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Abstract — Aims: To develop a panel of markers able to extract full haplotype information for candidate genes in alcoholism, other
addictions and disorders of mood and anxiety. Methods: A total of 130 genes were haplotype tagged and genotyped in 7 case/control
populations and 51 reference populations using Illumina GoldenGate SNP genotyping technology, determining haplotype coverage.
We also constructed and determined the efficacy of a panel of 186 ancestry informative markers. Results: An average of 1465 loci
were genotyped at an average completion rate of 91.3%, with an average call rate of 98.3% and replication rate of 99.7%. Completion
and call rates were lowered by the performance of two datasets, highlighting the importance of the DNA quality in high throughput
assays. A comparison of haplotypes captured by the Addictions Array tagging SNPs and commercially available whole-genome arrays
from Illumina and Affymetrix shows comparable performance of the tag SNPs to the best whole-genome array in all populations for
which data are available. Conclusions: Arrays of haplotype-tagged candidate genes, such as this addictions-focused array, represent a
cost-effective approach to generate high-quality SNP genotyping data useful for the haplotype-based analysis of panels of genes such
as these 130 genes of interest to alcohol and addictions researchers. The inclusion of the 186 ancestry informative markers allows for
the detection and correction for admixture and further enhances the utility of the array.

INTRODUCTION

Unraveling the underlying mechanisms behind genetically
complex traits remains one of the principal goals in psychiatric
neurogenetics. The challenges associated with identifying the
underlying causes of complex diseases are well illustrated by
alcoholism, addictions and other psychiatric diseases. These are
complex disorders with moderate to high heritability (approxi-
mate range 0.4–0.6) (Goldman et al., 2005). The high incidence
and complex inheritance patterns suggest that the elucidation of
the roles of common genetic variations in vulnerability might be
critical for a better understanding of the pathophysiologies and
for the improvement in diagnostic specificity. Whilst several
functional loci have been identified (e.g. ADH1B His47Arg
and ALDH2 Glu487 in alcoholism (Quertemont, 2004), the
MAOA VNTR in dyscontrol behaviors (Popova, 2006; Craig,
2007) and HTTLPR in anxiety/dysphoria (Heinz et al., 2001)),
the underlying origins of the genetic variance in vulnerability to
addictions and other major psychiatric diseases remain largely
unknown.

Analysis of markers throughout the genome has shown that
alleles of single nucleotide polymorphisms (SNPs) are often
linked to each other in stretches that can range in size from
<5 Kb up to >100 Kb (Gabriel et al., 2002). These combina-
tions of linked alleles (haplotypes) allow the entire genome (or
portions thereof) to be analyzed using a relatively small num-
ber of SNPs. Disease causing SNPs will therefore be linked
to other markers and can be identified through their associa-
tion with other markers even if the causative SNP itself is not

assayed (Risch and Merikangas, 1996; reviewed in Kruglyak,
2008).

Until recently researchers were limited in their options for
genetic analysis by the limited number of available markers,
coupled with comparatively high cost for each genotype ob-
tained. Classical genetic linkage approaches could only be ap-
plied when families could be recruited. With the rapid increase
in marker information from the HapMap (http://www.hapmap.
org/) and GenBank (www.ncbi.nlm.nih.gov/Genbank/) data-
bases and the availability of high-density SNP genotyping
platforms, researchers now have the possibility of compre-
hensively interrogating candidate genes and entire biosyn-
thetic/physiological pathways (Perlis et al., 2008) for their
genetic contribution to a disorder or phenotype, as well as
of performing genome wide scans to identify new candidate
genes.

Whole-genome association studies have shown promise in
the identification of causative genes in disease (Wellcome Trust
Case Control Consortium, 2007; Easton et al., 2007; Hunter
et al., 2007; Frayling et al., 2007; Rioux et al., 2007). How-
ever, several problems remain with widespread use of this
technology. Published whole-genome association studies have
demonstrated that common vulnerability alleles often lead to
odds ratios of less than 2, and due to the genome-wide nature of
these analyses, and the need for statistical correction (Risch and
Merikangas, 1996; Hirschhorn and Daly, 2005) (although the
required degree of correction for multiple correction remains
uncertain), large sample sizes in excess of several thousand
cases and controls are needed to detect loci influencing risk
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(Wang et al., 2005). Furthermore, in the case of bipolar dis-
order a recent whole-genome association study that compared
2000 cases to 3000 controls identified only a single associa-
tion signal that survived criteria for genome-wide significance,
and this locus accounts for only a small part of the variance
in vulnerability attributable to genetic factors. The relatively
high per sample cost and the requirement for large numbers of
cases and control subjects to identify alleles of modest effect
size with associations that are able to withstand correction for
multiple testing, make the widespread use of this approach im-
practical and financially burdensome for many research groups
unless pooling approaches are adopted (Shifman et al., 2002;
Liu et al., 2006; Johnson et al., 2006).

The complexity of neuropsychiatric and behavioral disor-
ders coupled with the fact that phenoptype can be modulated
by environmental factors and that clinical diagnostic criteria
likely miss possible etiological heterogeneity only detectible
by biologic measures has promoted researchers to use so-called
endophenotypes as surrogates for disease states. These en-
dophenotypes are heritable quantitative measurable traits that
are inherited in a stable manner and that are more frequently
observed in both cases and their first degree relatives and
potentially confer vulnerability to a disorder (Gottesman and
Gould, 2003; Flint and Munafo, 2007; Frederick and Iacono,
2006; Enoch et al., 2003). Often these endophenotypes are
measured by the use of imaging technologies (MRI and PET)
(Martinez et al., 2001; Meyer-Lindenberg and Weinberger,
2006) or by EEG measures (Yoon et al., 2006), techniques
which due to their cost, invasive nature, requirement for
expensive, specialized equipment and length of time required
for data acquisition are impractical to use on large cohorts. The
practicality of the whole-genome association approach to the
study of quantitative imaging traits is being assessed, and al-
though no studies are currently published, the data appear to be
promising.

Although candidate gene studies have their own inherent
limitations (reviewed in Tabor et al., 2002), the use of smaller
focused arrays possibly represents a more practical approach
for many studies. These focused arrays are able to overcome
the issues of inadequate gene coverage and ethnic stratification
by providing full coverage for a limited number of candidate
genes and by the inclusion of ancestry informative markers
(AIMs). Such focused arrays offer the advantages of lower cost
and lower false discovery rate, especially in situations where
a dataset may have inadequate power for WGA either because
of size or other reasons. In the future it also appears likely that
such arrays will be required for follow-up on genomic regions
identified by linkage and association studies. Studies on indi-
vidual candidate genes or small groups of such genes have led
to the discovery of functional loci such as the ones cited ear-
lier, but on the other hand these studies have been hampered
in other ways. Many linkage and association studies on the
role of candidate genes in complex disorders have used single
non-functional markers that do not capture sufficient informa-
tion or do not evaluate all genes in the functional domain of
interest. In many instances different markers are selected by
groups to interrogate a single gene, making the comparison
of data difficult. An additional confound in these single gene
studies has been the general failure to control for unrecognized
ethnic stratification within the cohort that can lead to the gen-
eration of both false positive and false negative signals (Schork

et al., 2001; Rosenberg and Nordborg, 2006). Such unrecog-
nized stratification is problematic for genetic studies and can
also confound studies relating phenotype to phenotype or risk
variable to outcome. In such instances ethnicity can represent
a hidden variable.

Recent advances in the neurobiology of addiction, mood
disorders and psychoses have established the importance of
several mechanisms, including reward, stress resiliency and ex-
ecutive cognitive control (reviewed in Goldman et al., 2005).
These studies thereby implicate several molecular networks
that are integral to those processes and genes necessary for
their function. These molecular pathways include signaling
networks, stress/endocrine genes, key neurotransmitter systems
including dopamine, serotonin, glutamate, GABA and acetyl-
choline. In several instances, particular genes and molecules
have also been specifically implicated in addiction liability or in
addictions-related phenotypes by whole-genome or candidate-
gene-focused linkage results.

We have designed a 1536 SNP array, implemented on the
Illumina Goldengate assay platform. This array includes 1350
SNPs selected for 130 genes and 186 markers that are highly
informative for AIMs. The 130 candidate genes were selected
on the basis of their roles in functional domains important in
the addictions and in the related phenotypes of anxiety and
depression. Figure 1 lists the 130 candidate genes organized
into one somewhat arbitrary scheme of functional categoriza-
tion. The candidate genes included a limited number involved
in the pharmacokinetic domain (e.g. several genes in the ADH
gene cluster, and ALDH genes). The majority of the genes
represent the domains of vulnerability to drug use and pharma-
codynamic response. These include dopamine, serotonin, glu-
tamine, GABA, and opioid neurotransmitter genes, signaling
genes, and genes modulating stress resiliency and behavioral
dyscontrol domains. There is a high degree of overlap between
functional gene categories because of pleiotropic actions of
molecules on behavior.

METHODS

Array design

SNPs for candidate genes. A total of 1350 SNPs (Table 1)
from 130 candidate genes (Fig. 1) were selected for inclusion
on the array. Tagging SNPs were identified for these genes
using the following design pipeline:

(i) A genomic region containing sequence 5 kb upstream
and 1 kb downstream for each candidate gene was re-
trieved from NCBI Human Genome Build 35.1.

(ii) Genotype data for the African Yoruban population were
obtained from HapMap Project Public Release #18.
Haplotype structures for each gene were generated using
SNPHAP. The Yoruban data were used since Africans
generally show the greatest haplotype diversity and
therefore require a larger number of tag SNPs to cap-
ture full haplotype information as compared to any other
population for which data are available.

(iii) The minimum number of index SNPs that captured hap-
lotypes with a frequency of at least 0.006 was selected
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Fig. 1. Gene content of the Addictions Array.

using a double classification tree search algorithm
(Zhang et al., 2004).

(iv) Large genes with complex haplotype structures were
split into two or three regions according to the haplotype
block structure and each of these regions was tagged
separately.

(v) SNPs encoding non-synonymous amino-acid substitu-
tions and SNPs within 10 bp of intron/exon splice sites
with the potential to alter splicing efficiency were specif-
ically included by forcing these SNPs into the panels
used for haplotype tagging (Table 2).

Ancestry informative markers. A panel of 186 SNPs was
selected as genomic controls based on the following criteria:
(i) reference allele frequency (RFA) of pairwise SNPs from
the HapMap Project was at least 0.75; (ii) the minimum dis-
tance between SNPs was 80 kb; (iii) the absolute value of
log (RFA1/RFA2) was greater than 1 (i.e. there was a 10-fold
difference). The selected SNPs represent a sub-fraction of a
larger 204 SNP AIMS panel (Enoch et al., 2006) previously
tested on the Illumina platform where failed or uninforma-
tive assays have been removed from the assay pool. AIMs
data were analyzed using structure 2.1 to generate popula-
tion assignments for all individuals (Pritchard et al., 2000).
For the CEPH (Centre Etudes du Polymorphisme Humain)
diversity panel, the run parameters used were 1051 individu-
als, 179 loci, 51 populations assumed, 100,000 Burn-in pe-
riod and 200,000 Reps. For the test populations, the same
run parameters were used, with 5 populations assumed for
the 564 samples and 159 loci. The output was graphically rep-

resented using the distruct program (Rosenberg, 2004; http://
rosenberglab.bioinformatics.med.umich.edu/distruct. html).

Samples

All samples used were collected under protocols approved
by the relevant institutional IRB, with participants providing
written informed consent for use of their samples in genetic
studies.

Genotyping. Genotyping was performed using the Illumina
GoldenGate genotyping protocols on 96-well format Sentrix R©

arrays. Five hundred nanogram of sample DNA was used per
assay. All pre-PCR processing was performed using a TECAN
liquid handling robot running Illumina protocols. Arrays were
imaged using an Illumina Beadstation GX500 and the data
analyzed using GenCall v6.2.0.4 and GTS Reports software
v5.1.2.0 (Illumina). Genotype clusters were determined for a
test dataset and this template was applied to all subsequent
datasets. Data for each dataset were polished by manual adjust-
ment of the clustering for each marker to correct for differences
between datasets arising from sample integrity and concentra-
tion. Loci for which three distinct clusters could not be resolved
were assigned zero scores. Data were further polished as fol-
lows: genotypes with low GenCall scores (<0.25) were called
as undetermined. The GenCall score is a value between 0 and 1
giving a confidence score for that genotype call (the higher the
score the higher the confidence in the call) and is derived from
the tightness of the clusters for a given locus and the position
of the sample relative to its cluster.

Loci with a call rate >90% were determined to have
failed and were excluded. At this point deviation from
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Table 1. List of genes included on the array, chromosome and number of tag SNPs

Gene ID Selected SNPs Gene symbol Chr Gene product name

553 4 AVPR1B 1 Arginine vasopressin receptor 1B
1,131 20 CHRM3 1 Cholinergic receptor, muscarinic 3
1,141 5 CHRNB2 1 Cholinergic receptor, nicotinic, beta
2,166 7 FAAH 1 Fatty acid amide hydrolase
2,563 4 GABRD 1 Gamma-aminobutyric acid (GABA) A receptor
3,725 4 JUN 1 v-jun avian sarcoma virus 17 oncogene homolog
4,803 15 NGFB 1 Nerve growth factor, beta polypeptide precursor
4,985 11 OPRD1 1 Opioid receptor, delta 1
151 4 ADRA2B 2 Alpha-2B-adrenergic receptor
1,385 10 CREB1 2 cAMP responsive element binding protein 1
1,622 5 DBI 2 Diazepam binding inhibitor
54,738 4 FEV 2 FEV (ETS oncogene family)
2,355 9 FOSL2 2 FOS-like antigen 2
2,571 12 GAD1 2 Glutamate decarboxylase 1
3,357 6 HTR2B 2 5-Hydroxytryptamine (serotonin) receptor 2B
23,620 4 NTSR2 2 Neurotensin receptor 2
5,443 4 POMC 2 Proopiomelanocortin preproprotein
5,581 21 PRKCE 2 Protein kinase C, epsilon
885 7 CCK 3 Cholecystokinin preproprotein
1,814 16 DRD3 3 Dopamine receptor D3
2,932 16 GSK3B 3 Glycogen synthase kinase 3 beta
6,538 19 SLC6A11 3 Solute carrier family 6 (neurotransmitter
124 4 ADH1A 4 Class I alcohol dehydrogenase, alpha subunit
125 5 ADH1B 4 Alcohol dehydrogenase 1B (class I), beta
126 6 ADH1C 4 Class I alcohol dehydrogenase, gamma subunit
127 6 ADH4 4 Class II alcohol dehydrogenase 4 pi subunit
128 8 ADH5 4 Class III alcohol dehydrogenase 5 chi subunit
130 4 ADH6 4 Class V alcohol dehydrogenase 6
131 9 ADH7 4 Class IV alcohol dehydrogenase 7 mu or sigma
152 4 ADRA2C 4 Alpha-2C-adrenergic receptor
886 7 CCKAR 4 Cholecystokinin A receptor
9,575 10 CLOCK 4 Clock
1,816 6 DRD5 4 Dopamine receptor D5
2,555 12 GABRA2 4 Gamma-aminobutyric acid A receptor, alpha 2
2,557 12 GABRA4 4 Gamma-aminobutyric acid A receptor, alpha 4
2,560 19 GABRB1 4 Gamma-aminobutyric acid (GABA) A receptor, beta
2,743 14 GLRB 4 Glycine receptor, beta
4,886 6 NPY1R 4 Neuropeptide Y receptor Y1
4,887 4 NPY2R 4 Neuropeptide Y receptor Y2
4,889 4 NPY5R 4 Neuropeptide Y receptor Y5
154 4 ADRB2 5 Adrenergic, beta-2-, receptor, surface
9,607 6 CART 5 Cocaine- and amphetamine-regulated transcript
1,393 8 CRHBP 5 Corticotropin releasing hormone binding protein
1,812 8 DRD1 5 Dopamine receptor D1
2,559 6 GABRA6 5 Gamma-aminobutyric acid A receptor, alpha 6
2,561 18 GABRB2 5 Gamma-aminobutyric acid (GABA) A receptor, beta
2,566 15 GABRG2 5 Gamma-aminobutyric acid A receptor, gamma 2
2,741 10 GLRA1 5 Glycine receptor, alpha 1
3,350 4 HTR1A 5 5-Hydroxytryptamine (serotonin) receptor 1A
2,908 10 NR3C1 5 Nuclear receptor subfamily 3, group C, member 1
6,531 12 SLC6A3 5 Solute carrier family 6 (neurotransmitter
6,534 7 SLC6A7 5 Solute carrier family 6, member 7
1,268 8 CNR1 6 Central cannabinoid receptor
2,911 22 GRM1 6 Glutamate receptor, metabotropic 1
3,351 4 HTR1B 6 5-Hydroxytryptamine (serotonin) receptor 1B
1,432 11 MAPK14 6 Mitogen-activated protein kinase 14
4,988 24 OPRM1 6 Opioid receptor, mu 1
2,030 9 SLC29A1 6 Solute carrier family 29 (nucleoside
1,129 20 CHRM2 7 Cholinergic receptor, muscarinic 2
1,395 13 CRHR2 7 Corticotropin releasing hormone receptor 2
1,644 22 DDC 7 Dopa decarboxylase (aromatic L-amino acid
3,952 4 LEP 7 Leptin precursor
4,852 4 NPY 7 Neuropeptide Y
6,863 4 TAC1 7 Tachykinin 1
148 19 ADRA1A 8 Alpha-1A-adrenergic receptor
1,392 4 CRH 8 Corticotropin releasing hormone precursor
4,986 12 OPRK1 8 Opioid receptor, kappa 1
5,179 8 PENK 8 Proenkephalin
5,368 7 PNOC 8 Prepronociceptin
216 26 ALDH1A1 9 Aldehyde dehydrogenase 1A1
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Table 1. (Continued)

Gene ID Selected SNPs Gene symbol Chr Gene product name

1,621 24 DBH 9 Dopamine beta-hydroxylase precursor
2,902 5 GRIN1 9 NMDA receptor 1
8,777 18 MPDZ 9 Multiple PDZ domain protein
4,915 17 NTRK2 9 Neurotrophic tyrosine kinase, receptor, type 2
150 4 ADRA2A 10 Alpha-2A-adrenergic receptor
1,571 6 CYP2E1 10 Cytochrome P450, family 2, subfamily E
2,572 17 GAD2 10 Glutamate decarboxylase 2
6,571 14 SLC18A2 10 Solute carrier family 18 (vesicular monoamine)
627 9 BDNF 11 Brain-derived neurotrophic factor
847 11 CAT 11 Catalase
887 5 CCKBR 11 Cholecystokinin B receptor
1,128 6 CHRM1 11 Cholinergic receptor, muscarinic 1
1,132 4 CHRM4 11 Cholinergic receptor, muscarinic 4
1,813 16 DRD2 11 Dopamine receptor D2
1,815 4 DRD4 11 Dopamine receptor D4
8,061 5 FOSL1 11 FOS-like antigen 1
51,083 4 GAL 11 Galanin preproprotein
3,359 7 HTR3A 11 5-Hydroxytryptamine (serotonin) receptor 3A
9,177 9 HTR3B 11 5-Hydroxytryptamine (serotonin) receptor 3B
7,054 4 TH 11 Tyrosine hydroxylase
7,166 7 TPH1 11 Tryptophan hydroxylase 1
217 8 ALDH2 12 Mitochondrial aldehyde dehydrogenase 2
552 9 AVPR1A 12 Arginine vasopressin receptor 1A
2,904 25 GRIN2B 12 N-Methyl-D-aspartate receptor subunit 2B
6,540 19 SLC6A13 12 Solute carrier family 6 (neurotransmitter
121,278 22 TPH2 12 Neuronal tryptophan hydroxylase
3,356 19 HTR2A 13 5-Hydroxytryptamine (serotonin) receptor 2A
2,353 4 FOS 14 v-fos FBJ murine osteosarcoma viral oncogene
10,243 23 GPHN 14 Gephyrin
1,133 17 CHRM5 15 Cholinergic receptor, muscarinic 5
2,562 21 GABRB3 15 Gamma-aminobutyric acid (GABA) A receptor, beta
2,567 19 GABRG3 15 Gamma-aminobutyric acid (GABA) A receptor, gamma
113 14 ADCY7 16 Adenylate cyclase 7
2,903 18 GRIN2A 16 N-Methyl-D-aspartate receptor subunit 2A
5,595 4 MAPK3 16 Mitogen-activated protein kinase 3
6,530 22 SLC6A2 16 Solute carrier family 6 member 2
409 4 ARRB2 17 Arrestin beta 2
8,851 4 CDK5R1 17 Cyclin-dependent kinase 5, regulatory subunit 1
1,394 9 CRHR1 17 Corticotropin releasing hormone receptor 1
2,905 4 GRIN2C 17 N-Methyl-D-aspartate receptor subunit 2C
3,060 4 HCRT 17 Orexin precursor
84,152 4 PPP1R1B 17 Protein phosphatase 1, regulatory (inhibitor)
6,532 15 SLC6A4 17 Solute carrier family 6 member 4
1,137 4 CHRNA4 20 Cholinergic receptor, nicotinic, alpha
4,923 12 NTSR1 20 Neurotensin receptor 1
4,987 7 OPRL1 20 Opiate receptor-like 1
5,020 4 OXT 20 Oxytocin-neurophysin I preproprotein
5,173 8 PDYN 20 Beta-neoendorphin-dynorphin preproprotein
140,679 4 SLC32A1 20 Solute carrier family 32, member 1
2,897 16 GRIK1 21 Glutamate receptor, ionotropic, kainate 1
1,312 16 COMT 22 Catechol-O-methyltransferase
1,454 11 CSNK1E 22 Casein kinase 1 epsilon
5,594 19 MAPK1 22 Mitogen-activated protein kinase 1
2,556 16 GABRA3 X Gamma-aminobutyric acid A receptor, alpha 3
2,564 10 GABRE X Gamma-aminobutyric acid (GABA) A receptor
55,879 6 GABRQ X Gamma-aminobutyric acid (GABA) receptor, theta
2,742 16 GLRA2 X Glycine receptor, alpha 2
3,358 19 HTR2C X 5-Hydroxytryptamine (serotonin) receptor 2C
4,128 9 MAOA X Monoamine oxidase A
4,129 13 MAOB X Amine oxidase (flavin-containing)

Hardy–Weinberg equilibrium was not used as an exclusion cri-
terion since all datasets contained both case and control samples
and, in general, were of mixed ethnic composition.

A total of 8309 unique samples were genotyped from seven
different datasets. DNA samples were excluded using the fol-
lowing criteria. The GenTrain scores for a sample for all loci are

used to determine the 10% percentile GenCall score (%10 GC)
for that sample. The sample exclusion threshold is based on a
single project and is calculated by taking the 90th percentile of
%10 GC scores for all samples in the project and multiplying by
0.85. Any sample with the %10 GC value below that threshold
was classified as failed and removed from the analysis.



510 Hodgkinson et al.

Table 2. Table showing SNP content of Addictions Array, including cSNPs
and other putative functional SNPs

Total SNPs for 130 genes 1350
SNPs in intron within 10 bp of splice site 37
SNPs in transcripts 167
SNPs in UTR (5′ or 3′) 55
SNPs in coding sequence 122
Non-synonymous 86
Synonymous 26
Ancenstry informative markers (AIMs) 186

Table 3. Table showing the performance of the Addictions Array assays over
seven datasets

Passing Completion Average call Replication
Dataset loci rate (%) rate (%) rate (%)

A 1487 98.1 99.7 99.9
B 1484 96.5 99.2 99.7
C 1492 99.7 99.9 99.8
D 1479 98.9 99.9 99.8
E 1351 86.2 99.6 99.5
F 1387 66.9 90.6 99.6
G 1463 94.8 99.6 99.4

Genotyping accuracy was determined based on genotype
concordance between DNA replicates. The level of sample
replication varied between datasets averaging 16% across all
seven datasets.

Haplotypes were derived using the program Phase 2.0 (Li
and Stephens, 2003).

RESULTS

Five of the seven datasets (sets A, B, C, D and G) averaged 1481
passing loci, with an average completion rate of 97.60% for
those loci (Table 3). Datasets E and F had fewer passing loci,
1351 and 1387 respectively, and greatly reduced completion
rates, 86% and 67%. Once all failing DNAs were removed,
the average call rate per sample for the datasets was 99.31%,
with all but dataset F having a call rate of 90.4%. The reduced
performance of the array for datasets E and F is likely due
to issues of DNA concentration and quality since the average
replication rate for all seven datasets was 99.7% and datasets E
and F recorded replication rates of 99.5% (99.95% if one pair
were excluded) and 99.6%, respectively, indicating the high
quality of genotyping generated for these two datasets.

One of the datasets was derived from a Finnish population
which allowed us to estimate the genotyping accuracy by the
comparison of the minor allele frequency (MAF) for all passing
loci in this dataset to the MAF (where known) for the HapMap
Caucasian population. This similarity in MAF for the 1440+
loci (Fig. 2) suggests that the genotyping clusters were cor-
rectly assigned. Only one marker showed a deviation in MAF
>±0.25. This marker rs4824001 is one of the 186 AIMs and
was originally selected for its high MAF in the Yoruban pop-
ulation (MAF = 0.833), intermediate frequency in Asian pop-
ulations (MAF = 0.471) and low MAF (0.017) in Caucasians.
The observed MAF (0.498) was confirmed by inspection of
the cluster file, which showed clear cluster separation (data
not shown). This suggests that this marker, in conjunction with

Fig. 2. Minor allele frequency (MAF) for all array markers was determined
for a Finnish Caucasian population and compared to the expected MAF from
the HapMap Caucsian data. The difference in experimentally determined and
expected MAF was plotted against frequency. Clustering of the data around
a MAF of 0 provides confidence that experimentally determined genotype
is accurate. Deviation from 0 MAF highlights the possibility of detectable

stratification between Caucasian populations.

others, may have utility for identifying population stratification
in Caucasian populations.

The array was designed to allow haplotype analysis. Tagging
SNPs were selected to be able to detect haplotypes present at a
haplotype frequency of 0.006 or higher. However, subsequent
to the design of the oligo pool additional SNPs have been iden-
tified and genotyped in the HapMap populations resulting in
an increase in the number of possible haplotypes. The haplo-
type coverage offered by the tagging SNPs Addictions Array
for alcohol dehydrogenase 6 (ADH6) was compared to hap-
lotypes calculated for data from HapMap release 21 (Fig. 3)
for the combined Asian and Caucasian samples. To facilitate
the analysis haplotypes for Nigeria (YRI) and Utah (CEU)
samples in the chromosome region were downloaded from
HapMap project release 21 (http://www.hapmap.org/). Based
on Manhattan distances weighted by minor allele frequency
and marker average LD, haplotypes were clustered hierarchi-
cally using R (http://www.r-project.org). Haplotype coverage
was determined by dividing the number of haplotypes correctly
identified by the tag SNP set divided by the total number of
SNPs within the corresponding cluster. As shown in Fig. 3,
the majority of all the haplotypes could be correctly called in
the combined Asian sample with only three minor haplotypes
not being determined by the tag SNP set. Overall in the Asian
population haplotype coverage averaged 0.98. In Caucasians
the overall haplotype coverage remained at 0.94; however, of
the 11 minor haplotypes not detected, the majority (9) were
cladistically related, arising in the H3 cluster.

The average haplotype coverage for the genes analyzed by
the Addictions Array was compared to the coverage provided
by the Illumina HumanHap 550 R©, the Affymetrix Human-
Wide SNP Array 5.0 R© whole-genome association array and
the Affymetrix Human-Wide SNP Array 6.0 R© (Fig. 4). Only
121 of the 130 genes represented on the Addictions Array were
analyzed because X-linked phased haplotypes carried a dis-
crepancy warning from HapMap and because in the case of
several smaller genes only two markers had been genotyped
in HapMap. The subsets of genes analyzed for the Illumina
and Affymetrix arrays were not completely overlapping. Out



Addictions Biology: Haplotype-Based Analysis for 130 Candidate Genes on a Single Array 511

Fig. 3. Haplotype capture for the ADH6 gene in two HapMap populations. Using genotypes for the HapMap Caucasian and combined Chinese and Japanese
populations the ability of the array marker set to capture HapMap release 2 haplotypes was analyzed. Haplotypes were cladistically clustered (see the diagram)
and the ability of the panel to correctly identify haplotypes in the HapMap Asian and Caucasian populations was determined (see the table on top of the figure).

Fig. 4. Comparison of overall haplotype capture in three HapMap populations by the Addictions Array, the Affymetrix Human-Wide SNP 5.0 R©, the Affymetrix
Human-Wide SNP 6.0 R© and the Illumina HumanHap550 R© arrays. Overall the Addictions array was able to capture haplotypes with a similar efficiency the
Illumina product in all three populations. Due to the SNP selection on the Affymetrix 5.0 array the Addictions array, the Illumina 550 HumanHap550 R© array and

the 1 million SNP Affymetrix 6.0 were able to capture more haplotype diversity.
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Fig. 5. (A) Analysis of the AIMs data for the CEPH diversity panel. The AIMs panel is able to identify six distinct groups from the global population, based
upon geographically relationships. (B) Analysis of five test samples including Mexican Americans (MA), African Americans (AA), Finnish Caucasians, Han
Chinese and Midwestern Native Americans (Plains) using the AIMs panel. All individuals were correctly assigned to their respective ethnic groupings. Five
distinct groups were determined. The table shows the calculated contribution of each ethnic factor to the other populations. As anticipated the Mexican American,

African American and to a lesser extent the Native American samples showed a higher degree of admixture than the Finnish and Han Chinese samples.

of 121 Addiction Array genes only 113 were represented on
the Illumina array, 112 on the Affymetrix 6.0 array and 103 on
the Affymetrix 5.0 array. The whole-genome arrays on average
used more than twice the number of SNPs (averaging 18, 31 and
20 SNPs per gene for the Affymetrix 5.0, Affymetrix 6.0 and
Illumina 550 arrays, respectively) to cover each gene compared
to the Addictions Array (average 9 SNPs per gene). Despite the
reduced number of SNPs per gene, the average haplotype cover-
age (HCM–haplotype coverage mean) for the Addictions Array
was consistently higher than that of the Affymetrix 5.0 Array
for all three HapMap populations. The superior performance of
the Addictions Array over the Affymetrix 5.0 array product was
also confirmed by the coverage median values in all three pop-
ulations. The Addictions Array performed comparably to the
Illumina humanhap 550 array, and the Affymetrix 6.0 array for
the Caucasian and Asian HapMap populations with an HCM
of 0.76 for the Caucasian and Asian groups, compared to the
0.80 and 0.79 values for the Illumina 550 k array, and 0.77 and
0.78 for the Affymetrix 6.0 array. The Addictions Array pro-
duced a higher HCM (0.74) and coverage median (0.76) for the
Yoruban population than the Illumina array (HCM 0.67, me-
dian coverage 0.69) and comparable results to the Affymetrix
6.0 array (HCM 0.73; median coverage 0.76).

The ability of the AIMs panel to detect differences between
populations that were not originally used in the design of the
panel was tested by genotyping the CEPH diversity panel (Cann

et al., 2002). Genotyping data were analyzed using structure
2.2 for a six-population solution (Fig. 5a). Using the combined
global data the AIMs panel is able to distinguish six distinct
populations that segregate along continental lines. This solution
is similar to that obtained by Rosenberg et al. using a panel of
377 micro-satellite markers. Additionally the two samples pre-
viously shown to be misidentified (Rosenberg et al., 2002), as
members of the Biaka pygmy and Japanese cohorts, were
correctly assigned by this AIMs panel to their correct
continental groups (Europe/Middle East and the Americas,
respectively).The ability of AIMs panel to detect admixture
was then tested by analyzing the combined data from five
populations, Finnish Caucasians (n = 85), African Americans
from New Jersey (n = 83), Native Americans from the Midwest
(n = 86), Han Chinese (n = 83) and Mexican Americans from
California (n = 228). The analysis was performed using the
assumption of five populations using data for 159 loci and the
results are shown in Fig. 5b. All individuals were correctly
assigned to their ethnic cluster, although individuals can be
seen to vary in their degree of admixture. The admixture
contribution of a cluster to each population is shown as a
percentage of the inferred clusters (Fig. 5). As expected the
African American and Mexican American populations showed
higher degrees of admixture than the Finnish and Han Chinese
samples, both of which had been previously shown to be
relatively homogenous groups (Enoch et al., 2006).
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DISCUSSION

Technologies for genotyping have increased genotyping
throughput whilst at the same time decreasing the cost per
genotype. At present up to 1 million SNPs can be interrogated
simultaneously in an individual allowing for whole-genome
association studies. Such studies have successfully identified
susceptibility loci for obesity (Freyling et al., 2007) and breast
cancer (Hunter et al., 2007; Easton et al., 2007) as well as
for bipolar disorder, coronary heart disease, Crohns disease,
rheumatoid arthritis, and type 1 and type 2 diabetes (Wellcome
trust Case Control Consortium, 2007; Rioux et al., 2007). The
cost of this approach remains prohibitively high for general-
ized use and requires large datasets to obtain the necessary
power to detect association to a phenotype. This is particularly
problematic for those datasets where PET or MRI imaging is
performed since the high cost of the scans coupled with the
time required to acquire the data makes the collection of large
datasets impractical. Pooling of samples has been successfully
used to reduce the overall number of arrays required for a study;
however, this approach has not gained widespread acceptance
or use due to the practical issues of sample normalization, sta-
tistical testing and the loss of individual haplotype information
needed amongst other reasons to validate the homogeneity of
the phenotypic groups. Although the cost per sample of the
whole-genome arrays is constantly falling, and the data could
be used for haplotype-based analysis of individual genes, these
arrays are likely to remain inappropriate for candidate gene
analysis due to issues of sample throughput. Certainly the use
of these arrays would allow for more fine-tuned control and
correction of population stratification due to the higher number
of markers. Currently, however, the use of more focused ar-
rays represents a more appropriate approach for many studies
where the number of subjects is limited, and where the inves-
tigators wish to study a specific hypothesis where candidate
genes are selected on the basis of function or where individual
SNPs are known to alter the expression or biological activity
of the gene product. Additionally in future, once a number of
large whole-genome association studies have been completed,
it may be more appropriate to use focused arrays to interro-
gate genomic regions identified as potential candidate regions
in a large number of smaller datasets. In this context where
there are convergences of whole-genome association data to
previously identified candidate genes, the two approaches act
synergistically as cross-validation of each positive association
finding.

The SNP tagging pipeline for this array used the HapMap
data for the Yoruban population as its basis. Whilst it would
be preferred that a tag set was used for each unique population
it has been shown that tagging SNP sets have high portabil-
ity across populations (deBakker et al., 2006; Conrad et al.,
2006; Gonzalez-Niera et al., 2006). The discovery of addi-
tional SNPs subsequent to the array design has resulted in a
reduction in the haplotype capture or coverage, but it remains
at levels comparable to the high-density arrays available. Use
of clustering on a cladistic basis allows the grouping of related
haplotypes, particularly those with low frequency. It might be
considered desirable to generate an array capable of universally
high haplotype capture in all populations; however, such a goal
is unlikely to be achieved. For complete haplotype capture in
all three HapMap populations the number of tagged SNPs for

each gene would have to be increased, with a concomitant re-
duction in the number of genes that can be interrogated. That
reduction in the number of genes is likely to make any ar-
ray less attractive to researchers as it increases the likelihood
that one or more genes of interest will be absent from the
array.

In this array we have focused on genes of particular interest
to alcohol researchers, which are also of interest to the general
neuropsychiatric community. The use of SNP-tagging allows
the reduction in the number of SNPs required to successfully
interrogate each gene, and maximizes the utility of any array
design by increasing the number of candidates that can be in-
corporated in to the design. This is an important consideration
for custom designs, the cost of which falls as the number of
samples screened increases. In addition we have been able to
include a large panel of AIMs for the detection and correc-
tion for population stratification. To genotype such a large SNP
panel on a SNP-by-SNP basis would be uneconomic and take
a considerable time to accomplish. Since one of the possible
confounds in association studies is false positive (and negative)
finding arising from differences in the makeup of the control
and case groups the detection of any stratification is of the
highest importance. Usually this problem has been handled by
careful selection and matching of the case and control groups,
often resulting in increased costs and the time of study partici-
pant recruitment. Such selection of participants usually results
in the exclusion of minorities and represents a contributory
factor in racial disparities in healthcare and is obviously un-
desirable both scientifically and socially. Even when the issue
of population stratification was addressed by using genotypes
from markers unlinked to each other and to the gene of interest,
it was rarely demonstrated that the markers used were in fact
capable of detecting it. By genotyping the AIMs in the CEPH
reference populations a canonical dataset was created enabling
the computation of ethnic factor scores anchored against world-
wide genetic diversity and allowing direct dataset-to-dataset
comparisons. Fixed solutions for admixture correction can be
performed using individual ethic factor scores as covariates,
or alternatively association data can be corrected using pro-
grams such as STRAT (Pritchard et al., 2000) that directly use
the output of the STRUCTURE 2.0 to correct for any detected
population stratification.

Comparisons between the results from published candidate
gene studies have been hampered in the past by the use of dif-
ferent sets of markers for the interrogation of the same gene.
Whilst often this results from studies being performed contem-
poraneously or due to constraints of a particular genotyping
platform, clearly it is desirable to be able to easily correlate
data from different studies. This issue has clearly been seen
in the study of DISC1 as a candidate gene for schizophre-
nia where multiple groups have performed association studies
using many different markers for their analysis (Hwu et al.,
2003; Hennah et al., 2003; Hodgkinson et al., 2004; Thompson
et al., 2005). Although the studies have provided supportive
evidence for each other, the identification of the functional
loci has been hampered. Similarly the general region in which
the GABAA subunit gene cluster is located on chromosome
4p was implicated in alcohol dependence by family linkage
scans and a series of more recent studies (beginning Long
et al., 1998; Porjesz et al., 2002; Song et al., 2003; Edenberg
et al., 2004; Lappalainen et al., 2005; Prescott et al., 2006;
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Drgon et al., 2006) have now demonstrated linkage disequi-
librium within the GABAA subunit gene cluster itself includ-
ing the same alleles and haplotypes as determined by analysis
of the data from the partially overlapping loci evaluated in
these studies. Frequently, a SNP or multilocus haplotype can
be used to impute a different SNP (Wellcome Trust); how-
ever, the ability to compare across studies is made consider-
ably more challenging by the genotyping of different mark-
ers in different studies. In this context and others, the use of
genotyping tools, including commercially available arrays that
access common sets of markers, is highly advantageous. Al-
though information from the International HapMap Project
provides valuable information about linkage disequilibrium
between markers can assist in cross-study comparisons, the
process is clearly inefficient, time-consuming and not without
error as only four populations are currently represented in the
database.

Widespread use of haplotype capture arrays such as this ad-
dictions array would greatly facilitate cross-study comparisons
and use of large panels of AIMs might permit the data from
different studies to be combined and analyzed by allowing for
population admixture to be controlled for in the analysis.
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