REJUVENATION RESEARCH
Volume 11, Number 4, 2008
© Mary Ann Liebert, Inc.

DOI: 10.1089/rej.2008.0712

Long-Term Effects of Caloric Restriction or Exercise
on DNA and RNA Oxidation Levels in White Blood Cells
and Urine in Humans

Tim Hofer,™ Luigi Fontana,?®* Stephen D. Anton,! Edward P. Weiss,>*4 Dennis Villareal,?
Bhaskar Malayappan,’ and Christiaan Leeuwenburgh’

Abstract

Excessive adiposity is associated with increased oxidative stress and accelerated aging. Weight loss induced by
negative energy balance reduces markers of oxidation in experimental animals and humans. The long-term ef-
fects of weight loss induced by calorie restriction or increased energy expenditure induced by exercise on mea-
sures of oxidative stress and damage have not been studied in humans. The objective of the present study was
to compare the effects of 20% caloric restriction or 20% exercise alone over 1 year on oxidative damage to DNA
and RNA, as assessed through white blood cell and urine analyses. Eighteen men and women aged 50 to 60
years with a body mass index (BMI) between 23.5 to 29.9 kg/m? were assigned to one of two conditions —
20% CR (n = 9) or 20% EX (n = 9) — which was designed to produce an identical energy deficit through in-
creased energy expenditure. Compared to baseline, both interventions significantly reduced oxidative damage
to both DNA (48.5% and 49.6% reduction for the CR and EX groups, respectively) and RNA (35.7% and 52.1%
reduction for the CR and EX groups, respectively) measured in white blood cells. However, urinary levels of
DNA and RNA oxidation products did not differ from baseline values following either 12-month intervention
program. Data from the present study provide evidence that negative energy balances induced through either
CR or EX result in substantial and similar improvements in markers of DNA and RNA damage to white blood
cells, potentially by reducing systemic oxidative stress.

Introduction

OXIDATIVE DAMAGE TO DNA, proteins, lipids, and other
cellular components accumulates over time and has
been hypothesized to be a major cause of aging and age-as-
sociated diseases.!? In support of this hypothesis, acceler-
ated aging and cellular oxidative damage have been linked
in rodents.® Experimental evidence indicates that excessive
adiposity is associated with increased oxidative stress.* In
contrast, weight loss in obese patients causes a significant re-
duction in markers of oxidation, such as urinary 8-iso-PGF2«
and protein carbonylation.>®

Negative energy balance can be achieved by reducing en-
ergy intake or increasing energy expenditure. In rodents,

both caloric restriction (CR) and exercise training have been
found to reduce oxidative damage to lipids, protein, and
DNA in many tissues.” Calorie restriction has consistently
been shown to extend lifespan and reduce age-related dis-
eases in numerous species.10 Exercise training, however, has
only been found to increase average lifespan and does not
affect maximal lifespan.!! One explanation for these dis-
parate effects is that exercise training may increase oxidative
damage in some instances.'?!3 Recent reports, however, in-
dicate that exercise training does not increase oxidative dam-
age in weight-matched rodents.'* Thus, the literature is cur-
rently mixed regarding the effect of exercise on oxidative
damage. Moreover, the effects of long-term negative energy
balance induced by either caloric restriction or exercise alone
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for reducing markers of oxidative stress in humans are not
known.

We conducted a one-year randomized controlled trial in
middle-aged lean and overweight men and women to eval-
uate the effect of body fat reduction induced by a 20% de-
crease in energy intake alone or 20% increase in energy ex-
penditure alone on markers of DNA and RNA damage. We
hypothesized that both calorie restriction (CR) and exercise
(EX) would reduce DNA and RNA oxidative damage, but
that these changes would be more pronounced when the en-
ergy deficit was achieved through CR than through EX.

Method

The current study represents an ancillary project of the
main study entitled Comprehensive Assessment of Long-
term Effects of Reducing Intake of Energy (CALERIE, phase
1). This study was approved by the Human Studies Com-
mittee and the General Clinical Research Center Scientific
Advisory Committee of Washington University School of
Medicine. All subjects gave their informed consent before
their participation.

Participants

An extensive screening process was employed in the CA-
LERIE study to ensure participants were healthy and suit-
able for participation in this trial. Details of the screening
process have been previously reported.! Briefly, men and
women aged 50 to 60 years with a body mass index (BMI)
between 23.5 to 29.9 kg/m? were recruited. Potential partic-
ipants were excluded for the following reasons: (1) a history
of diabetes or a fasting blood glucose value =126 mg/dl, (2)
a history or clinical evidence of coronary artery disease,
stroke, or lung disease, (3) a resting blood pressure (BP) =170
mmHg systolic or =100 mmHg diastolic, or (4) a recent his-
tory or evidence of malignancy. Furthermore, all candidates
had to be nonsmokers and sedentary (defined as exercising
<40 min per week during the 6 months before baseline test-
ing). Women had to be postmenopausal.

Study design

For the larger study, eligible participants were random-
ized, with stratification for sex, to one of three groups in a
2:2:1 sequence: caloric restriction (CR) group (n = 19), exer-
cise (EX) group (n =19), or healthy lifestyle (HL) control
group (n = 10) for 1 year. For the purpose of the current
study, data were analyzed only for participants assigned to
the CR and EX groups. The group samples were random-
ized and batch analyses were performed under the same con-
ditions (see DNA and RNA oxidation section). Because one
subject dropped out of each group before completing the
study and because biological specimens were not available
for all subjects, sample sizes for this ancillary study are
smaller than those reported previously for the Washington
University CALERIE study (sample sizes for each outcome
are provided in the table and figures).

CR intervention

The goal of the CR intervention was to create a 20% en-
ergy deficit through a reduction in energy intake (without
changing physical activity levels) for the duration of the 1
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year intervention. Participants were instructed to decrease
energy intake by 16% during the first 3 months and by 20%
during the remaining 9 months. Diet prescriptions were
based on participants’ baseline energy intake, which was as-
sumed to be equal to total daily energy expenditure as de-
termined by the doubly labeled water (DLW) method.!®> To
enhance compliance to the intervention, participants met
with registered dietitians on a weekly basis to discuss and
review strategies for reducing energy intake, as well as at-
tended weekly group meetings led by a dietitian and a be-
havioral psychologist. Further details about the CR inter-
vention, including compliance data, have been reported
previously.'?

Exercise intervention

The goal of the EX intervention was to induce an energy
deficit identical to the CR intervention by increasing daily
energy expenditure through physical activity without chang-
ing caloric intake. Participants were instructed to increase
energy expenditure by 16% of baseline total daily energy ex-
penditure for the first 3 months and by 20% for the subse-
quent 9 months. They were informed that exercise sessions
could be completed in one or several daily bouts, and exer-
cise trainers worked closely with participants to monitor
their energy expenditure goals. The participants exercised
while using heart rate monitors (Polar S610, Polar Electro
Oy, Kempele, Finland), which provided estimates of energy
expenditure during exercise. To ensure participants’ energy
intake remained stable, the study dietitians periodically
monitored energy intake using 7-day food diaries and pro-
vided consultation as needed. Additional details about the
EX intervention, including compliance data, have been re-
ported previously.>17

Weight measurements

Body weight was measured twice in the morning follow-
ing a 12 h fast. At baseline, weight was calculated from the
mean of four weights measured over a 4-week baseline pe-
riod. Twelve-month body weights represent the mean of
three weekly weights obtained at the beginning, middle, and
end of the 2-week assessment periods.

DNA and RNA oxidation

Urine analysis. Urine samples were collected for 12 h
overnight from the participants using standardized pro-
cedures, aliquoted and frozen under argon at —80°C until
analysis.'"® The urinary RNA and DNA oxidative damage
products  2,6-diamino-4-hydroxy-5-formamidopyrimidine
(FapyGua), 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-
7,8-dihydroguanosine (8-oxoGuo), and 8-oxo-7,8-dihydro-
2'-deoxyguanosine (8-oxodGuo) (chemical structures are
shown in Fig. 1) were simultaneously measured for partici-
pants on CR and exercise employing electrospray tandem
mass spectrometry detection (MS/MS) in multiple reaction
monitoring (MRM) mode on a Finnigan TSQ 7000 triple
quadrupole mass spectrometer (Thermo Electron Corpora-
tion, San Jose, CA). This method does not require any sam-
ple preparation except for the addition of buffer and '*C- and
15N-labeled internal standards (isotope dilution) to the urine
prior to sample injection into the HPLC-MS/MS system, as
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FIG.1. Guanine oxidation reaction scheme with structures of nucleosides and bases analyzed using HPLC-ECD and HPLC-
MS/MS. The reaction mechanism of guanine (Gua) with oxidizing agents, such as one-electron oxidants (produces a Gua**
cation that can react with a hydroxyl anion, OH™) and the gldroxyl radical (OH"®), forms an unstable intermediate radical
(8-OH-H-Gua") upon reaction at the exposed C-8 position.'”?% The reduction reaction (+e~ +H" (= +H")) generates an 8-
OH-H-Gua" ring opening to form FapyGua, whereas upon oxidation (-H") 8-oxoGua is formed.!”?% Base and nucleotide
excision repair (BER/NER) systems constantly proof DNA for mutagenic oxidation products to be removed from the cells
and excreted into the plasma and filtered by the kidney. How oxidation products in RNA are removed is presently unclear,
but is believed to occur by yet largely undefined mechanisms turning over damaged RNA.2! 8-oxoGua and FapyGua can
be excreted as free bases or attached to the sugar moieties present in RNA and DNA (R = ribose, dR = 2'-deoxyribose).
FapyGua forms several isomers when attached to a sugar moiety and was measured as free base only. Urinary nucleoside
oxidation products may to a minor extent also be absorbed from digested food or gut microbial end products, or stem from

dead cells.2224

described in detail elsewhere.!8 The urinary biomarkers were
normalized to the concentration of creatinine, which was as-
sessed using a creatinine kit (Cayman Chemical, Ann Arbor,
MI). The manufacturer’s instructions were followed and the
formation of acid-sensitive chromogen after reduction of the
sample with picrate was measured spectrophotometrically
at 500 nm.

Blood analyses. A venous blood sample was taken after
participants had fasted for at least 12 h at baseline and at 12
months. In the EX group, blood samples were obtained at
least 48 h after the last exercise session. Blood was collected
in 10 mL EDTA-Vacutainer tubes from Becton Dickinson
(Franklin Lakes, NJ), and white blood cell (WBC) “buffy

coats” were collected following centrifugation (800 g, 20 min,
4°C) using a large orifice pipette tip and placed into 1.5 mL
Eppendorf tubes and immediately frozen at —-80°C. RNA and
DNA oxidative damage levels to WBC were measured in the
CR (n = 9) and EX (n = 9) subjects. Buffy coats of WBC were
thawed from —-80°C and placed on ice. Working on slush ice
(0°C) during all steps, cells were lysed in 4.5 mL of 3 M GTC
buffer (0.2 wt.% N-L-Sarcosine, 20 mM tris [pH 7.5]) con-
taining 10 mM of the freshly dissolved metal chelator de-
feroxamine meylate (DFOM) during homogenization using
a Potter-Elvehjem homogenizer. All chemicals and supplies
used to extract and analyze nucleic acids were as previously
described.?> After transferring the homogenates to 15 mL
Phase-Lock Gel (PLG) tubes, an equal amount of a phenol-
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chloroform mixture (pH 6.7) was added, and proteins and
lipids extracted into the phenol phase. After vortexing in in-
tervals of 10 min keeping the tubes on ice, samples were cen-
trifuged (2000 g, 30 min, 0°C), and the upper aqueous phase
containing nucleic acids was transferred into a new PLG
tube. The procedure was repeated once. After transferring
into a new PLG tube, an equal amount of chloroform-
isoamylalcohol (24:1) was added to remove any remaining
phenol by hand mixing followed by centrifugation. The pro-
cedure was repeated once, and the upper aqueous phase was
collected and nucleic acids precipitated by adding 1:1 iso-
propanol, mixing and incubating at —-80°C overnight. Total
nucleic acids were collected by centrifugation at 10,000 g, 0°C
for 10 min. Nucleic acids were washed in 70% ethanol, spun
down at 3000 g (10 min, 0°C), and air-dried at room tem-
perature for 10 min. RNA/DNA hydrolysis was performed
using Nuclease P; and alkaline phosphatase, and 8-oxoGuo/
guanosine (Guo) and 8-oxodGuo/2'-deoxyguanosine (dGuo)
ratios were determined using HPLC-ECD with a Coulochem
IIT electrochemical detector (ESA Inc., Chelmsford, MA), as
described previously.?®

Statistical analysis

Baseline characteristics of participants were compared be-
tween groups using Fisher’s exact test for categorical data
and independent t-tests for quantitative data. One-way
ANOVA and paired t test were performed to assess within-
group changes, and analysis of covariance (ANCOVA) was
used for between group comparisons after adjustment for
initial values with subsequent Kruskal-Wallis test for post-
hoc comparisons. All statistical tests were two-tailed, and
significance was accepted at p < 0.05. Data are presented as
means * standard error (SE) at each time point, and for the
change between baseline and 12 months. All analyses were
performed using Prism 4 from GraphPad software (San
Diego, CA).

Results
Participants

Subject characteristics data represent all participants who
were included in the WBC- or urine-based analyses (N = 34).
Male/female representation in the CR (7 men, 10 women)
and EX (5 men, 12 women) groups did not differ significantly
(p = 0.72). The participants in the CR group were slightly
younger than those in the EX group (54.6 * 3.1vs. 58.6 = 2.7
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years, p = 0.0004), although all participants were within the
50 to 60 year range required for the study. Average BMI was
in the overweight range (CR, 26.8 + 2.4 kg/m?; EX, 26.7 =
1.8 kg/m?) and did not differ between groups (p = 0.89). Re-
sults from statistical analyses performed on each subgroup
alone (i.e., participants included in the WBC-based analyses
(n = 18) or those included in the urine-based analyses (1 =
29) were not different from analyses conducted on the entire
sample.

Body weight

Baseline body weight was similar in the CR (79.1 * 9.8 kg)
and exercise (75.6 = 10.3 kg) groups and did not differ be-
tween groups (p = 0.32). Body weight decreased in both
groups (CR, —10.2 = 1.5%, p < 0.0001; EX, —8.0 £ 1.5%, p <
0.0001) and these decreases did not differ between groups
(p = 0.31). These results are based on subjects who were in-
cluded in either the WBC- or urine-based data analyses (1 =
34); statistical results from analyses on either subgroup alone
were not different from the results from all subjects com-
bined (data not shown).

RNA and DNA oxidative damage

Analyses of white blood cells. The two groups did not dif-
fer in levels of RNA or DNA oxidative damage at baseline.
As presented in Figure 2, both interventions significantly re-
duced oxidative damage to both DNA and RNA. Levels of
WBC DNA oxidation (8-oxodGuo/ 10° dGuo) decreased by
48.5% from baseline (4.24 = 0.39) to 1 year (2.19 * 0.34) for
the CR group, and by 49.6% from baseline (3.30 = 0.56) to 1
year (1.66 = 0.22) for the EX group. Similarly, levels of total
WBC RNA oxidation expressed as 8-oxoGuo/10° Guo de-
creased by 35.7% from baseline (4.15 * 0.49) to 1 year (2.67 =
0.28) for the CR group, and by 52.1% from baseline (4.15 =
0.63) to 1 year (1.99 = 0.43) for the EX group.

Urine levels of nucleoside oxidation products. Urinary lev-
els for each nucleic acid oxidation product at baseline and at
one-year are presented in Table 1. In contrast to the WBC
data, nucleic acid oxidation products were not found to be
significantly different from baseline following either 12-
month intervention program. We did, however, find differ-
ences in the amount of baseline levels between the different
excreted oxidized nucleic acid bases. Comparison of urinary
excretion levels of the four nucleic acid products at baseline
before interventions in all groups were different: baseline

TaBLE 1. URINARY LEVELS OF RNA AND DNA OxIDATION PRODUCTS

EX (n=15) CR (n=14)
Baseline One year Baseline One year
Creatinine 6.42 + 0.89 693 £ 1.3 8.03 + 2.2 8.83 £ 1.7
FapyGua/creatinine 450 = 24 325 1.0 3.86 = 1.5 272 = 0.74
8-oxoGua/ creatinine 127 + 28 144 + 44 200 = 60 141 = 34
8-oxoGua/creatinine 6.28 £ 2.1 534 = 1.5 712 £ 2.0 621 £ 1.7
8-oxoGua/creatinine 2.30 = 0.74 2.78 £ 0.82 244 + 0.71 247 £ 1.1

Levels of FapyGua, 8-oxoGua, 8-oxoGuo, and 8-oxodGuo are expressed as nmol/mmol creatinine, creatinine alone as mM. Values are

given as mean * SE.
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FIG. 2. White blood cell levels of nucleic acid oxidative
damage in the same individuals before (baseline) and after
12-month interventions of calorie restriction or exercise. Lev-
els of RNA (A) and DNA (B) oxidative damage are shown
as means * SE. CR, calorie restriction by 20% (n = 9); EX,
exercise with 20% increase in energy expenditure (n = 9).
Signs mark out significant differences from baseline using
paired t-tests (*p < 0.05, ***p < 0.001). Baseline levels of
RNA and DNA oxidative damage did not differ significantly
between CR and EX groups.

levels of 8-oxoGua (162 * 33 nmol 8-oxoGua/mmol creati-
nine) was significantly higher (p < 0.001) than the levels of
FapyGua (4.19 = 1.4), 8-oxoGuo (6.68 * 1.5), and 8-oxodGuo
(2.37 = 0.50) (Fig. 3).

Discussion

In this 1 year randomized trial, we compared the effects
of weight loss induced by CR or EX, both producing a 20%
energy deficit, on DNA and RNA oxidative damage in
healthy normal weight and overweight middle-aged men
and women. Our results provide evidence that negative en-
ergy balance induced through both CR and EX decrease lev-
els of oxidative RNA and DNA damage in WBC to a simi-
lar extent. No significant changes in urinary nucleic acid
oxidation levels were found. The reason for these disparate
findings is not entirely clear but may be related to build-up
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of oxidative damages in WBC over longer time periods. Ad-
ditionally, the large individual differences we observed in
urinary levels of nucleic acid oxidation products makes de-
termining statistical differences difficult. The variability was
very apparent when comparing the four different nucleic
acid oxidation products, with 8-oxoGua/creatinine having
the highest levels and greatest variability.

This study represents a first attempt to examine the effects
of energy deficits created from either prolonged CR or EX
over 1 year on both oxidative RNA and DNA damage. In
line with our findings, a previous 6-month study found that
both a CR only (25% CR) and a CR plus EX intervention
(12.5% CR plus 12.5% increase in energy expenditure
through EX) reduced DNA strand breaks in human WBC,
assessed through the comet assay.?® Additionally, other
studies have found that oxidative DNA damage to leuco-
cytes is reduced in physically active individuals, as com-
pared to sedentary persons, following an acute bout of ex-
ercise.?” The reduction in oxidative DNA and RNA damage
to WBC we observed may be due to a reduction in systemic
inflammation and related production of reactive oxygen
species (ROS) 28; both CR and EX have been found to reduce
circulating markers of inflammation, such as C-reactive pro-
tein (CRP) and related cytokines (e.g., interleukins).?>? In
addition to affecting systemic hormone and metabolic regu-
latory parameters, CR and EX may affect behavioral patterns
(e.g., sleep duration and quality). Moreover, a recent theory
suggest that metabolic syndromes (obesity and type 2 dia-
betes) are related to changes in gut microbial composition
and mass, where uptake of metabolites and gram-negative
bacteria released lipopolysacharide (LPS) affect systemic
metabolic parameters and can increase the systemic inflam-

Q

c

'E *x%

S 600-

S5

[+]

B £ 400-

sk

o 2 ]

4 g 200

av

g 0

5 ¥ 1 | | | ]

& & &
N L I

0O «? o
% % &°

FIG. 3. Comparison of urinary excretion levels of the four
nucleic acid products at baseline before interventions. Data
are shown as box-and-whisker plots (box covers 25th to 75th
percentiles with line at median) showing a large variance be-
tween individuals in 8-oxoGua/creatinine levels and the
highest levels compared to the other oxidized nucleic acids.
***Significantly different from all other products with
Kruskal-Wallis and Dunn’s post test (p < 0.001, n = 29).
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mation related to ROS production.3! Both CR and EX can af-
fect the gut microbial mass as well as composition.

Further, it has been unknown which RNA and DNA oxi-
dation product is mainly excreted in urine as it has been
debated if the initial 8-OH-8-H-Gua*® radical intermediate
(Fig. 1) formed after oxidant attack undergoes an oxidation
(forms 8-oxoGua) or a reduction (ring opening into
FapyGua).2%32 The clearly higher concentrations of 8-oxoGua
than FapyGua found in human urine (Fig. 3) strongly sup-
ports an oxidation of the 8-OH-8-H-Gua"® radical intermedi-
ate as the major mechanism. As the base guanine is the moi-
ety having the lowest oxidation potential in both RNA and
DNA,%2 the urine suggest that 8-oxoGua is the major nucleic
acid lesion formed and excreted in humans as result of ox-
idative damage. However, we cannot rule out that urinary
8-oxoGua stems from RNA or DNA as it could stem from
both, after being recognized, removed, and excreted. Excre-
tion of the specific RNA oxidation product 8-oxoGuo was
higher than the specific DNA oxidation product 8-oxodGuo.
It should also be noted that oxidative base lesions in urine
may to a certain extent also stem from absorption of digested
oxidized food products, from gut microbial end products, or
from dead cells which could affect the results.??* In DNA,
oxidized bases are mainly removed by base excision repair
(BER), whereas the processes for removal of damaged RNA
(rRNA, tRNA, mRNA, and siRNA) are largely unknown. In
agreement with previous observations,33* we found that the
urinary level of the RNA-specific oxidation product 8-ox-
oGuo was higher that that of DNA (8-oxodGuo) for both CR
and EX groups at baseline.

The results of the present study should be interpreted in
the context of its limitations. First, the generalizability of these
findings is limited by our small sample size, as well as re-
stricted body mass index range. Thus, these findings need to
be replicated in future studies that utilize larger sample sizes
and more diverse populations. Another weakness is the in-
ability to completely control for food intake during the week
prior to the collection of the urine samples, which may ex-
plain the variability of the oxidized nucleic acids in the urine,
specifically for 8-oxoGua. The present study also had a num-
ber of strengths. This is the first study to test the effects of en-
ergy deficits created through prolonged CR versus EX on
DNA and RNA oxidative damage, and the first report of RNA
oxidative damage levels in WBC. Other strengths include the
use of a randomized controlled trial design, comprehensive
assessments of energy intake and expenditure using DLW,
and the high rate of adherence to both interventions, as evi-
denced by the significant weight loss in both groups.

In conclusion, prolonged CR and EX interventions, both
producing a 20% energy deficit, were found to decrease ox-
idative DNA and RNA damage in human WBC. However,
significant changes in DNA and RNA oxidation products
were not observed through urinary analyses, potentially due
to greater individual variability on this measure. Overall, our
findings suggest energy deficits created through both CR
and EX reduce DNA and RNA damage to WBC, potentially
by reducing systemic oxidative stress.
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