alternative isoforms for this gene is two,
since transcripts 4 and 5 encode the same pattern, 011.
The fraction of alternative transcripts is defined as
the number of sampled alternative transcripts divided
by the total number of sampled transcripts; in this case,
3 out 10.

RESULTS

Definitions

Before describing the results, it is useful to clarify some
basic definitions used in this study. First, we define the
major isoform of a gene as the isoform that is most com-
monly observed in EST libraries. Using the major isoform
as a reference, we define an alternative splicing event as
one that differs at a 50 and/or 30 splice site from the corre-
sponding intron in the major isoform. If a transcript of a
gene contains one or more alternative splicing events, we
call it an alternative transcript. An alternative isoform is
defined as a unique splicing pattern that is different from
the splicing pattern in the major isoform. A single such
isoform can be represented by multiple transcripts.
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Figure 2. Isoform distribution. (A) Distribution of number of alterna-
tive isoforms per gene derived from all 8674 Human Unigene EST
libraries (15 342 genes �5 313 000 EST sequences). The first bar con-
tains the 2013 genes (13%) with no observed alternative isoforms. The
median number of isoforms per gene is 4. (B) Fractional abundance of
alternative transcripts. For each gene in the CGAP set with a least one
minor isoform (1269 out of 14 397 genes). EST sequences of a gene
were compared to the major isoform to identify alternative splicing
events (see Methods section). We then calculate the fractional abun-
dance of alternative transcripts as the total number of ESTs with
one or more alternative introns divided by the total number of ESTs.
The median fractional abundance of alternative transcripts is �9%.
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Figure 3. Increase in observed number of isoforms as a function of
number of introns and EST observations. Genes from the CGAP set
were divided into a 10� 10 matrix, according to the number of sampled
introns in the major isoform and the number of observed ESTs per
gene (each group contains �140 genes). The mean number of observed
isoforms was calculated for each matrix element. As can be seen in the
plot, the number of isoforms increases as a function of both the
number of introns per gene and the number of sampled ESTs per gene.
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Data

We use EST libraries as a source of data on alternative
isoforms. These libraries represent an incomplete sampling
of the transcripts present in a collection of cells and are
mostly composed of non-full- length messages. EST
libraries are also frequently enriched for rare transcripts
through normalization and subtraction procedures, and so
the number of observed transcripts are not reflective of
actual abundances (29). There are also possible problems

with EST libraries constructed from pathogenic tissues,
which might contain many abnormal splicing events.
Before noise levels can be estimated, these issues need to
be resolved. The problem of limited sampling of ESTs can
be addressed by the use of simulations, as described later.
The problem of normalized, subtracted and pathogenic
tissue libraries can easily be addressed by removal of all
such libraries from the analysis. Thus, in addition to the
‘complete set’ of all 8674 EST UNIGENE libraries (26),
we created three EST library subsets: the CGAP subset

Figure 4. Dependence of alternative splicing events on number of splicing reactions. The number of detected splicing reactions is the number of all
introns that have been observed in all EST sequences of a gene. The number of alternative splicing reactions is a count of introns that differ in 50

and/or 30 splice site from the corresponding intron in the major isoform. (A) Mean number of splicing reactions versus mean number of alternative
splicing reactions. The increase in number of alternative splicing reactions is nonlinear. (B) Ratio of alternative splicing events to number of splicing
reactions, as a function of number of reactions plotted on log–log scale. Genes with many splicing reactions make fewer mistakes, producing a
decreased fraction of alternative introns. (Genes in the CGAP subset were divided into �100 equal-size groups based on number of splicing
reactions.).
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of 325 nonnormalized libraries derived from normal tissue
samples (30), the CGAP lung subset of 16 libraries derived
from a normal lung tissue, and the single UNIGENE EST
library derived from normal pancreatic islet cells (NCBI
dbEST Library #8840).

Properties of alternative transcripts

There are three observations consistent with the noise
hypothesis, described in the next sections.

Commonness of alternative isoforms. Figure 2A shows the
distribution of number of alternative isoforms per gene
derived from the complete set of 8674 EST libraries (see
‘Data sets’ section). Nearly 90% of all genes have alterna-
tive splicing, and the majority of genes have three to six
alternative isoforms. Of course, given that present EST
libraries sample only a small fraction of transcript space,
only a fraction of all isoforms have so far been observed.
An expected characteristic of noise transcripts is that they
will have low abundance. To get the approximate frac-
tional abundance of alternative transcripts, for each gene
we calculate the fraction of all observed EST sequences
that have at least one alternative intron. The resulting his-
togram of fractional abundance is shown in Figure 2B.
Indeed we find that the majority (more than 50%) of all
alternative transcripts are present at <10% fractional
abundance.

Increase in number of isoforms with number of introns
processed. A basic expectation of any error model is
that the number of mistakes is a function of the total
number of opportunities to make mistakes. For spliceo-
somes, the number of opportunities is determined by the
number of splicing reactions—the total number of introns
removed from all transcripts. Two factors determine the
number of splicing reactions: the number of introns
removed from each transcript, and the number of tran-
scripts produced per unit time. We use the number
of observed EST as a surrogate for expression rate
(See ‘Methods’ section for validation of this assumption).
The increase in the number of observed unique isoforms
as a function of the number of sampled introns and
the number of sampled ESTs is shown in Figure 3.
Consistent with the noise hypothesis, it can be seen that
both quantities contribute to an increase in the number of
isoforms.

Factors affecting noise levels

The implied splicing error rate per splicing reaction for a
set of genes may be calculated directly from observed data,
using the assumption that most alternative splicing events
are the result of mistakes in selection of splice sites.
If errors occur at a constant frequency then the number
of alternative splicing events produced should grow line-
arly with increase in the total number of splicing events.
Figure 4A shows the average number of detected alterna-
tive splicing reactions as a function of the total
of observed splicing reactions (the number of detected
introns in all EST sequences of a gene). As expected, the
number of detected alternative reactions increases with
increasing reactions, but, surprisingly, the increase is non-
linear. Figure 4B shows the average ratio of detected alter-
native reactions to the total number of splicing reactions,
also as a function of the number of splicing reactions. It is
clear that genes that undergo more splicing reactions make
relatively fewer mistakes, implying lower error rates.
This is by far the most surprising observation in our
analysis. The decline is not due to sampling or length
biases, since the number of detected alternative splicing
reactions is a subset of the total number of detected spli-
cing reactions, and thus both sets are subject to the same
biases.

Based on these observations we propose that selection
pressures influence splicing fidelity in two primary ways.
First, genes with many introns must have relatively low
error rates if adequate quantities of functional protein
products are produced. For example, with a 2% error
rate, nearly all transcripts of a gene with 100 introns
will contain at least one error (0.98100� 13%), whereas
for a gene with one intron and a 2% error rate, only
2% of transcript will be in error. Second, genes with
large abundance may have reduced error rates, to avoid
toxic effects on the cell: production of large quantities of
misfolded protein products may overwhelm the chaperone
system, and cause toxic protein aggregation (31,32).

While the trends in the data supporting a noise model
are clear, a quantitative test cannot be made using the EST
data directly. First, only a fraction of all exons are present
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Figure 5. Binary isoforms. Simulation and sampling of the isoform
composition of a gene with 10 virtual transcripts and 6 introns.
Exons are shown as rectangles. Alternative splicing events are indicated
by red intron bridges. The binary intron representation is shown above
each bridge, with the symbol ‘1’ indicating an alternative splicing event,
and the symbol ‘0’ representing a major splicing event. In the set of 10
there are total of six alternative transcripts (those with at least one ‘1’:
transcripts 2, 4, 5, 7, 8 and 9) with five unique alternative isoforms (one
pattern occurs twice, in transcripts 4 and 5). In this example, we assume
that partial message sequencing only included the colored exons.
With this particular sequencing, three alternative transcripts are
selected (4, 5 and 7), containing two of the five unique alternative iso-
forms (represented by the patterns 01 and 010). If an EST sequence
contains zero introns, it is truncated to a null string, illustrated with
transcripts 6, 8 and 10.
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in a typical EST. Second, only a small fraction of all
transcripts is sampled by present EST libraries. In the
next sections, we address these issues by using simulations
that take these biases into account.

Overview of noise models

We developed three models of error rate per splicing
reaction. The first model assumes that the error rate is
the same for all genes. The second model assumes that
the error rate is a function of the number of introns in a
gene. The third assumes that the error rate is a function of

the number of transcripts and the number of introns for a
given gene. The error models are used as input to a virtual
transcript machine, which generates transcript contents of
a cDNA library, consistent with the error assumptions.
We then simulate experimental EST sampling from this
cDNA library, creating virtual EST libraries, which
are then directly compared to real EST libraries.
Experimental cDNA libraries typically contain transcripts
from several million cells, and each cell contains �800 000
transcripts (28). No two cells are identical in their tran-
script content and most (40–48%) transcripts are present
at abundance levels of <1 copy per cell (28). To generate a
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virtual cDNA library we require three inputs: the number
of introns in each gene, the absolute message abundance
(transcripts per cell) for each gene, and a detailed error
model. We assume that the major isoform of a gene is
produced most frequently, and take the intron count
directly from the corresponding Refseq full-length
cDNA. We used two methods to estimate an approximate
number of transcripts per gene per cell. The first method is
based on the observed EST frequency for a gene in the
EST library, and the second method is based on micro-
array signal values (see ‘Methods’ section). The results

based on microarray signal values are in qualitative agree-
ment with EST-based measures and are reported in
Supplementary Figure 3.

Based on approximate copies per cell, intron count and
the choice of one of the three error models, we simulate
the transcript content for 1000 cells using the virtual tran-
script simulator. That is, for each gene, we generate
N� 1000 transcripts, where N is the estimated average
number of transcripts in a single cell. Errors are intro-
duced at an appropriate rate, each error causing a differ-
ent intron structure from that present in the primary
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Figure 7. Model 2. Simulation of sampling in a virtual cDNA library with 1000 cells. The error rate varies with the number of introns in a gene, and
transcripts are generated with an error rate determined by Equation (3) with �=0.25. Red points—predicted data. Black points—observed data in
the CGAP Library Subset. (A) Fraction of alternative splicing reactions produced by the model compared to observed value. (B) Number of detected
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transcript. Although memory limitations do not allow us
to simulate a larger number of cells, we show that increas-
ing the number of cells does not significantly affect the
outcome of the simulations (see Supplementary Figure 1).

Each virtual transcript is represented as a binary intron
pattern, where ‘0’ indicates that both boundaries of an
intron are as in the major isoform, and ‘1’ represents an
alternative splicing event where one or both boundaries
are different. For each generated transcript, at each
exon/intron junction, the simulator either maintains the

major isoform boundary (a ‘0’), or a splicing error causing
a boundary change is introduced (a ‘1’), with a probability
determined by the characteristics of the particular model.
Once all transcripts in the set of cells have been gener-

ated, we mimic the cloning step and then the sequencing
steps in the EST experiments. For this purpose, we ran-
domly pick approximately the same number of virtual
transcripts from the generated cDNA library as were
observed in real EST experiments, and truncate each one
to include the same number of introns as observed in
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a real EST sequence of that gene (see Figure 5 and
‘Methods’ section for further details).
We used the CGAP Library subset and the Lib8440

library as sources of real EST data. Our findings for the
CGAP Library subset are summarized below. The
findings for Lib8440 are in qualitative agreement with
the CGAP sample and are included as Supplementary
Data (Supplementary Figure 2).

Model 1: constant error rate

The simplest model of noise assumes that splicing machin-
ery makes mistakes at a constant error rate ‘p’ per splicing
reaction. In this model, all introns are equivalent—that is,
the error rate is the same for all introns regardless of gene,
number of introns, transcript abundance, intron length,
splice site strength or any other factors. Ten values of
p were tested starting at 1% and ending at 10%. As
expected from Figure 4, none of the P-values produced
a good fit to the observed data. The result, with p=1%
per splicing reaction, is shown in Figure 6.
As dictated by the fixed error rate, the model produces

an approximately constant fraction of alternative splicing
reactions as a function of total number of splicing reac-
tions (panel A), whereas the observed data falls steadily.
The model correctly predicts the distribution of the
number of alternative isoforms per gene (panel B).
Not surprisingly, the model predicts a raise in number of
alternative isoforms with increase in number of splicing
reactions (panel C). The simulation also shows an
increase in the fractional abundance of alternative tran-
scripts with an increase in the number of splicing reactions
(panel D), while the observed data are approximately flat.
It is quite evident that this model is a poor fit to the
observed data.

Model 2: error rate dependent on the number of introns

As noted earlier, it is expected that genes with many
introns will have lower per splice error rates those with
few introns, in order to produce an equivalent fraction of
error-free product.
Model 2 tests whether such an effect can explain the

unexpected trends in the data. In this model, genes with
many introns will have a lower error rate per splicing
event compared to genes with few introns, with the error
rate tuned such that on average, a fixed fraction � of
all transcripts of each gene are alternative. Given �, the
implied error rate per splicing reaction ‘p’ for a gene with
N introns is given by Equation (3).

p ¼ 1� ð1� �Þ
1
N 3

Figure 7 shows the result of simulations with the best-fit
parameter value of �=0.25. It is clear that inclusion of
intron counts in the error rate calculation results in an
improvement compared to the constant error rate
model. As can be seen in panel A, at a low number of
splicing reactions, there is an initial decrease in error
rate as a function of number of splicing reactions consis-
tent with the observed data. However, at high values
(>100) the simulated error rate rises, while the observed

values continue to decline. This model is also a better fit to
the number of detected isoforms at a low number of spli-
cing reactions (panel C) and the fractional abundance
of alternative transcripts (panel D), but fails thereafter
by these measures too.

Model 3: error rate determined by the number of introns
and transcript abundance

In Model 3, we test the hypothesis that the error rate per
splice junction is a function of both the number of introns
(as in Model 2) and also the number of transcripts. As
discussed earlier, the additional postulate here is that
selection pressure tends to limit the total number
of noise transcripts produced by all genes, since these
will likely produce nonfolding protein products that will
saturate the chaperone machinery and/or aggregate, and
so be toxic (32,33). We implement this by assuming that
selection pressure acts to both restrict the fraction of non-
major isoforms for any gene (as in Model 2) and also to
restrict the absolute number of nonmajor isoforms
for any gene. We approximate these conditions by requir-
ing that

�fNMþ�TfNM¼ 1 4

for each gene, where fNM is the fraction of nonmajor
isoforms, T is the total number of transcripts generated,
and a and b are constants. Then the error rate per splicing
reaction function assumes the same form as in Equation
(3) with the addition of a contribution from the total
number of nonmajor isoforms produced, with a weight
specified by the constant b:

p ¼ 1� ð1�
�

1þ �T
Þ
1
N 5

When �=0, the model is equivalent to Model 2, where
the error rate varies only with the number of introns.
The higher the value of �, the more influence from the
postulated toxic effect of many noise transcripts. A grid
search of a between 0 and 0.5 and � between 0 and 0.05
was used to find the combination of parameters, which
produced the best fit to the observed data.

We find that � values between 0.2 to 0.4 and � from 0.01
to 0.02 produce a good fit. Figure 8 shows the results of
simulations with �=0.3 and �=0.015. Figure 8A shows
that inclusion of abundance corrects the problem with
Model 2, reproducing the observed decline in estimated
error rate throughout the entire range of splicing reac-
tions. Figure 8D shows that Model 3 also correctly repro-
duces the nearly constant fractional abundance of
alternative transcripts, although the predicted fraction of
alternatives is a few percentage points lower than observed
in real EST libraries. We also observe that Model 3
slightly over-predicts the number of isoforms for genes
with many (>100) splicing reactions. Overall, though,
the quantitative fit to the trends in the data is excellent.
Tests using Akaike’s Information Criterion confirms that
Model 3 provides a clearly superior fit to the data, taking
into account allowing for the fact that there is one extra
parameter (Supplementary Table 1).
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Derived error rates

Figure 9 shows the error rates derived from Model 3 as
a function of transcript abundance, and for a range of
number of introns per gene. At low abundance levels,
average error rates are high—ranging from 2% for genes
with many introns to as much as 7% for genes with few
introns. At high abundance rates, though, the error rate is
always <1%, falling to 0.1% for genes with many introns.

Factors controlling splicing fidelity

The widely varying error rates shown in Figure 9 imply
that there should be some mechanism by which error rates
are tuned as a function of the number of slicing reactions.
There are a number of possible tuning mechanisms, such
as ’stronger’ splice site motifs, an increase in the number
of exon/intron splicing enhancer motifs and an increase in
the number of exon/intron silencer motifs. We tested two
of these possibilities, computing the average splice site
score using GeneSplicer HMM (34) and the average
number of predicted exon splicing enhancer (ESE)
motifs, using the candidate motif set from RESCUE-
ESE (35), as a function of the number of splicing reac-
tions. No difference in splice site signal strength was
found, but genes with many splicing reactions are pre-
dicted to contain more predicted ESE sites compared to
genes with few splicing reactions (Figure 10). A weaker
trend of increased ESE sites with increased splicing reac-
tions is also seen in the control data, generated by scram-
bling the sequences, and is likely due to base composition
bias. The significance of the trend in Figure 10 was eval-
uated using the ratio of the of the number of predicted

ESEs in the real sequences to the number of ESEs pre-
dicted in a scrambled sequences, binned into 10 equal- size
groups based on a number of splicing reactions in each
group. A two-tailed t-test was then used to compare the
data in pairs of groups. The trend was found to be highly
significant with a P-value 5e-10 between the first and last
groups. The existence of this trend is of course not proof
of the tuned error hypothesis and the contribution of each
factor to the increase in splicing fidelity requires more
detailed investigation. Nevertheless, the correlation of
derived error rates with ESE density does provide addi-
tional support for the tuned error rate model.

DISCUSSION

There is no doubt that some portion of alternatively
spliced isoforms is functional. Alternative splicing is well
established to have roles in both regulation of expression
and in the generation of protein function diversity,
as illustrated by many detailed studies of genes, such
as CD44 (36), NOVA (37), ABCC4 (38), MID1 (39) and
hUPF2 (40). Although exact estimates vary, it is also clear
that that 10–30% of alternative splicing events are tissue
specific (41), suggesting function. It is estimated that
the fraction of all alternative splicing events that are
conserved between human and other species with substan-
tial transcriptome coverage, such as mouse and rat, is
�10–20% (8–12). A number of bioinformatics and micro-
array-based studies have found that isoforms conserved
across species tend to preserve coding frames (5,42), are
less frequently subject to NMD (5,43), and are expressed
at higher abundance, all suggesting an increased likeli-
hood of function. Although our knowledge of conserved
splicing is biased toward the more abundant genes com-
monly sampled in EST libraries (44), it is nevertheless
clear that the majority of isoforms are neither conserved
across species or tissue specific.
The hypothesis advanced in this paper is that the

majority of these isoforms are products of noisy splicing.
There are five primary lines of evidence supporting this
hypothesis. First, the number of detected alternative iso-
forms increases as a function of two quantities: total
expression of a gene and number of introns in a gene.
Simply put, the more frequently introns are removed,
the more chances there are of making mistakes, resulting
in more isoforms. Second, as noted above, only a small
fraction of alternative isoforms are found in two or more
species and most isoforms (more than 70%) do not show
clear tissue specificity (41,45,46). Third, a large fraction
(34%) is expected to be subject to NMD (47). Fourth,
examination of the implied protein sequences and struc-
tures of alternative isoforms shows that in most cases
the structures are nonviable (48,49). Fifth, implied error
rates decrease with the number of introns in a gene and the
level of expression, as expected from constraints on the
fraction and absolute number of correct isoforms.
The idea of splicing noise has previously been suggested

by several researchers (15,50–52). However, it has been
assumed that error rates of splicing machinery are con-
stant for all genes, and that if spliceosomes make mistakes,
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these mistakes would represent only a small fraction of
all observed isoforms (15). For example, Kan et al. (51)
estimated error rates to be <0.01 per splice junction.
However, development of error rate models was not a
major focus of that study. More recently, Neverov et al.
(52) proposed a constant error rate model with a fre-
quency of 0.012 per splice junction. Similar to this
study, the model was used to simulate isoform production,
but not with the explicit purpose of estimating error rates.
The approach used in this study is novel in a number

of respects. First, using a minimum number of carefully
defined simple assumptions, we have developed mathe-
matical models for error rates, providing quantitative
tests of the nosiy splicing hypothesis. Second, we reduced
biases associated with EST sampling by taking length and
abundance of EST sequences explicitly into account in a
simulation procedure. Third, to ensure reasonable accu-
racy of transcript abundance we tested models against
both microarray data and nonnormalized EST libraries.
Fourth, models were tested against four different EST
collections, including a tissue-specific library and a single
large EST library, to make sure that results are not a

peculiarity of a particular EST sampling procedure.
Fifth, in order to avoid overfitting to any particular
statistical distribution, models were assessed against four
different experimental distributions.

We tested a constant error rate (Model 1), an error rate
dependent on the number of introns in a gene (Model 2),
and an error rate dependent on the number of introns
count and the transcript abundance of a gene (Model 3).
We show that only the model that takes into account both
the number of introns and abundance is able to account
for the trends in the data. That model is built on the
assumption that error rates are influenced by two selection
forces: first, genes with many introns cannot tolerate high
error levels because that would result in significant loss of
the major product; second, the cell cannot tolerate highly
expressed genes having a high error rate because the
resulting large number of nonfolding protein products
would be toxic, either by overwhelming the chaperone
system or by forming aggregates. The latter point is anal-
ogous to the arguments advanced by Drummond et al.
(53) to explain increased selection pressure against muta-
tions in highly expressed genes. These authors assert that
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the explanation for this phenomenon is that there has been
significant selection against the accumulation of miscoded
proteins, because of their potential direct and indirect
toxic effects.

At first glance, the conclusion that a large fraction
alternative splicing is nonfunctional can be seen as disap-
pointing. In fact, in this and many other biological pro-
cesses, noise plays a critical role by creating a landscape of
opportunities in which novel biological activity can be
explored at very little cost (54). In that sense, the current
state of splicing in humans, with only a fraction func-
tional, is an intermediate state of evolution of the role
of splicing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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