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Abstract

Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common 

cold, cancer, AIDS, and other serious health threats. Viral replication is regulated at many levels, 

including using conserved genomic RNA structures. Most potential regulatory elements within 

viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome 

at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The 

genome encodes protein structure at two levels. In addition to the correspondence between RNA 

and protein primary sequences, a correlation exists between high levels of RNA structure and 

sequences that encode inter-domain loops in HIV proteins. This correlation suggests RNA 

structure modulates ribosome elongation to promote native protein folding. Some simple genome 

elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, 

are components of larger RNA motifs. We also identify organizational principles for unstructured 

RNA regions. Highly used splice acceptors lie in unstructured motifs and hypervariable regions 

are sequestered from flanking genome regions by stable insulator helices. These results emphasize 

that the HIV-1 genome and, potentially, many coding RNAs are punctuated by numerous 

previously unrecognized regulatory motifs and that extensive RNA structure may constitute an 

additional level of the genetic code.
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Genomes of all single stranded RNA viruses contain internal structures fundamental to viral 

replication and host defense evasion. Important viral RNA structures include internal 

ribosome entry sites, packaging signals, pseudoknots, tRNA mimics, ribosomal frameshift 

motifs, and cis-regulatory elements1,2. In the human immunodeficiency virus (HIV), RNA 

structures activate transcription, initiate reverse transcription, facilitate genomic 

dimerization, direct HIV packaging, manipulate reading frames, regulate RNA nuclear 

export, signal polyadenylation, and interact with viral and host proteins2–6. These RNA 

regulatory motifs have been identified by focusing on the 5′ and 3′ untranslated regions plus 

a few internal sequences. Most potential regulatory structures within viral RNA genomes, 

including in ~85% of the HIV-1 genome, are uncharacterized. This raises the possibility that 

new categories of RNA structure-mediated regulation remain to be identified.

The HIV-1 genome is primarily a coding RNA and contains nine open reading frames which 

produce 15 proteins2,3. The Gag polyprotein precursor is proteolytically processed to 

generate the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The Gag-Pol 

polyprotein adds protease (PR), reverse transcriptase (RT), and integrase (IN). The env gene 

encodes a 30 amino acid signal peptide (SP), gp120 and gp41. Additional sequences encode 

auxiliary proteins (gray boxes, Fig. 1a). Inside virions, HIV genomic RNA is found as a 

non-covalent dimer, is 5′ capped and 3′ polyadenylated, and is annealed to a host tRNALys3 

molecule2. Viral proteins, especially nucleocapsid, chaperone folding of HIV RNA7.

Whole-genome structure analysis

To develop an accurate view of RNA structure in the full-length genome, we analyzed 

authentic genomic RNA extracted from HIV-1 virions. Our gentle purification maintained 

both previously characterized secondary structures and the few known RNA tertiary 

structures. For example, the host tRNALys3 was bound to the genome2 and a pseudoknot in 

the 5′ untranslated region (UTR)6,8 remained stably formed. The RNA was sufficiently 

intact to serve as a template for primer extension reactions spanning the entire genome 

(Table S1 and Supporting Methods).

High-throughput selective 2′-hydroxyl acylation analyzed by primer extension 

(SHAPE)6,9–11 was used to chemically interrogate local nucleotide flexibility at 99.4% of 

the 9,173 nts in the NL4-3 HIV-1 RNA genome. 1-methyl-7-nitroisatoic anhydride (1M7) 

preferentially acylates conformationally flexible nucleotides at the ribose 2′-OH 

position9,10. The resulting 2′-O-adducts are detected as stops to primer extension using 

fluorescently labeled primers and capillary electrophoresis6,10 (Fig. 3a) and quantified by 

whole-trace Gaussian integration11 (Fig. 3b). SHAPE measurements are reproducible 

between independent biological replicates (R2 = 0.75; Fig. S1). SHAPE reactivities are 

highly sensitive to local nucleotide flexibility and disorder, but are insensitive to solvent 

accessibility (Fig. S2 and refs. 9,12). SHAPE reactivities therefore provide direct model-free 

information regarding the overall level of structure, or architecture, for any RNA. The 

median SHAPE reactivity varies dramatically across the HIV-1 genome (dark blue line, Fig. 

1b). Regions with median reactivities below 0.25 indicate domains with significant base-

paired secondary RNA structure while median SHAPE reactivities of 0.5 and greater 

indicate regions of largely unstructured nucleotides.
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We also assessed HIV-1 genome structure by examining evolutionary information contained 

in nucleotide and amino acid variation to assign a pairing probability at each 

nucleotide13,14. This algorithm does not use chemical reactivity or thermodynamic 

information and thus infers RNA structure using information that is orthogonal to SHAPE.

We identify at least 10 “structured” regions that exhibit both low SHAPE reactivity and high 

pairing probability (compare blue and cyan traces, Fig. 1b). This group includes the 5′ UTR 

and the Rev Responsive Element (RRE), which are known HIV regulatory elements (labels, 

Fig. 1b). The majority of these highly structured and evolutionarily conserved elements have 

not been characterized previously. These regions include the PR-RT junction, domains in 

the RT, IN, and Vif open reading frames, an element 3′ of the Env signal peptide (SP), and 

the nef-3′ UTR region.

We also identify at least 7 “unstructured” regions, extending over 200–600 nts, with high 

SHAPE reactivities and low pairing probabilities. These include the RNase H coding 

domain, variable domains (Vx) in gp120, and the polypurine tract (PPT) (Fig 1b). On a 

smaller scale, the consensus sequences for the highly-used splice site acceptors are also 

unstructured (Fig. S3). There are ~4 regions of apparent disagreement in the level of RNA 

structure, having high pairing probabilities and high SHAPE reactivities (one each in the 

RT, RNase, IN and gp41 coding regions). This small group may reflect sequence 

conservation that is not accounted for by the evolutionary model13 or may form critical 

structures at an alternate stage of the viral replication cycle.

RNA structure encodes protein structure

We first evaluated whether global RNA genome structure is linked to protein structure. 

HIV-1 produces three major classes of mRNA. The 9 kb class encodes Gag and Gag-Pol and 

is identical to the packaged genomic RNA analyzed here except, as an mRNA, it is not 

dimerized at its 5′ end2. There are very few differences in the SHAPE reactivity of dimeric 

and monomeric RNAs at the 5′ end of the genome6. Thus, genome structures outside of the 

dimerization region will correlate closely to the mRNA that encodes Gag and Gag-Pol. The 

most abundant 4 kb env mRNA is generated by splicing nucleotide 288 (SD1, the major 

splice donor) to nucleotide 5522 (termed the SA5 site)15. SA5 is followed by an 

unstructured genome region (Figs. 1a, b). Thus, RNA structures identified in the env coding 

region are likely to exist in the spliced mRNA that encodes Env. Structures for the 1.8 kb 

class of mRNAs, which generate Tat and Rev, cannot be predicted using the genomic RNA 

because discontinuous segments are joined in the final mRNA.

The Gag, Gag-Pol and Env polyprotein precursors are synthesized roughly as beads on a 

string and the constituent proteins are liberated by proteolytic cleavage2,3 (Figs. 1a, d). 

Eight inter-protein peptides link the HIV proteins (green bars, Fig. 1c). The RNA sequences 

that encode these spacer peptide linkers in Gag (at the MA-CA, CA-NC, and NC-p6 

junctions), Pol (PR-RT, RT-RNase H junctions) and Env (SP-gp120, gp120-gp41 junctions) 

all (except the RNase-IN junction) have SHAPE reactivities that are much lower than the 

median (Fig. 1b). RNA sequences that encode these inter-protein peptide linkers are more 

highly structured than 95.2% of randomly selected regions in the genome (Fig. S4a).
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Domains within the individual HIV-1 proteins CA, RT, and IN are also linked by 

unstructured peptide elements and each domain junction is encoded by an RNA region of 

low SHAPE reactivity (compare yellow bars in Fig. 1c with dark blue trace in Fig. 1b). 

Protein loops encoded by RNA regions with low SHAPE reactivity include the cyclophilin 

loop and the linker between the N- and C-terminal domains in CA, both loops that link 

independently folded domains in RT, and the 8 and 9 amino acid loops linking the three 

domains in IN (in yellow, Fig. 1d). These protein domain junctions are more highly 

structured than 88.9% of randomly selected equivalent-length regions in the genome (Fig. 

S4b).

In contrast to the other large HIV proteins, domains in gp120 (termed inner, outer, and 

bridging sheet) are not structurally autonomous. The C-terminal 35 residues of gp120 weave 

from the outer to the inner domain and the bridging sheet is comprised of residues that are 

315 positions distant16. Junctions between domains in gp120 are also not encoded by highly 

structured RNA, suggesting that gp120 folding is not linked to RNA structure in the same 

way as for other HIV proteins because its constituent domains are not structurally 

independent.

The recurring pattern of structure, conspicuously located near or after autonomously folding 

protein coding domains, is consistent with a model in which HIV protein structure is 

encoded in its RNA at two distinct levels. The first is the linear relationship between RNA 

and protein primary sequences. In the second level, higher-order RNA structure directly 

encodes protein tertiary structure because unstructured protein loops are derived from highly 

structured RNA elements. Many proteins appear to fold during translation17, highly 

structured RNA slows and causes ribosomal pausing during translation18,19, and changes in 

the extent of local RNA structure modulate protein activity20. Together, these observations 

suggest that attenuation of ribosome elongation by highly structured RNA at protein domain 

junctions facilitates native folding of HIV proteins by allowing time for domains to fold 

independently during translation.

This model makes the clear prediction that ribosome pause sites should occur preferentially 

in the highly structured regions of an HIV-1 RNA that encode protein junctions. We tested 

this idea using a toeprinting experiment, in which ribosome processivity is inhibited by 

cycloheximide and sites preferentially occupied by the ribosome are detected as stops to 

primer extension in an in vitro translation reaction21. Ribosome pause sites are statistically 

overrepresented at the MA-CA and CA-NC junctions in Gag and at the sequences encoding 

the cyclophilin loop in CA (Fig. S5). Conversely, ribosome pause sites are underrepresented 

in flanking, but unstructured, regions of the HIV RNA (p = 0.018). These experiments thus 

strongly support the model that mRNA structure over a region spanning 60–100 nucleotides 

specifically modulates ribosome processivity at protein domain junctions.

RNA secondary structure model for HIV-1

Comprehensive SHAPE reactivity information can also be used to determine a nucleotide-

resolution secondary structure model for the entire NL4-3 HIV-1 genome (Fig. 2). SHAPE 

reactivities are converted to free energy change terms and used to constrain a 
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thermodynamic folding algorithm22,23. The final result is a thermodynamically favored 

structural model highly reflective of the experimental SHAPE data, at single nucleotide 

resolution. For example, most nucleotides assigned to single-stranded regions are reactive 

towards SHAPE (red, orange, and green nucleotides; Fig. 2); whereas, base-paired 

nucleotides are predominantly unreactive (black nucleotides and inset; Fig. 2). (For a full 

discussion of SHAPE-directed RNA folding and the fundamental correctness of this model, 

see the Supporting Methods.)

The HIV-1 genome is less structured than ribosomal RNA but, similarly, contains multiple 

independent RNA folding domains that extend from the overall genomic backbone. These 

domains include both small stem-loops plus roughly 21 large and complexly folded 

structures (Fig. 2). Although many genome regions are highly structured, only 7 helices span 

a complete turn of an 11 bp RNA duplex. The largest paired region, devoid of bulges, is the 

structured RNA element that bridges the coding junction between the RT and RNase H 

folding domains (Fig. 1). This helix is 19 bp long, contains a non-canonical G-A base pair 

(Fig. 2a, nts 2015–2033/2103–2121), and is thus shorter than the 30 base pair length 

competent to induce the interferon response24.

The HIV-1 genome structural model provides a robust starting point for identifying 

previously unrecognized functional elements and long-range RNA interactions. SHAPE 

reactivities describe a well formed stem 3′ to the signal peptide (SP) coding region in the 

Env protein (Fig. 3c). This stem (the SP-stem) is evolutionarily conserved (Fig. 1b), 

reinforcing an important biological role. The signal recognition particle (SRP) binds the 

nascent Env SP and translocates the cytoplasmic ribosome elongation complex to the rough 

endoplasmic reticulum where translation of gp120 and gp41 continue25.

RNA-induced translational pausing occurs as the ribosome unwinds highly structured RNA, 

typically located 6–7 nucleotides downstream of the A-site18. The SP-stem will be exactly 

in this conformation when the final tRNAAla from SP and the first tRNAThr of gp120 are in 

the P-and A-sites (boxed nucleotides, Fig. 3d). We infer that ribosomal attenuation or 

pausing at the SP-stem provides additional time for SRP recruitment and subsequent 

translocation of the elongation complex to the endoplasmic reticulum.

The SHAPE-constrained secondary structure is also informative for previously identified 

regulatory motifs. In HIV-1, pro and pol gene products are translated when the ribosome 

undergoes a –1 register shift from the gag to pol reading frames. Frameshifting occurs at a 

slippery sequence (U UUU UUA) and is enhanced by a downstream RNA structure. These 

elements are typically drawn as a single stranded slippery sequence and a 12 bp stem-

loop26. Direct analysis of intact genomic RNA shows that the gag-pol frameshift signal is 

one component (identified here as P3) of a 3-helix structure (Figs. 2 & S6a). The slippery 

sequence pairs to form one of the three helices (P2). These two helices are stabilized by an 

anchoring helix (P1) that creates this discrete structural element (Fig. S6a). This three-helix 

junction structure is conserved among HIV-1 group M sequences (Fig. S6b).

Most RNA viruses require a complex pseudoknotted structure to induce ribosomal 

frameshifting27. The three-helix junction may function, in part, to slow translation before 
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the ribosome encounters P3, facilitating the prerequisite pause necessary for frameshifting. 

The three-helix junction model may also explain why changing the slippery site to 

sequences which allow alternate tRNA pairing and enhance frameshifting in other RNA 

viruses eliminates frameshifting in HIV-128. In the SHAPE-directed model, changes to the 

slippery sequence compromise base pairing in the conserved P2 helix (Fig. S6).

Unstructured motifs and insulator helices

Analysis of the HIV-1 genome structure supports a role for RNA structures in sequestering 

unstructured regions. Five variable domains (V1–V5; see Fig. 1a,b) in the Env surface 

protein, gp120, account for much of the genetic diversity in HIV-114 and are a critical 

component of the viral host evasion strategy. Four of these domains are hypervariable (hV1, 

hV2, hV4, and hV5) and exhibit large amino acid insertions and deletions between viral 

isolates14.

Sequences encoding hypervariable domains are internally unstructured and are bordered by 

evolutionarily conserved and stable RNA structures (Figs. 4a,b). For example, hypervariable 

region hV1 is encoded by RNA sequences with high SHAPE reactivities and is flanked by 

two stable helices (with free energies of −10.9 and −18.4 kcal/mol, Fig. 4c). Similar patterns 

are evident in the other hypervariable regions (Fig. 4c). Some hypervariable regions, 

especially hV4, do contain internal helices with non-trivial free energies; however, these 

helices are not evolutionarily conserved (Fig. 4b) and are much less stable than the flanking 

helices whose stabilities are in the 10–20 kcal/mol range (Fig. 4c). These helices are also 

highly stable relative to the distribution of duplex stabilities over the entire genome (Fig. 

4d).

Collectively, these data suggest RNA sequences encoding length polymorphisms in env are 

segregated from the rest of the genome by stable helices that function as structural 

insulators. The observed organization of hypervariable regions is thus well suited, first, to 

accommodate extensive substitutions, insertions or deletions and, second, to prevent these 

regions from forming non-functional base-pairing interactions with adjacent regulatory 

motifs, which include the 3′ splice site acceptors and the RRE.

Perspective

Structural analysis of a complete HIV-1 genome reveals that this RNA is punctuated by 

multiple, previously unrecognized but readily identifiable and evolutionarily conserved, 

RNA structures. Most genome regions with low SHAPE reactivities are associated with a 

regulatory function (Fig. 1). SHAPE may be generally useful for identifying new regulatory 

elements in large RNAs. All of these elements represent hypotheses and starting points that 

we hope will stimulate further detailed examination. Our discovery that the peptide loops 

that link independently folded protein domains are encoded by highly structured RNA 

indicates that these and likely other mRNAs encode protein structure at a second level 

beyond specifying the amino acid sequence. In this view, high-order RNA structure directly 

encodes protein structure, especially at domain junctions. The extraordinary density of 

information encoded in the structure of large RNA molecules (Figs. 1, 2 and 4d) represents 

another level of the genetic code, one about which we currently know the least. This work 
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makes clear that there is much to be discovered via broad structural analyses of RNA 

genomes and intact messenger RNAs.

Methods Summary

Full length HIV-1 genomic RNA was gently purified from NL4-3 virions (Genbank 

AF324493). The RNA was equilibrated in a native buffer [50 mM Hepes (pH 8.0), 200 mM 

potassium acetate (pH 8.0), 3 mM MgCl2] at 37 °C for 15 min and treated with 1M710. 

Sites of 2′-hydroxyl modification were identified over read lengths spanning several 

hundred nucleotides using 31 primer extension reactions resolved by fluorescence-detected 

capillary electrophoresis6,11. Pairing probabilities were determined using RNA-Decoder13 

and secondary structure models were developed by incorporating SHAPE reactivities as a 

pseudo-free energy change term, in conjunction with nearest-neighbor parameters, in an 

accurate thermodynamics-based prediction algorithm22,23.

Methods

Virus production

HIV-1 strain NL4-3 (group M, subtype B) was used to infect a non-Hodgkin’s T cell 

lymphoma cell line (a modified version of the SupT1 cell line, which was a gift from J. 

Hoxie, U. Pennsylvania)29. The virus-containing inoculum for infecting SupT1 cells was 

generated by CaPO4/DNA coprecipitation 30 and subsequent transfection of pNL43 (NIH 

AIDS Research and Reference Reagent Program, c/n 114; GenBank AF324493) into 293T 

cells31. HIV-1 virions were purified as described32 except cells were removed using a 

Millipore Opticap XL-5.0 micron filter. The total protein and CAp24 yields were 20.7 mg 

and 2.3 mg, based on total protein (BioRad DC protein assay) and HPLC with subsequent 

amino acid analysis assays, respectively.

Virions were purified from cellular debris by subtilisin treatment and centrifugation through 

a sucrose cushion. Concentrated virions (in 19 mL, corresponding to 19 liters of infected cell 

culture supernatant) were digested with subtilisin [1 mg/ml, in 20 mM Tris (pH 8.0), 1 mM 

CaC12; 37 °C, 18 hr; stopped by the addition of 5 μg/ml of phenylmethylsulfonyl 

fluoride33]. The resulting solution contained digested cellular proteins and viral particles 

free of surface proteins. The sample was centrifuged through a cushion of 20% (wt/vol) 

sucrose in phosphate buffered saline (PBS) (Beckman SW41 rotor, 37k rpm, 2.0 h, 4 °C); 

supernatant was carefully removed; and residual sucrose in the pellet was removed by 

overlaying PBS and repeating the centrifugation step (1 h at 4 °C).

RNA extraction

The key features of this protocol are that genomic RNA was gently extracted from purified 

virions in the presence of buffers containing monovalent and divalent ions consistent with 

maintaining RNA secondary and tertiary structure. The HIV genomic RNA was not 

denatured by heat, chemical denaturants, magnesium chelation, or removal of monovalent 

cations during this process. Subtilisin-treated virions were suspended in virion lysis buffer 

[VLB; 50 mM Hepes (pH 8.0), 200 mM NaCl, and 3 mM MgCl2] and lysed with 1% (wt/

vol) SDS and 20 mg/ml proteinase K (~22 °C, 30 min). The digest was extracted three times 
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with phenol/chloroform/isoamyl alcohol (25:24:1, pre-equilibrated with VLB) followed by 

two extractions with pure chloroform. Quantitative reverse transcriptase PCR was used to 

quantify viral RNA yields against a standard curve34–36. The total yield from 19 liters of 

infected cells was 97.2 pmol HIV-1 genomic RNA. The aqueous layer (3.6 mL) was brought 

to 300 mM NaCl and precipitated with 2.5 vol ethanol. Retroviral genomes commonly 

contain single stranded breaks2. Approximately 30% of our genomic RNA was intact, as 

judged by visualization in agarose/formaldehyde gels; nicks in the remaining 70% appeared 

to be roughly randomly distributed based both on direct visualization of the genomic RNA 

and from the continuity of our primer extension reactions (see Table S1).

RNA modification

The RNA pellet containing 97.2 pmols of HIV-1 genomic RNA was dissolved in 880 μL of 

modification buffer [MB; 50 mM Hepes (pH 8.0), 200 mM potassium acetate (pH 8.0), 3 

mM MgCl2] and incubated at 37 °C for 15 min. 405 μL of the solution was added to either 

45 μL pre-warmed (37 °C) 1M7 (1-methyl-7-nitroisatoic anhydride, in DMSO)10 or DMSO. 

After 4 min, 45 μL of 50 mM EDTA (pH 8.0) were added to each tube. The reactions were 

divided into 11 μL aliquots and precipitated with ethanol.

Primer synthesis

Primers were designed with the aid of OligoWalk, part of the RNAstructure software 

package22 (available for download at: http://rna.urmc.rochester.edu/) (Table S1). Primers 

were required to be 20–22 nts in length, have high melting temperatures and low self-

annealing energies, and preferably end with a 3′ G or C. Only 2 of 31 primers required 

redesign, giving OligoWalk a 94% success rate. Primers were synthesized to contain a 5′ six 

carbon linker terminating in a primary amine (IDT). The amine-tethered DNA primers (1 

μL; 25 μg/ml) were labeled with one of four fluorophores (5-FAM, 6-JOE, 6-TAMARA, 5-

ROX; AnaSpec) using N-hydroxysuccinimide chemistry [3 μL NHS-coupled dye (20 mg/ml 

in DMSO) in 0.1 M NaBO3-HCl (pH 8.5); ~22 °C, 3 hr]. Labeled primers were precipitated 

with ethanol, purified on a denaturing gel (20% 29:1 acryalmide/bis-acrylamide, 7 M urea, 

1× TBE), recovered by passive elution in water, precipitated (300 mM NaCl, 2.5 vol 

ethanol, 1 vol isopropanol), pelleted, and dissolved in water. Spectrophotometric 

measurements indicated labeling was ~90–95% efficient as determined by the [dye]/[DNA] 

ratio.

Primer extension

RNA pellets (1 pmol) were dissolved in 10 μL 0.5× TE [5 mM Tris (pH 8.0), 0.5 mM 

EDTA] and mixed with 3.0 μL of 0.4 μM primer. The (+) and (−) 1M7 reagent reactions 

were labeled with JOE and FAM, respectively. Primers were annealed to the RNA by 

heating to 65 °C for 5 min and 45 °C for 2 min, and then placed on ice. 6 μL of RT mix37 

(SuperScript III, 5× buffer, DTT, dNTPs; Invitrogen) was added to each tube and incubated 

for 10 sec at 45 °C, 5 min at 52 °C, 5 min at 65 °C, and cooled to 4 °C. Sodium acetate (pH 

5.2; 2.0 μL at 3 M) was added to each tube; (+) and (−) 1M7 tubes were combined; and 120 

μL of ethanol was added to precipitate the cDNA products. The reactions were pelleted, 

washed with 70% ethanol, and dissolved in 10 μL deionized formamide.
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Sequencing

Dideoxy sequencing reactions (GenomeLab Methods Development Kit; Beckman), were 

performed using plasmids pDR0 and pDR25 (containing partial NL4-3 sequences) and 

primers labeled with TAMARA and ROX. Primer sequences were identical to those in 

Table S1 except primer 31, whose sequence (5′-CTGCAACCTC TACCTCCTGG 

GTGCTAGAG) annealed to the plasmid rather than to the poly(A) RNA sequence in the 

genomic RNA.

Capillary electrophoresis

cDNA fragments were resolved by capillary electrophoresis6,10 (Applied Biosystems 

AB3130 instrument). Samples were injected at 1.2 kV for 16 sec into a 36 cm capillary 

containing POP7 (ABI) and subjected to electrophoresis for 25 min at 15 kV. The 

fluorescence detector was initially calibrated with 5-FAM, 6-JOE, 6-TAMARA, and 5-ROX 

using fluorescent markers with fragment lengths of 242 (5-FAM), 206 (6-JOE), 188 (6-

TAMARA), and 155 (5-ROX) nts. Fragments were generated by linear amplification of 

Hind III-digested plasmid pUC18 using primers with the sequences 5′-CAGAGCAGAT 

TGTACTGAGA G; 5′-GTGAAATACC GCACAGATGC; 5′-GCGTAAGGAG 

AAAATACCGC ATC; and 5′-CGCCATTCAG GCTGCGCAAC TG labeled with 5-FAM, 

6-JOE, 6-TAMARA and 5-ROX, respectively. Fluorescent spectral overlap based on this 

DNA ladder was calibrated using AB3130 software.

Data processing

Raw electropherograms, containing fluorescence intensity versus elution time information, 

were converted to normalized SHAPE reactivities using ShapeFinder6,11,23 (available for 

download at http://bioinfo.unc.edu). The ShapeFinder software aligns the (+) and (−) reagent 

traces to the two dideoxy nucleotide sequencing ladders, corrects for signal decay38, and 

performs a whole-channel Gaussian integration11 to quantify all individual peak areas (see 

Fig. 3a). Only 11 of the 9,173 nts in the NL4-3 RNA genome had high background and were 

therefore excluded from analysis. Datasets were normalized to a scale such that 1.0 

represents the average intensity of highly reactive nucleotide positions6,23. On this scale, 

~95% of integrated intensities for the HIV-1 genome fall between 0 and 1 (see histogram in 

Fig. 3b). Each primer extension reaction was processed individually. The resulting 

intensities in regions with overlapping data from different primers correlated closely: 

reactivity differences were typically less than 0.1 SHAPE unit. Regions with overlapping 

data accounted for ~25% of the total nucleotide positions and were averaged to generate the 

final dataset spanning the entire NL4-3 genome.

Toeprinting ribosome pause sites at the MA-CA and CA-NC junctions

A double-stranded DNA template to direct synthesis of an mRNA spanning NL4-3 Gag nts 

1 to 1795 was generated by PCR. This region encompasses the entire 5′ UTR and most of 

the gag coding region and ends after the three-stem frameshift element. The 5′ primer 

included a T7 promoter sequence (5′ TAATACGACT CACTAATGGT CTCTCTGGTT 

AGACCA) and the 3′ primer (5′ GCTAAAGGTT ACAGTTCCTT GTC) encoded a stop 

codon at position 1787. The RNA transcript was capped and polyadenylated (mSCRIPT, 
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Epicentre) and in vitro translation was carried out in rabbit reticulocyte extract (Ambion) 

using ~60 μg of the capped, polyadenylated transcript, 1 μl 1.25 mM L-methionine, 1 μL 

[32S]-methionine (PerkinElmer), 17 μl reticulocyte extract, and 1.25 μl 20× ’medium-salt’ 

translation buffer (Ambion) in a total volume of 26 μL at 37 °C. Cycloheximide was added 

at 0, 7, 15, or 45 min to arrest translation21. Translation reaction aliquots were separated on 

an 8–16% SDS-PAGE gel (Invitrogen) to confirm production of a protein of the correct 

length. Sites of ribosome pausing were detected by adding the following to 25 μL of the in 

vitro translation mixture: 1.35 μl 10 mM each dNTP, 2 μl 4.0 μM fluorescently-labeled 

primer (primer 4 or 6 for interrogating the MA-CA and CA-NC regions, respectively), 1 μl 

200 mM MgCl2, and 2 μl Superscript III (Invitrogen). The translation reaction that was pre-

quenched with cycloheximide served as a background and was resolved using a JOE-labeled 

primer. The 7, 15, and 45 min time points were resolved using FAM-labeled primers. Primer 

extension reactions were incubated at 37 °C for 30 min and stopped by addition of 1 μl 0.5 

M EDTA and 400 μl water. The reaction was extracted with phenol:chloroform:isoamyl 

alcohol (25:24:1, 2×) and chloroform (1×). 4 μl of this solution, 1 μl of a cDNA sequencing 

ladder, and 15 μl of formamide were combined, heated to 105 °C for 5 min, and resolved by 

capillary electrophoresis. Toeprinting traces were processed with ShapeFinder11 and 

normalized to a scale in which 1.0 is equal to the mean intensity of the most reactive 

positions, identically as described above for SHAPE experiments.

RNA secondary structure model

The entire NL4-3 sequence – 9,173 nts plus 20 3′ adenosines [representing the poly(A) tail] 

– was folded using the thermodynamics-based algorithm in RNAstructure22,23. SHAPE 

information was used to constrain secondary structure calculations by incorporating SHAPE 

reactivities as pseudo free-energy change terms6,23 using slope and intercept values of 30 

and −6 respectively. The maximum distance allowed between any two paired positions was 

600 nucleotides. The slope and intercept values are derived from prior parameterization on 

long RNAs and the 600 nt cutoff reflects that 99% of all base pairs in ribosomal RNA occur 

between nucleotides less than this distance apart23. The genome was initially folded as a 

single (9,193 nts) unit; folding was then fine tuned by dividing the RNA into five 

independent folding regions, separated by long stretches of reactive nucleotides that were 

calculated to be unpaired when the entire genome was folded with SHAPE constraints 

(NL4-3 residues 1-2844, 2836-5722, 5676-6832, 6807-7791, and 7779-9193). Dividing the 

genome in this way facilitated model building and prevented formation of a few poorly 

supported long-distance pairings between domains. Highly reactive nucleotides at the 

termini of each region were prohibited from forming base pairs in these region-specific 

calculations. Helices consisting of a single base pair were removed from the final model and 

unreactive nucleotides in the primer binding site (183–199) were taken to reflect 

hybridization with the tRNA primer. The current version of our algorithm does not allow 

pseudoknots and therefore our HIV-1 structure model (Fig. 2) includes only one, 

heuristically predicted6,8, pseudoknot.

Quality of SHAPE-directed model of the entire HIV-1 genome

The algorithm by which SHAPE information is used to create an RNA secondary structure 

model does not make any specific assumptions regarding the magnitude of SHAPE 
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reactivity that corresponds to single stranded versus based paired regions. Instead, SHAPE 

reactivities are converted to free energy change terms and used to constrain a 

thermodynamic folding algorithm22,23. SHAPE information is essential for generating this 

secondary structure model. Folding the genome by free energy minimization alone, using a 

best-of-class algorithm22,39, results in a structure that is very different from the 

experimentally supported model. Only 47% of the base pairs in the SHAPE-directed model 

also occur in the lowest free energy thermodynamics-only model. The unconstrained 

thermodynamics-only model is readily shown to be incorrect because many regions with 

high SHAPE reactivities are assigned as paired in the unconstrained model, while many 

regions with low SHAPE reactivities are assigned as single stranded.

Multiple lines of evidence support fundamental correctness of our working SHAPE-directed 

HIV-1 genome structural model (Fig. 2). First, SHAPE-directed folding is well validated 

and predicts the known structures of large RNAs, including 16S ribosomal RNA, with high 

accuracies (>90%)10,23. Second, most nucleotides assigned to single-stranded regions are 

reactive by SHAPE (red, orange, and green nucleotides; Fig. 2). Conversely, base-paired 

nucleotides are generally unreactive (black nucleotides and inset; Fig. 2). Thus, the 

structural modeling faithfully incorporates the experimental data. Third, many single 

nucleotide bulges are predicted as single reactive positions imbedded in helices whose 

remaining nucleotides are unreactive towards SHAPE, which speaks to the accuracy at the 

single nucleotide resolution level (for select examples see positions 1725, 3376, 4891, 5990, 

7431, 7568, 9091; Fig. 2). Fourth, previously characterized HIV RNA structures including 

the 5′ TAR element, the DIS component of the packaging signal, and the five-stem RRE 

serve as positive controls and form structures consistent with previous work4,40 (Fig. 2). In 

the case of the gag-pol frameshift structure, we note that SHAPE data do not support 

common alternative proposals for this specific structure, including either a longer bulged 

stem or a pseudoknot.

The majority of structures in our current HIV-1 genome model, especially in regions with 

multiple closely spaced helices, are extremely well determined as evidenced by the strong 

correlation between SHAPE values and base pairing. This correlation is also consistent with 

benchmarking studies showing the SHAPE reactivities strongly discriminate between base 

paired and single stranded nucleotides (Fig. S2)41 and with the extent of local nucleotide 

disorder12. In contrast, some of the larger loop regions in our model may reflect regions that 

interconvert between multiple structures38,42. Elements that may require future refinement 

include the precise termini of helices at some multi-helix junctions and along the central 

backbone of the genome structure and the identification of additional pseudoknot and long-

range interactions.

Calculation of evolutionary base pairing probabilities

RNA-Decoder13 was used to identify regions in the HIV-1 genome in which the ability to 

form base pairs is evolutionarily conserved. The program takes a set of grammar parameters, 

a multiple-sequence alignment, and a phylogenetic tree as input. The output is a pairing 

probability for each position in the genome, given the phylogenetic tree, alignment, and the 

grammar structural model. The pairing probability for position i in alignment D is the sum 
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over all stem structural labels (k) of P(πi = k | M) P(D |π,T,M), where π is the structure, M is 

the grammar model parameters, and P (πi = k | M) is the posterior probability that position i 

has the specific structural label k, given the grammar43, and is calculated via the inside-

outside algorithm44. In Bayesian terms, P (πi = k | M) is the prior probability of structure π 

and P (D | π, T, M) is the alignment probability, calculated using the Felsenstein 

algorithm45. Pairing predictions were made using an alignment of non-recombinant group 

M subtype reference sequences obtained from the Los Alamos HIV database14, with minor 

manual editing [and excluding subtype G, which is now considered a circulating 

recombinant form46]. Codon positions in genome regions encoding more than one protein in 

overlapping reading frames were defined according to the first open reading frame in the 

following pairs: gag-pro, pol-vif, vpr-vif, vpr-tat, rev-tat, env-vpu, env-tat2, env-rev2. Due to 

differences in nucleotide content and evolution rate within different genes in the HIV 

genome, the genome was scanned in two sections, upstream and downstream, that 

overlapped in the vif gene. This allowed use of separate phylogenetic trees for each scan, 

with branch lengths calculated according to the rates of evolution in each genome region. 

The phylogenetic tree for the 5′ half was built using the third codon position for the gag, pol, 

and vif genes, and the 5′ non-coding region; the tree for the 3′ half was built on the third 

positions of vif, vpr, rev, vpu, env, and nef genes, and the 3′ non-coding region.

Pairing probabilities were assessed across the entire genome. To accommodate as many 

pairing interactions as possible, we used a large window size (1300 nts), and spaced the 

scans at 300-nucleotide intervals. Pairing probabilities for each scan were combined using 

the statistical program R47 taking the maximum pairing probability in overlapping 

windows. It is important to note that high pairing probabilities identify regions experiencing 

evolutionary pressure to retain a specific, defined, secondary structure. A low pairing 

probability, while suggestive of a lack of structure, can also reflect (i) that an additional 

evolutionary constraint exists that is not accounted for by the evolutionary model or (ii) that 

natural selection favors folding in general, but not a precise pattern of folding.

Bootstrap Analysis of SHAPE reactivities in Inter-Protein Linkers and Protein-Domain 
Junctions

A bootstrap procedure was used to compare the SHAPE reactivities of particular collections 

of genome elements to the expectation for random genome regions of the same size. For a 

comparison to a collection of n genome elements, we generated 100,000 bootstrapped 

samples by randomly choosing n locations from the relevant portion of the genome, and 

randomly assigning the lengths of the actual genome elements to these n locations. For 

comparison to the protein domain junctions, locations were drawn randomly from the entire 

coding portion of the genome (bases 336–8621). We specified a length of 60 nts for each 

region.

For comparison to the intra-domain loops, locations were drawn randomly from within the 

domains where loops occur and assigned lengths that reflected loop sizes within the same 

domain (for example, for the CA domain, one element of 45 base pairs was drawn from 

within bases 732–1427). Bootstrap samples that contained overlapping genome regions were 

thrown out. The mean SHAPE reactivities for each bootstrap sample were used to generate a 
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frequency distribution that describes the expectation for equally sized but randomly located 

collections of genome elements in HIV coding regions. We obtained a p-value by 

determining the percentage of the bootstrapped means that were lower than the mean 

SHAPE reactivity for the collection of genome elements. This p-value is equivalent to the 

probability that the low SHAPE reactivity in the actual collection of genome elements 

occurred by chance. P-values for inter-protein linkers and protein domain junctions were 

0.0482 and 0.0777, respectively. The RT-RNase H junction functions as both an inter-

protein linker and as a protein domain junction because it is cleaved one-half of the time. 

For this analysis, the RT-RNase H junction was counted as an inter-protein linker.

Statistical analysis of ribosome pause sites

Toeprinting data spanned 748 nts (positions 670–1018 and 1243–1652) (Fig. S5). Within 

these 2 reads, there were 220 nts that fell within 30 nt of the MA-CA, CA-NC, or NC-p6 

junctions or in the cyclophilin loop. We evaluated whether ribosomes pause preferentially 

near protein junctions using the binomial distribution. A total of 36 base pairs yielded 

toeprint signals with an intensity of 1.0 or greater. A signal of 1.0 corresponds 

approximately to 1.5 standard deviations above the mean; 17 of these occurred within 30 nt 

of a protein junction. The probability of observing this distribution by chance is p = 0.018. 

This analysis was insensitive to the choice of high signal threshold. Similar p-values were 

obtained for toeprint thresholds between 0.6 and 1.6.

Consensus structure

The gag-pro-pol consensus structure (Fig. S6b) was generated by aligning the 37 reference 

group M HIV-1 sequences14 using CLUSTALW48. Regions of covariation were identified 

using a sequence logo49.

Helix energies

Helix free energy changes (Figs. 4c,d) were calculated using the RNAstructure program22 

as the sum of the base pair stacking nearest neighbor parameters50,51. Duplex regions 

containing single nucleotide bulges were taken to be a single helix. The helix free energy 

changes do not include penalties for terminal AU or GU pairs because these are, by 

convention in RNAstructure, associated with the loop formation free energy changes.

RNA and protein structure display

RNA secondary structures were composed using xrna (http://rna.ucsc.edu/rnacenter/xrna); 

HIV protein images (Fig. 1d) were created using Visual Molecular Dynamics52.

The content of this publication does not necessarily reflect the views or policies of the 

Department of Health and Human Services, nor does mention of trade names, commercial 

products, or organizations imply endorsement by the U.S. Government.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Organization, extent of RNA structure, and relationship to protein structure for an HIV-1 

genome. (a) HIV-1 genome organization. Protein coding regions are shown as gray boxes; 

polyprotein domain junctions are depicted as solid vertical lines. Gene start and end sites are 

numbered according to NL4-3. (b) Comparison of median SHAPE reactivities (thick blue 

line) and evolutionary pairing probabilities (cyan line). Medians are calculated using a 75 nt 

window. The global median (= 0.34) is depicted as a red line. Pairing probability is not 

reported for regions encoding overlapping reading frames. (c) Inter-protein linkers in 

polyprotein precursors and the unstructured peptide loops that link protein domains are 

Watts et al. Page 17

Nature. Author manuscript; available in PMC 2010 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicated with green and yellow bars, respectively. The single inter-protein linker that is not 

encoded by a region of highly structured RNA (at the RNase H-IN junction) is shown with 

an open green bar. (d) Comparison of domain structures for the large HIV proteins with the 

structure of the encoding RNA. Polyprotein linkers are green; inter-domain loops are 

yellow; folded protein domains are blue, red, light magenta, purple, and gray (Table S2).
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Figure 2. 
Structure of the HIV-1 NL4-3 genome. The 5′ and 3′ genome halves are shown in panels (a) 

and (b). Nucleotides are colored by their absolute SHAPE reactivities (see scale in panel a). 

Every nucleotide is shown explicitly as a sphere; base pairing is indicated by adjacent 

parallel orientation of the spheres. Protein domains are identified by letters. Important 

structural landmarks are labeled explicitly. Full nucleotide identities and pairings are 

provided in the supplementary information (Fig. S7). Intermolecular base pairs involving the 

tRNALys3 primer and the genomic dimer are shown in gray. Inset shows a box plot 

illustrating SHAPE reactivities for single stranded versus paired nucleotides in the model. 
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Median reactivities are indicated by bold horizontal lines; the large box spans the central 

50% of the reactivity data.
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Figure 3. 
SHAPE analysis of the signal peptide (SP) gp120 region. (a) Processed capillary 

electrophoresis trace showing intensity versus position for the (+) and (−) reagent reactions. 

(b) Histogram of integrated and normalized SHAPE reactivities as a function of nucleotide 

position. The SHAPE reactivity scale shown here is used consistently throughout this work. 

(c) RNA secondary structure model for the SP pause site stem. (d) Location of the SP-stem 

relative to the eukaryotic ribosome at the pause site. Base pairs disrupted when the ribosome 

is at the pause site are boxed.
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Figure 4. 
RNA structure in Env hypervariable regions. (a) Schematic sequence alignment for group M 

reference sequences14 at the Env hypervariable regions (hV1, hV2, hV4 & hV5). 

Nucleotides are represented as vertical bars; light gray and black indicate low versus 

universal conservation, respectively. (b) Evolutionary pairing probabilities. Breaks indicate 

extensive nucleotide insertions and deletions among the group M consensus sequences. (c) 
RNA structures at the hypervariable coding regions hV1, hV2, hV4, and hV5. Calculated 

free energies are shown for each helix (in kcal/mol); energies for anchoring helices proposed 

to function as structural insulators are emphasized in bold. (d) Distribution of helix 

stabilities in the HIV genome shown in a box blot representation. Whiskers illustrate 1.5 
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times the interquartile range and circles emphasize helices of exceptionally high stability. 

Free energy changes for proposed insulating helices are in bold; other significant helices are 

labeled.
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