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Abstract The ubiquitin–proteasome pathway of protein

degradation is one of the major mechanisms that are

involved in the maintenance of the proper levels of cellular

proteins. The regulation of proteasomal degradation thus

ensures proper cell functions. The family of proteins con-

taining ubiquitin-like (UbL) and ubiquitin-associated

(UBA) domains has been implicated in proteasomal deg-

radation. UbL–UBA domain containing proteins associate

with substrates destined for degradation as well as with

subunits of the proteasome, thus regulating the proper

turnover of proteins.

Keywords UbL � UBA � Proteasome � Degradation �
Ubiquitin

Introduction

Proteasomal degradation is one mechanism by which the

cell regulates protein levels. Many cellular proteins are

degraded by the proteasome. The proteasome is a large

multi-subunit protein complex that maintains cellular

homeostasis by contributing to the turnover of short-lived

proteins, as well as providing housekeeping functions, such

as the degradation of misfolded proteins (reviewed in [1]).

The proteasome degrades misfolded or damaged secretory

and non-secretory proteins in an ubiquitin- and ATP-

dependent manner in the cytosol. In yeast, the proteasome

localizes to the nuclear envelope and the endoplasmic

reticular (ER) network, while in higher eukaryotes, it is

primarily nuclear- and cytoplasmically-localized.

The 26S proteasome holoenzyme consists of two major

subunits, the 19S regulatory particle (RP), and the 20S core

particle (CP) (reviewed in [1]). The 20S CP is the subunit

responsible for proteolysis. It consists of four rings of

seven subunits each, stacked on one another. The proteo-

lytically active b-type subunits make up the inner two rings

with the a-type subunits making up the outer two rings. The

19S RP, or cap complex, consists of a base and a lid, and

there is one complete 19S subunit on each end of the CP.

The 19S RP is also made up of multiple proteins that are

classified as either ATPases (Rpt proteins in S. cerevisiae)

or non-ATPases (Rpn proteins in S. cerevisiae) [2]. The

cap complex is necessary for the degradation of ubiquiti-

nated target proteins, and it is thought to be involved in the

recognition and processing of these proteins before deg-

radation [1]. It has been demonstrated that the proteins in

the 19S RP are able to directly bind to ubiquitin and

ubiquitinated substrates [3–5].

Protein degradation through the proteasomal pathway

must be regulated to prevent indiscriminate degradation.

Covalently attached ubiquitin typically marks a protein

substrate for degradation by the proteasome. Ubiquitin is a

highly conserved 76 amino acid polypeptide that is

expressed in all eukaryotes. The covalent attachment of

ubiquitin to other cellular proteins occurs through the

highly regulated and specific process of ubiquitination

(ubiquitylation), which is facilitated by multiple enzymes

(reviewed in [6]). The E1 ubiquitin-activating enzyme
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activates ubiquitin, which is transferred to the E2 ubiquitin-

conjugating enzyme. E2s loaded with ubiquitin then asso-

ciate with E3 ubiquitin ligases, which facilitate the linkage

between ubiquitin and the target protein or with another

ubiquitin that is already attached to the target protein.

Ubiquitin is covalently attached to substrates at lysine (K)

residues. In polyubiquitin chains, subsequent ubiquitin

moieties can be attached through a variety of linkages, with

K29, K48, and K63 linkages being observed in vivo.

Polyubiquitin chains consisting of four ubiquitin moieties

attached through K48 linkages typically mark a protein for

proteasomal degradation. Alterations of the ubiquitination

pathway are believed to contribute to the pathogenesis of a

range of human diseases, from neurodegenerative diseases

to viral infections to cancer. Ubiquitination has been

demonstrated to be involved in various processes, although

the role of ubiquitin in marking proteins for proteasomal

degradation is the best characterized.

Ubiquitin binding proteins

Proteasomal ubiquitin binding proteins

Specific subunits of the proteasome 19S RP have been

demonstrated to be ubiquitin receptors, capable of recog-

nizing both free ubiquitin and ubiquitin-conjugated

proteins. The most studied proteasome ubiquitin receptor

is the S5a/Rpn10/Pus1 (in higher eukaryotes, S. cerevisiae

and S. pombe, respectively) subunit. S5a/Rpn10 has been

demonstrated to bind to multiubiquitin chains of at least

four ubiquitin moieties long [3] through an ubiquitin-

interacting motif (UIM) [7]. Rpn10 can bind to both poly-

ubiquitin chains and ubiquitin-conjugated proteins, but

interestingly, proteasomes without Rpn10 can still bind

them [4]. In addition, yeast Rpn10 mutants are viable and do

not have a notable phenotype, and are able to degrade most

proteins normally [8]. These observations suggest that other

ubiquitin binding proteins may have a role in proteasomal

degradation that can compensate for the loss of Rpn10.

Rpn13 is a more recently discovered 19S RP subunit

that can also bind ubiquitin [5]. Ubiquitin is bound to

Rpn13 through the conserved N-terminally-located Pru

(pleckstrin-like receptor for ubiquitin) domain, and appears

to have comparable ubiquitin chain binding activity as

Rpn10. Rpn13 binds to K48-linked ubiquitin chains,

binding to mono- and diubiquitin at 1:1 and tetraubiquitin

at 1:2 stoichiometries. Interestingly, proteasomes in

rpn10Drpn13D yeast double mutants are unable to bind

ubiquitin chains, suggesting that Rpn10 and Rpn13 may be

the two major proteasome ubiquitin receptors [5].

Interestingly, extraproteasomal ubiquitin binding pro-

teins have been demonstrated to interact with proteasomal

subunits, such as Rpn1 that do not interact with ubiquiti-

nated proteins [4, 9, 10]. These ubiquitin binding proteins

could serve as adaptors, linking the ubiquitination and

proteasomal degradation pathways. The presence of such

adapters would be able to compensate for any loss of

proteasomal ubiquitin receptors. Thus, ubiquitin binding

subunits of the proteasome may not be an absolute

requirement for the degradation of ubiquitinated substrates.

The ubiquitin-like (UbL) and ubiquitin-associated

(UBA) family of ubiquitin binding proteins

Non-proteasomal ubiquitin binding domain proteins exist

that may act to facilitate proteasomal degradation. One

class is the UbL–UBA family of proteins (Fig. 1), with the

Rad23, Dsk2, and Ddi1 proteins and homologues being

most extensively studied. This family of proteins is

involved in a variety of additional cell processes, such as

nucleotide excision repair (NER), spindle pole body

duplication, and cell growth. The properties and functions

of these different family members, particularly involving

proteasomal degradation, are summarized below.

Functional analyses of the UbL–UBA proteins

Rad23/Rhp23/HR23A/HR23B

Rad23 has been the most extensively studied member of

the UbL–UBA family. It was initially identified as having a

role in NER by dimerizing with Rad4, a DNA repair pro-

tein, and localizing in the nucleus [11, 12]. Rad23 was first

identified in S. cerevisiae, followed by the discoveries of

homologues in S. pombe (Rhp23) [13] and higher eukary-

otes (HR23A and HR23B) [12, 14].

Rad23 UBA domains bind to multiubiquitin Rad23/

Rhp23 binds tetraubiquitin via the UBA domains, but not

monoubiquitin, as well as ubiquitin-conjugated cellular

proteins. The more N-terminally-located UBA1 domain

may have a larger role in the latter interaction since UBA1

deletion mutants show less binding to ubiquitinated pro-

teins than UBA2 deletion mutants [15, 16]. The UBA

domains of the human homologue hHR23A also bind to

K48-linked ubiquitin chains and not monoubiquitin [17].

These results suggest that the UBA domain could be a

multiubiquitin binding motif. Full-length hHR23A and the

isolated UBA1 domain have a more than twofold higher

affinity for high molecular weight (HMW) multiubiquitin

than hHR23B, suggesting that these two proteins are not

functionally redundant [18].

Rad23 UbL domain binds to the proteasome Rad23/

Rhp23 exhibits a strong interaction with the 26S proteasome,

which appears to be mediated by the Rad23/Rhp23 UbL
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domain and the Rpn10 subunit of the 19S RP [16, 19, 20].

The rad23ublD yeast mutant fails to rescue the Rad23 mutant

DNA repair defect, indicating that the interaction with the

proteasome is important for DNA repair and points to a

connection between the DNA repair and ubiquitin–protea-

some pathways [20]. The Rad23 UbL domain can also bind

to another 19S proteasomal subunit, Rpn1, and is able to bind

to proteasomes lacking Rpn10 [4], providing a possibility for

why Rpn10 does not appear to be an essential gene.

Rad23 function—proteasomal degradation or protein sta-

bilization Overexpressing Rad23 results in a marked

increase in ubiquitinated proteins, with an even higher

level observed in the UbL deletion mutant [21]. Loss of

Rad23 appears to have the same effect. Yeast strains that

are mutant for both Rad23 and Rpn10 (rad23Drpn10D)

have increased levels of multiubiquitinated proteins. The

rpn10D mutant exhibited minor proteolytic defects, which

were intensified by the deletion of rad23 [22].

Overexpression of Rad23 also increases the amount of

ubiquitinated protein associated with the proteasome but

only in the presence of Rpn10, supporting the idea that

Rad23 is binding to ubiquitinated substrates and regulating

their delivery to Rpn10 in the proteasome [15]. This

overexpression also prevents the expansion of multiubiquitin

chains on model proteasomal substrates, resulting in protein

stabilization [9, 15]. In S. pombe, Rhp23 protects multiubiq-

uitinated conjugates against deubiquitination, preventing the

deubiquitinating enzyme UBPY from disassembling tetra-

ubiquitin chains, via the UBA domain. Rhp23 stabilizes

ubiquitin conjugates, so accumulation of multiubiquitin

conjugates may be caused by the inhibition of deubiquiti-

nation [23]. Stabilized ubiquitin conjugates resulting from

inhibited deubiquitination would thus reduce degradation of

these conjugates, perhaps because increased amounts of

ubiquitinated proteins or ubiquitin chains would compete for

proteasomal binding to reduce the degradation process. High

levels of only the Rad23 UbL domain also stabilizes the

model substrates, which suggests that unregulated UbL–

proteasome interaction could interfere with the delivery of

target substrates to the proteasome [15]. hHR23A also has an

inhibitory effect on polyubiquitinated substrate degradation

mediated by the UBA domains, with the UbL deletion

mutant having a stronger inhibitory effect than the full-

length protein. The UbL deletion mutant inhibited proteaso-

mal degradation via an UBA-mediated sequestration of

polyubiquitin chains [17].

Fig. 1 Schematic diagram of

UbL–UBA domain-containing

proteins. The domain structures

of yeast Rad23 (accession

number NP_010877), human

hHR23A (NP_005044) and

hHR23B (NP_002865), yeast

Dsk2 (P48510), human hPlic-1

(Ubiquilin) (AAD49751), yeast

Ddi1 (NP_011070), mouse

CIP75 (UBIN) (NP_277068),

human A1Up (NP_064516),

human KPC2 (NP_057256),

human NUB1 (NP_057202) and

NUB1L (AAO14547), and

human p62 (NP_003891) are

shown. The UbL–UBA family

of proteins contains an

N-terminal UbL domain (or the

structurally similar PB1 domain

for p62), one or more

C-terminal UBA domain(s), and

a variable central region (yeast

Ddi1 contains a central RVP

domain). For family members

with multiple UBA domains, the

most N-terminal UBA domain

is referred to as UBA1 in the

text, and additional UBA

domains are referred to as

UBA2 and UBA3

The UbL–UBA protein family 2821



For example, overexpressed Rad23 reduces Rad4 mul-

tiubiquitination, and stabilizes Rad4 levels [24]. Loss of

Rad23 in conjunction with a Rpn10 mutant deleted for the

UIM domain stabilizes the CDK inhibitor, Sic1. The

SCFCdc4 substrate Far1 was also stabilized in rad23D
mutants [25]. In higher eukaryotes, the hHR23A/B

C-terminal UBA2 domain interaction with polyubiquiti-

nated p53 shields it from deubiquitination, which blocks

p53 degradation. The inhibition of deubiquitination would

thus stabilize p53. Knock-down of hHR23A/B by siRNA

results in increased p53 levels [26]. However, a conflicting

report demonstrated that hHR23A/B siRNA has the

opposite effect of accelerating p53 proteasomal degrada-

tion, while overexpression still results in p53 accumulation

[27]. Both studies though, concluded that hHR23A/B

inhibits p53 degradation.

Thus, Rad23 and its homologues appear to function in

stabilizing proteins, which involves the blocking of prote-

asomal degradation, although Rad23 is required for the

degradation of certain substrates such as Sic1 and Far1.

Rad23 may have different roles in proteasomal degradation

depending on the substrates.

Dsk2/Dph1/XDRP1/Plic-1(Ubiquilin)/Plic-2

Dsk2 was initially identified in S. cerevisiae as having a

role in spindle pole body duplication and was classified as

an ubiquitin-like protein since it was 36% identical to

ubiquitin [28]. Dsk2 has homologues in S. pombe (Dph1)

and higher eukaryotes (XDRP1 in Xenopus, and Plic or

Ubiquilin in mammals).

Dsk2 UBA domain Similar to Rad23, Dsk2/Dph1 binds to

poly- and not monoubiquitin, specifically K48-linked tetra-

ubiquitin (not K29- or K63-linked) via the UBA domain [16,

29]. Xenopus Dsk2-related protein isoforms, XDRP1L and

XDRP1S, and human hPlic-1 also bind to polyubiquitin and

polyubiquitinated proteins via the UBA domain [30–32].

Dsk2 UbL domain The Dsk2 UbL domain interacts

weakly with the proteasome, and binds with lower affinity

than the interaction of Rad23 with the UIM domain of

Rpn10 [4, 16, 18, 29, 32–34]. Interestingly, Dsk2 associ-

ation with the proteasome was found to only occur in the

absence of Rpn10. Extraproteasomal Rpn10 competes for

Dsk2 binding with the proteasome [34], explaining the

lower affinity that Dsk2 has for proteasomal interaction. In

addition, the UbL domain is not absolutely required for

human hPlic-2–proteasome interaction. Only simultaneous

mutation of the UbL domain and deletion of the UBA

domain abrogates binding to the proteasome [35].

Dsk2 function—protection from or promotion of degrada-

tion Overexpression of Dsk2 results in the accumulation

of large amounts of K48-linked ubiquitin chains in cells,

with the UBA domain required for this effect [29, 34].

Similar to Rad23/Rph23, Dsk2/Dph1 protects multiubiq-

uitinated conjugates against deubiquitination, preventing

the disassembly of tetraubiquitin chains, and stabilizing

ubiquitin conjugates. So again, accumulation of multi-

ubiquitin conjugates may be caused by the inhibition of

deubiquitination [23]. Degradation of a model proteasomal

substrate is inhibited in Dsk2 mutants [9, 29], suggesting

that Dsk2 participates in K48-linked ubiquitin proteasomal

degradation. Dsk2 may be a polyubiquitin binding protein

acting as an adaptor that facilitates delivery of poly-

ubiquitin chains/proteins to the proteasome [29].

Xenopus XDRP1L and XDRP1S UBA domains both

bind to polyubiquitinated cyclins [36]. The XDPR1S UbL

domain binds to monomeric cyclins, and can prevent

degradation of cyclins A and B [32, 36]. This interaction is

disrupted by cdc2-mediated phosphorylation of either the

cyclins or the XDRP1S UbL domain, which allows cyclin

degradation. Thus, XDRP1S may contribute to the regu-

lation of cyclin degradation [36].

hPlic-1 and hPlic-2 are human homologues of yeast

Dsk2. Overexpression of both results in increased p53

levels and the p53 half-life, and interferes with IjBa
degradation. hPlic proteins could functionally link the

ubiquitin machinery to the proteasome, where high levels

of hPlic would interfere with a step between ubiquitination

and proteasomal degradation [33]. Additionally, an UbL

triple point mutant (which prevents the UbL domain from

binding to the proteasome) can still stabilize p53 levels in

the presence of the UBA domain, indicating that the UBA

domain is required for interference of proteolysis [35].

Plic-1 has also been found to interact with neuronal

GABAA receptors, through its UBA domain. Co-expres-

sion of Plic-1 with GABAA receptors results in

stabilization of ubiquitinated, ER-localized GABAA recep-

tors, which causes an increase in the number of receptors at

the cell membrane [37, 38]. hPlic-1 also interacts with K7,

a small membrane protein that acts as an antiapoptotic

factor during KSHV (Kaposi’s sarcoma-associated herpes-

virus) lytic replication. This interaction occurs via the

hPlic-1 UBA domain. Binding to K7 decreases hPlic-1

binding to polyubiquitinated proteins, and inhibits the

hPlic-1 function of facilitating p53 and IjBa proteasomal

degradation. K7 may antagonize hPlic-1 to promote

degradation of cellular antiviral proteins which would

establish an environment that is favorable to viral replica-

tion [39].

The Plic proteins have also been observed to interact

with proteins that are involved in neurodegenerative

diseases, such as Huntington’s disease and Alzheimer’s

disease. Huntington’s disease is associated with an abnor-

mal expansion of polyglutamine tracts within the protein
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that potentially results in protein misfolding. Plic-1 inter-

acts with expanded polyglutamine tracts that are

ubiquitinated, with stronger interaction to longer tracts.

Overexpression of Plic-1 results in increased turnover of

the expanded polyglutamine protein and increased cell

survival. Polyubiquitination of expanded polyglutamine

proteins may favor interaction with Plic-1, which would

result in increased turnover of these mutant proteins

compared to normal proteins [40, 41].

Plic-1 and Plic-2 interact and colocalize with presenilins

(PS), proteins involved in Alzheimer’s disease. This

interaction occurs via the C-terminal region containing

the UBA domain [42] and results in a reduction of PS2

polyubiquitination and the accumulation of PS2 [31]. PS2

ubiquitination is not an absolute requirement for Plic-1

interaction, although a reduced affinity was observed when

certain lysine residues were mutated. The mutated proteins

had higher turnover, indicating that Plic-1 interaction

might have acted to stabilize PS2 [43]. Interestingly,

inhibition of proteasomal degradation with PS2 expression

results in the appearance of PS2 positive aggregates that

are also positive for ubiquitin and colocalize with Plic-1,

supporting Plic-1 binding to ubiquitinated proteins [31].

Drosophila Plic-1 has been found to interact with another

Alzheimer’s related protein, the amyloid precursor protein

(APP) via the UBA domain, which also results in the

stabilization of APP [44].

Thus, Dsk2 and its homologues appear to have dual and

opposite roles in protein stabilization: blocking and

promoting proteasomal degradation. These roles could be

substrate dependent.

Ddi1

Ddi1 (DNA damage inducible 1 ) in S. cerevisiae is another

member of the UbL–UBA family, although it has distinct

properties from Rad23 and Dsk2. Ddi1 can bind poly-

ubiquitinated proteins via its UBA domain and the 19S

proteasome subunit via the UbL domain, but with lower

affinity than Rad23 and Dsk2 [45–47]. Ddi1 is enriched in

the nucleus, which is dependent upon both its UbL and

UBA domains [48].

Ddi1 in protein stabilization Unlike Rad23 and Dsk2,

Ddi1 mutants cannot stabilize a model proteasomal sub-

strate [9]. However, in vivo loss of Ddi1 results in the

stabilization of ubiquitinated Ho, an endonuclease, which

accumulates in the cytoplasm. The UBA domain of Ddi1

interacts with ubiquitinated Ho. Ho can only interact with

the proteasome (Rpn1) in the presence of Ddi1, and only

when Ho is ubiquitinated. This suggests that the initial

interaction must be between an ubiquitin chain and the

UBA domain present in an UbL–UBA protein. Thus, a

potential role for Ddi1 is to release Ho from an ubiquiti-

nation complex (i.e., SCFUfo1), making Ho available for

deubiquitination and unfolding by the 19S regulatory

complex [45, 46]. Ddi1 also has a role in the turnover of

Ufo1, a F-box protein, by interacting with the Ufo1 UIM

domains. Deletion of the UbL domain of Ddi1 abrogates

Ufo1 binding, while loss of the UBA domain reduces

interaction. Loss of Ddi1 stabilizes Ufo1 that is not

observed with Rad23 or Dsk2 deletions, suggesting that

Ddi1 has a role in Ufo1 degradation, and therefore, a role in

the turnover of the SCFUfo1 complex [46, 49].

Thus, Ddi1 appears to function in facilitating proteaso-

mal degradation.

CIP75/UBIN/A1Up

Mouse UBIN was discovered in a screen for proteins that

interact with an ER-resident molecular chaperone, HSP47.

UBIN is localized primarily in the cytosol, partially in

vesicles, and none in the nucleus. It interacts with the

HSP47 signal sequence, and also with the ER signal

sequence of other proteins. This is a specific interaction

because it does not interact with the mitochondrial target-

ing signal sequence. This interaction does not occur via

either the UbL or UBA domains of UBIN [50]. Mouse

CIP75 (connexin43-interacting protein of 75 kDa) was

initially discovered in a yeast two hybrid screen using the

cytoplasmically located, COOH-terminal region of the gap

junction protein, connexin43 (Cx43), as bait. CIP75 also

interacts with Cx43 via its UBA domain, and like other

UbL–UBA proteins, interacts with 19S RP subunits via the

UbL domain. The interaction between CIP75 and Cx43

appears to stimulate the proteasomal degradation of Cx43

[10]. Mouse CIP75 is 100% identical to the UBIN protein

[10].

A1Up (ataxin-1 ubiquitin-like interacting protein) is

the human homologue of mouse CIP75/UBIN, with 96%

identity. A1Up interacts with the S5a/Rpn10 protein of

the 19S RP via the UbL domain, an interaction which is

disrupted by the binding of ataxin-1 to A1Up. The UBA

domain binds to polyubiquitin chains and affects A1Up

stability and localization. Overexpressed full-length

A1Up and the UbL deletion mutant can stabilize ataxin-1

[51]. A1Up is distributed throughout the cell with large

accumulations in both the nucleus and cytoplasm.

Colocalization of A1Up with the 20S CP has been

observed in both the nucleus and cytoplasm. The UbL

deletion mutant is also present in both the nucleus and

cytoplasm with predominance in the nucleus, but does

not colocalize with the 20S CP [51, 52]. A working

model suggests that the distribution of A1Up is depen-

dent upon different conformational states of the protein

[51].
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In summary, the mouse protein CIP75/UBIN appears to

facilitate proteasomal degradation, while the human

homologue A1Up stabilizes proteins, suggesting that there

may be different effects on proteasomal degradation based

on interactions of these UbL–UBA proteins with different

substrates. Discovering other substrates for these proteins

may help to elucidate their function.

KPC2

KPC2 (Kip1 ubiquitylation-promoting complex) forms an

ubiquitin ligase complex with KPC1, the catalytic RING

domain-containing protein [53]. Excess amounts of KPC2

inhibit p27 ubiquitination. KPC2 interacts with multiple

proteasomal subunits, and both UbL and UBA domains

contribute to the interaction. The KPC2 UBA domain is

also required for interaction with polyubiquitin. KPC2

stabilizes KPC1, recruits polyubiquitinated proteins, and

interacts with the 26S proteasome, which leads to p27

degradation. The studies have led to the proposal that

KPC2 functions to deliver ubiquitinated proteins to the

proteasome [54]. Thus, KPC2 may normally function to

facilitate protein degradation and the level of KPC2

determines whether KPC2 promotes or inhibits

degradation.

NUB1/NUB1L

NUB1 (NEDD8 Ultimate Buster-1) and NUB1L (NUB1

long) are unique members of the UbL–UBA family that

interact with NEDD8, instead of ubiquitin [55–57].

NUB1L is a splice variant of NUB1 that has a 14 amino

acid insert, resulting in an additional C-terminal UBA

domain (UBA2) [57, 58]. NUB1 expression is induced by

interferon b in a time- and dose-dependent manner. Both

NUB1 and NUB1L are localized primarily to the nucleus

along with a weak cytoplasmic localization. Coexpression

of NUB1/NUB1L and NEDD8 severely reduces the levels

of free NEDD8 and NEDD8-conjugated proteins [55–57].

NUB1L appears to have more affinity for NEDD8 than

NUB1, possibly due to the additional UBA domain [57].

NUB1/NUB1L can also interact with 19S RP prote-

asomal proteins, such as S5a, and they have been detected

in 19S and 26S proteasomal cell fractions [55, 57, 59, 60].

Interestingly, the interaction between NUB1 and S5a does

not appear to be mediated through the NUB1 UbL domain,

but rather through a region at its C-terminus [60]. The

relevance of this observation has not yet been determined.

NEDD8 demonstrates an increased interaction with the

proteasome when NUB1 is coexpressed, implicating NUB1

as an adaptor. NUB1 could serve as a direct link between

the NEDD8 conjugation system and proteasomal degra-

dation [55].

NUB1L also interacts with the ubiquitin-like modifier

FAT10 via its UBA domains, leading to an acceleration of

degradation. FAT10 has two UbL domains and causes

rapid degradation when it is fused to the N-terminus of a

protein. The N-terminal UbL domain of FAT10 interacts

with NUB1L UBA domains. Interestingly, deletion of the

UBA domains results in the loss of FAT10 binding; how-

ever, degradation is still accelerated. Upregulation of

NUB1L expression, by interferon c and TNFa, also results

in accelerated FAT10 degradation. FAT10 can also bind

the proteasome directly. The NUB1L UbL domain may

bind to the 26S proteasome to induce a conformational

change in the 19S RP subunit that favors binding and

degradation of FAT10 and FAT10-conjugated proteins at a

separate binding site [58, 59].

Thus, NUB1L facilitates the proteasomal degradation of

NEDD8- and FAT10-conjugated proteins.

Structural analysis of the UbL–UBA domains:

intermolecular and intramolecular interactions

The UbL–UBA domain proteins are hypothesized to have

a role in proteasomal degradation because of their ability

to interact with both components of the proteasome and

proteins that are targeted for degradation by ubiquitination

[10, 15, 16, 29, 33, 45–47, 54]. Extensive structural

analysis primarily through in vitro NMR and surface

plasmon resonance studies have demonstrated that the

UbL domain is able to interact with the S5a/Rpn10 pro-

teasomal subunit whereas the UBA domain binds

ubiquitin, supporting the cellular observations. In addi-

tion, intramolecular interaction between the UbL and

UBA domains of the same protein and intermolecular

interaction between the domains of different family

members have also been detected. These interactions

could shed some light onto potential mechanisms for how

these proteins are regulated.

UbL binding to proteasomal proteins

The UbL domain is able to bind to the UIM domain of the

S5a/Rpn10 protein [61]. The hHR23A UbL domain inter-

acts with the second UIM (UIM-2) of S5a in a 1:1

stoichiometry and the conserved hydrophobic residues of

both the UbL and UIM-2 domains are required for this

interaction [62]. The hHR23A UbL binding surface to S5a

is conserved in hPlic-2 (which also binds S5a), where the

conserved residues are geometrically similar and also have

similar electrostatic potentials. This S5a binding surface is

required for the hPlic-2 interaction with the proteasome

[61, 63]. NMR studies have demonstrated that the human

Rpn13 subunit of the 19S RP is also able to bind to the UbL

domains of hHR23A and hPlic-2 [5].
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UBA binding to ubiquitin

The structures of the UBA domains of Rad23 and Dsk2

have been solved. These UBA domains form three helix

bundles that are of similar lengths [64–66]. These helices

are stabilized by a hydrophobic core and have unusually

large and conserved hydrophobic surface patches, which are

often binding sites for other proteins [64]. Interestingly,

while there is a low level of sequence conservation between

the Rad23 UBA1 and UBA2 domains, both UBA domains

have similar structures [64, 67]. The residues that are most

conserved between the two UBA domains form the

hydrophobic surface patches, suggesting that these patches

could be a common binding interface for all UBA domains

[64]. The UBA domains were demonstrated to bind to

ubiquitin [65, 68, 69], and the UBA hydrophobic patch is

the ubiquitin binding interface and is important for efficient

interaction with polyubiquitin [65, 66, 69, 70]. In support of

biochemical pulldown results, tetraubiquitin has a higher

affinity for both single and double UBA domains than

monoubiquitin [65, 69]. Interestingly, the UBA domains

interact with the ubiquitin surface containing K48, and can

block the assembly of K48-multiubiquitin chains [69, 70],

providing a mechanism for the inhibition of ubiquitin chain

elongation or blocking deubiquitination that has been seen

for certain UbL–UBA proteins [9, 15, 23, 26].

A study was conducted to compare the interaction

properties of different UBA domains with polyubiquitin,

resulting in a classification of UBA-containing proteins.

This in vitro study utilized NMR and surface plasmon

resonance with isolated UBA domains and various poly-

ubiquitin chains [71]. For the UbL–UBA family members,

the Rad23-UBA2 domains were placed in Class 1 (selec-

tively binds to K48-linked tetraubiquitin) [71, 72], while

Rad23-UBA1 was placed in Class 2 (prefers K63-linked

tetraubiquitin) [71]. Nub1L UBA domains were placed in

Class 3 (no binding to any tested chains) [71]. The UBA

domains of hPlic-1, Dsk2, and Ddi1 were placed in Class 4,

binding to K48-, K63-, and K29/6-linked tetraubiquitin

chains, as well as monoubiquitin [66, 71]. Thus, different

UbL–UBA family members have varying affinities for the

distinct types of ubiquitin chain linkages, which may

contribute to different functions and interactions with

assorted proteins.

UbL–UBA intramolecular interactions

Rad23 and Dsk2 UBA and UbL domains display intra-

molecular interaction, although the binding affinity is low

[68, 69, 73]. Initial reports had not detected this intramo-

lecular interaction in Dsk2 [65], most likely because of the

low binding affinity. hHR23A UBA binding to ubiquitin

results in structural changes to the rest of the hHR23A

protein where residues within the UbL domain that reside

in the UBA contact surface shift, suggesting that binding of

ubiquitin to the UBA domain would prevent the intra-

molecular interaction with the UbL domain [70].

Intermolecular interactions

Earlier studies indicated that Rad23 can form homodimers

through its UBA domains, with both UBA domains par-

ticipating in dimerization [74]. Dsk2 was also observed to

form homodimers through its UBA domain [65]. The Dsk2

human homologue hPlic-1 also displayed self-interaction.

hPlic-1 mutants deleted for either the UbL or UBA domain

retain the ability to interact with each other, indicating that

the central region is required for the interaction. This is in

contrast with the Dsk2 homologue; however, Dsk2 and

hPlic-1 have a weak overall homology, with only 19%

sequence identity [75], possibly explaining the variation in

dimerization domains. Ddi1 can form homodimers even

with deletion of the UbL or UBA domains, indicating that

the dimerization is also mediated by the central region [74].

The X-ray crystal structure of Ddi1 confirmed this result,

showing a Ddi1 dimer containing a fold similar to retroviral

proteases, with the dimerization occurring in the central

region of the protein [76]. This central region was named

the RVP (central retroviral aspartyl-protease) domain

(Fig. 1) [48]. A1Up self-interaction was observed in yeast

that was also detected at a high molecular mass, which

suggested the possibility of multimers. Interestingly, the

UBA deletion mutant has an even higher molecular mass

[51, 52], suggesting that multimerization occurs through the

UbL domain and/or the central region of the protein. Thus,

it appears that homodimerization occurs through either

interaction between UBA domains or through the central

domains located between the UbL and UBA domains.

Intermolecular interactions between different members

of the UbL–UBA family have also been detected. Rad23

and Ddi1 are reported to form heterodimers via the

UBA domains (UBA1 for Rad23) [74]. However, a later

conflicting report demonstrated that Rad23 and Ddi1 het-

erodimers are formed through interaction between UbL and

UBA domains, with no detectable UBA–UBA interaction

[68]. The UBA domain of hPlic-2 can interact with the

hHR23A UbL domain, with the reverse also being true

(although only with hHR23A UBA2). This intermolecular

binding prevents the hHR23A intramolecular UbL–UBA

interaction. The same hHR23A UbL region that interacts

with its own UBA domain and S5a also interacts with the

hPlic-2 UBA domain. In addition, the UbL domain from

both proteins uses the same surface to bind to the other

UBA domain [77]. Thus, heterodimerization may occur

through UbL–UBA interaction between the different

proteins.
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p62— a special relation to the UbL–UBA family

The p62 scaffolding protein (aka ZIP/sequestosome 1) was

initially found as an interacting partner of atypical protein

kinase C (aPKC) enzymes. It was demonstrated to act as a

scaffolding protein, facilitating the interaction of aPKCs

with substrates of the kinases, and regulating TRAF6 ubiq-

uitination (reviewed in [78, 79]). p62 is not a member of the

UbL–UBA family. However, it displays many properties

that are similar to the UbL–UBA proteins. p62 is a member of

the Phox/Bem1p family, which contain PB1 domains

(Fig. 1). PB1 domains are protein–protein interaction

domains found in atypical PKC isoenzymes, members of

MAPK modules, and in several scaffold proteins. The PB1

domain mediates p62 oligomerization, and also mediates

p62 interaction with other family members such as NBR1

(next to breast cancer 1) [80]. NMR studies of the PB1

domain indicate that it forms an ubiquitin-like, b-grasp fold,

similar to the UbL domain [81], and thus could have similar

binding or interaction properties as the UbL domain.

The p62 UBA domain binds to polyubiquitinated

substrates, with a preference for the K63-linkage. p62

expression results in increased amounts of HMW poly-

ubiquitin and small p62 aggregates colocalize with

ubiquitin. The UBA deletion mutant blocks the survival-

promoting effects of p62. p62 interacts with S5a and Rpt1

via the PB1 domain, similarly to the interactions mediated

by UbL domains. Depletion of p62 results in inhibition of

ubiquitin-mediated proteasomal degradation and accumu-

lation of polyubiquitinated proteins. p62 has been proposed

to function like the UbL–UBA shuttling factors in facili-

tating proteasomal degradation [82].

p62 also interacts with the K63-polyubiquitinated tau

protein via its UBA domain. Overexpression of p62 results

in enhanced tau turnover, while reduced p62 causes slower

tau turnover. p62 is required for tau interaction with the

proteasomal subunit Rpt1 and is necessary to shuttle tau to

the proteasome for degradation [83]. p62 also functions as

a shuttling protein in the interaction between K63-poly-

ubiquitinated TrkA and Rpt1, with the p62 UBA domain

binding to TrkA and the PB1 domain interacting with Rpt1.

p62 is required for the interaction of Rpt1 and TrkA.

Reduced p62 levels enhance TrkA stability, resulting in

polyubiquitinated TrkA accumulation and contributing to

an accumulation of K63-linked ubiquitinated proteins. p62

plays a role in the presentation of ubiquitinated TrkA to the

proteasome for deubiquitination, regulating TrkA degra-

dation [84, 85].

Thus, p62 appears to function in facilitating proteasomal

degradation by acting as a shuttle or linker between K63-

polyubiquitinated substrates and the proteasome in a

manner similar to that proposed for some members of the

UbL–UBA domain family.

Models

The role of the UbL–UBA family of proteins in proteaso-

mal degradation is complex and has been an area of active

debate, and is under continued revision. Based on current

data, the UBA domain interaction with ubiquitin could

serve to: (1) block deubiquitination (which could either

facilitate degradation by maintaining existing polyubiquitin

chains or stabilize ubiquitin-conjugates, thereby reducing

degradation); (2) prevent polyubiquitination (which could

reduce degradation by preventing the formation of the

necessary polyubiquitin chain required by the proteasome

for recognition as a degradation substrate); or (3) sequester

ubiquitin (so the proteasome is blocked from recognizing

the ubiquitin tag).

The UbL domain interactions could be a mechanism to

regulate UbL–UBA protein function, and the domain has

been demonstrated to interact with non-proteasomal pro-

teins. For example, the Rad23/Dsk2 UbL domain binds to

Pth2 (peptidyl-tRNA hydrolase 2). Overexpression of Pth2

results in the accumulation of polyubiquitinated proteins,

preventing ubiquitin-mediated degradation, and leading to

growth inhibition. It also inhibits Rad23/Dsk2 interaction

with the proteasome by competing for binding and may be

involved in the release of Rad23/Dsk2 from the protea-

some. It could induce a structural change in the UbL

domain or perhaps induce the ‘‘closed’’ conformation of

Rad23/Dsk2 [86]. The Rad23 UbL domain can also bind to

the yeast E4 ligase, Ufd2 [9]. This suggests a model where

the Rad23–Ufd2 interaction facilitates Rad23 recognition

of ubiquitinated substrates and enhances the stability of a

Rad23-substrate complex, coupling the ubiquitination step

to the substrate transport process. Ufd2 would then release

Rad23, which would subsequently be able to bind to Rpn1,

transporting the substrate to the proteasome [9]. These

interactions may serve to regulate or facilitate UbL–UBA

protein function.

Shuttle-factor hypothesis

The shuttle-factor hypothesis has been proposed for

UbL–UBA protein function [15, 22]. In this model, the

UbL–UBA protein binds to ubiquitinated proteins via the

UBA domain, and then subsequently interacts with the pro-

teasome via the UbL domain, which permits the transfer of

degradation substrates to the proteasome [15, 22]. hHR23A

has been shown to simultaneously bind to the 19S RP S5a

UIM and ubiquitin [70], thus it is feasible that UbL–UBA

proteins can act as shuttling factors. Interestingly, replacing

the UbL domain with ubiquitin can act as a substitute for

Rad23, but only in the presence of Rpn10, indicating the

involvement of a different proteasome targeting mecha-

nism. In the shuttle-factor hypothesis, it appears that there
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are two structural requirements: the ability to bind to

ubiquitinated proteins, and the presence of a targeting

signal to promote interaction with the proteasome [87].

Regulation of UbL–UBA protein function: effects of

affinity, intramolecular and intermolecular interactions,

and conformation changes

The hHR23A UbL domain is structurally similar to ubiq-

uitin. Interestingly, the binding epitopes of ubiquitin and

polyubiquitin are similar to the UbL binding epitope on the

S5a UIM [62, 69]. All the major S5a UIM contact sites in

the hHR23B UbL domain are conserved in ubiquitin, thus

mutants that affect UIM–UbL binding also affect tetra-

ubiquitin binding [88]. This suggests that ubiquitin and the

UbL domain might compete for the S5a binding sites [62,

69]. However, the S5a UIM-2 domain has a stronger

affinity for the hHR23B UbL domain than ubiquitin [69],

and therefore the UbL–UBA domain proteins may have a

function in enhancing ubiquitin-conjugated protein asso-

ciation with the proteasome.

The intramolecular and intermolecular associations

between the UbL and UBA domains have the potential to

be major regulating factors in controlling the function of

the UbL–UBA proteins. For example, the UbL domain

could be shielded by the UBA domain(s) in order to

reduce conditions that would be unfavorable for S5a/

Rpn10 interactions until the appropriate conditions occur

where ubiquitin binding to the UBA domain would open

up the protein conformation, allowing binding to the

proteasome [69]. It has also been shown that, when resi-

dues are mutated in the UbL domain that affects UBA

interaction, polyubiquitin binding increases. This effect is

similar to an UbL deletion mutant, suggesting that the

UbL–UBA intramolecular interaction reduces the ability

of the full-length protein to bind to ubiquitin via its UBA

domain. When expressed in yeast, the Rad23 UbL triple

point mutant is unable to interact with either the protea-

some or the UBA domain, indicating that Rad23 binds to

the proteasome through the same surface as it does

intramolecularly to the UBA domain. This indicates that

disrupting an intramolecular UbL–UBA interaction may

be necessary to facilitate the Rad23–polyubiquitin inter-

action [89]. Similarly, multiple studies have demonstrated

that deletion mutants missing one domain can sometimes

have a stronger effect than the full-length protein, hinting

at the inhibitory potential of the individual domains [15,

17, 21, 35, 51, 52]. A model was proposed where prote-

asomal or polyubiquitin binding to Rad23 disrupts the

intramolecular interaction and results in the full-length

protein adopting a more open conformation. This facili-

tates interaction with ubiquitinated proteins and/or the

proteasome, which could result in Rad23 facilitating a

more efficient docking of ubiquitinated substrates at

the proteasome. Additionally, similar intermolecular

UbL–UBA interactions could also have a regulatory role

[89], as dimerization was proposed to play an important

role in preventing unnecessary ubiquitin chain elongation

or premature chain disassembly while substrates are in

transit to the proteasome [68].

Interestingly, depletion of ubiquitinated proteins in E1

mutant yeast cells reduces Rad23 interaction with the

proteasome. Addition of K48-linked tetraubiquitin can

promote the specific interaction of Rad23 and the protea-

some. This suggests that ubiquitin chain recognition might

precede and activate Rad23 proteasomal targeting, perhaps

by disrupting intramolecular or intermolecular interactions.

Ubiquitin conjugates may promote association of ubiquitin

binding substrate receptor proteins, such as the UbL–UBA

proteins, with the proteasome [90].

Proposed model

Based on the available data, we would like to propose a

model for the mechanism of UbL–UBA function in pro-

teasomal degradation (Fig. 2) that is similar to one

proposed for hHR23A [89]. Under ‘‘resting’’ or uninduced

conditions, the UbL–UBA protein resides in a conforma-

tion that is not amenable to binding to the proteasomal

proteins or ubiquitinated substrates, due to UbL–UBA

interactions (either intramolecular or intermolecular homo-

or heterodimers) (Fig. 2a). Upon induction of more

favorable conditions (perhaps through an increase in the

levels of ubiquitinated proteins), the UbL or UBA domains

bind to the proteasome or the ubiquitinated target sub-

strates, respectively, which induces a conformational

change in the UbL–UBA protein, allowing the other

domain to interact with its binding partner (Fig. 2b). The

resultant multimeric complex containing the UbL–UBA

shuttle protein, the ubiquitinated target substrate, and

components of the proteasome, such as the S5a/Rpn10

protein, may lead to the proteasomal degradation of the

target protein. We also propose that this effect could be

concentration-dependent, where excessively high levels of

UbL–UBA proteins could have a dominant negative effect

(similar to expressing only one domain): either ubiquiti-

nated substrates are bound by the UBA domain or

proteasomal receptors are bound by the UbL domain of

different proteins, depending upon the relative affinities

(Fig. 2c). This would result in the sequestering of the

substrate or proteasomal protein and the inability of the

UbL–UBA protein to simultaneously bind both the target

substrate and the proteasome. Conversely, loss of UbL–

UBA proteins would represent the lack of the necessary

shuttle factor to carry the target protein to the proteasome

(Fig. 2d).
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ER-associated degradation: a role for the UbL–UBA

proteins?

Proteasomal degradation functions to regulate proteins

throughout the cell. In ER-associated degradation (ERAD),

ER-localized proteins are translocated across the ER

membrane into the cytoplasm and transported to the pro-

teasome for degradation. This process requires the

collaboration of multiple proteins and protein complexes.

Proteins which are able to shuttle substrates from the ER

after substrate translocation to the proteasome would be

useful in facilitating efficient degradation. ERAD targets

misfolded proteins in the ER as well as resident ER pro-

teins for degradation. Upon ER stress induction, which can

be induced by exposure to conditions that interfere with

proper folding, misfolded proteins accumulate in the ER.

Efficient ERAD enables the cell to purge itself of these

damaged proteins.

Dsk2 and Rad23 appear to be involved in ERAD.

rad23Ddsk2D yeast double mutants stabilize ER degrada-

tion substrates, which accumulate in the cytosol due to the

inability to deliver the substrates to the proteasome.

Additionally, a larger amount of ubiquitinated protein is

detected in soluble cytosolic fractions. The degradation

phenotype is specific to ER proteins as cytosolic substrates

are not affected [91]. Rad23 also interacts with the de-N-

glycosylating enzyme Png1p through its C-terminal region

and is required for the interaction of Png1p with the

proteasome, suggesting that Rad23 facilitates Png1p–

proteasomal interaction [92, 93]. Png1p deglycosylates

dislocated substrates in preparation for ERAD [94, 95].

Thus, an interaction between Rad23 and a protein known to

be involved in ERAD is suggestive of a potential role for

Rad23 in ERAD as well.

The Plic proteins have also been implicated in ERAD.

Plic-1 interacts with PDI (protein-disulfide isomerase), a

Fig. 2 Model for the mechanism of UbL–UBA function in prote-

asomal degradation. a Intramolecular and intermolecular interactions

between UbL and UBA domains. The UbL and UBA domains within

the same protein can interact. They can also interact in either homo-

or heterodimeric fashion when present in separate proteins. b Under

‘‘resting’’ conditions, the UbL–UBA protein may reside in a

conformation that is not amenable to binding to the proteasomal

proteins or ubiquitinated substrates through UbL–UBA interactions

(either intramolecular or intermolecular homo- or heterodimers).

Upon induction of more favorable conditions (such as increased levels

of ubiquitinated proteins), the UbL or UBA domains bind to the

proteasome or the ubiquitinated target substrates, which causes a

conformational change in the UbL–UBA protein and disruption of the

intramolecular UbL–UBA interaction, for example. This allows the

other domain to be able to bind as well, thereby creating a complex

containing the UbL–UBA shuttle protein, the ubiquitinated target

substrate, and the proteasome, which may facilitate the proteasomal

degradation of the target protein. This sequence of events may occur

for misfolded or damaged ER-localized proteins that are subject to

ERAD. c Excessively high levels of the UbL–UBA proteins may

exert a dominant negative effect (similar to expressing only one

domain), where ubiquitinated substrates are bound by the UBA

domain and proteasomal receptors are bound by the UbL domain of

different proteins, depending on relative affinities. This would result

in a sequestering effect that diminishes the ability of a single UbL–

UBA protein to bind the target substrate and the proteasome

simultaneously, as occurs in the model described in (b). d Conversely,

the loss of UbL–UBA proteins would remove the necessary shuttle

factor required to carry the target protein to the proteasome
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resident ER protein that is upregulated in ER stress,

induced by hypoxia, for example. Interestingly, Plic-1 is

also upregulated under hypoxic conditions [96]. Overex-

pression of Plic-1 inhibits apoptosis induced by prolonged

ER stress, specifically by delaying the induction of CHOP

(a C/EBP homologue), which normally occurs from pro-

longed ER stress [96, 97]. The Plic proteins also interact

with an ER-resident protein believed to have an important

role in ERAD, Herp [98, 99]. The Plic proteins interact

with the cytosolic region of Herp. Loss of Plic-1 and Plic-2

by siRNA knockdown results in the stabilization of a

known ERAD substrate, and this effect was found specif-

ically with ERAD substrates. Thus, the Plic proteins may

also function as shuttle factors in ERAD, transporting

substrates to the proteasome for degradation [98].

Additional evidence suggests that the CIP75/UBIN

protein may also be involved in ERAD. CIP75/UBIN

colocalizes with Cx43 to the region of the ER and facili-

tates the proteasomal degradation of Cx43, through the

direct interaction with the proteasome [10]. Connexins

have previously been shown to be degraded through ERAD

[100–102]. Since Cx43 has not been shown to directly

interact with the proteasome, an adaptor protein is thought

to be necessary for Cx43 proteasomal degradation [102,

103], and CIP75/UBIN may fill this role.

Non-proteasomal degradation roles of the UbL–UBA

proteins

The different members of the UbL–UBA family have also

been reported to interact with proteins where it is unclear

whether the UbL–UBA proteins are acting as agents in

proteasomal degradation. The hHR23A UBA2 domain

binds to Vpr, a protein that mediates various HIV functions

during the viral life cycle. Overexpression of hHR23A

alleviates the Vpr-mediated G2 cell cycle arrest, which

requires the UBA2 domain [104]. hHR23A/B has also been

reported to interact with ataxin-3 via the UbL domain

[105]; however, the functional importance of this interac-

tion is unclear.

hPlic-1 also binds to the UIM domains of proteins

involved in endocytosis, including Eps15 and Hrs, through

its UbL domain. Eps15 and Hrs recruit hPlic-1 to ubiquitin-

rich cytoplasmic aggregates [106]. Further study revealed

that Plic-1 interaction with Eps15 is required for aggre-

some (cytoplasmic inclusion bodies) formation, and that

Plic-1 contributes to transport of aggregates to the peri-

nuclear aggresome, especially under conditions of stress

that result in misfolded proteins [107]. These data suggest

that Plic-1 may have an additional role in response to the

presence of misfolded proteins that does not directly

involve the proteasome. Interestingly, a role for the Plic

proteins in autophagy has recently been reported [108].

Aggregates are autophagic substrates so perhaps the role of

Plic proteins in aggresome formation is part of the auto-

phagic pathway. Loss of Plic-1 or Plic-2 causes cells to be

more susceptible to starvation. The protective effect of

Plic-1/Plic-2 requires autophagy proteins, such as ATG5

and ATG7. In addition, Plic-2 colocalizes with the auto-

phagosome marker LC3, and Plic-2 vesicles could be found

close to lysosomal compartments, which is significant

because autophagosomes eventually fuse to lysosomes.

The UBA domain of Plic-2 is required for starvation pro-

tection and for association with LC3. The Plic interaction

with the autophagosome appears to be required for auto-

phagosome fusion with the lysosome, as loss of Plic

proteins prevents autophagosome lysosomal degradation

[108]. Plic-1 also interacts with polyubiquitinated TDP-43

(TAR DNA-binding domain protein) which localizes to

aggregates in the neurodegenerative disease, amyotrophic

lateral sclerosis (ALS). This interaction occurs via the

UBA domain, and Plic-1 overexpression causes an increase

in TDP-43 aggregates. These aggregates also contain the

autophagosome LC3 marker, suggesting that Plic-1 is

involved in sequestering TDP-43 in autophagosomes [109].

In addition, the role of p62 in autophagy has been exten-

sively studied since the first observation that p62 interacted

and colocalized with LC3 and that both proteins formed a

‘‘shell’’ around mutant Huntingtin aggregates, conferring a

protective effect on cells [110]. Thus, UbL–UBA proteins

could be involved in both proteasome degradation and

autophagy.

Plic-2 has also been demonstrated to be involved in the

negative regulation of G protein-coupled receptor (GPCR)

endocytosis. Here, the Plic-2 UbL domain was required to

prevent GPCR clustering into clathrin-coated pits. The

mechanism of this negative regulation is unclear, although

interaction with endocytic proteins such as Eps15 may play

a role [111]. Plic-1 also interacts with mTOR, a protein

kinase involved in cell cycle progression and cell growth,

via its UBA domain. This interaction does not seem to have

an effect on mTOR turnover and the function of this

interaction is unknown [112].

Ddi1 expression can rescue the pds1ts-induced growth

defect, which requires all the major domains (UbL, UBA,

and RVP) [48, 113]. The mechanism of this rescue is

unclear. Ddi1 also interacts with the v-snares Snc1 and

Snc2, and the t-snare protein, Sso1, via its C-terminus;

although the UBA domain is not required (interaction

occurs with the region between the RVP and UBA

domains). Ddi1 may help to regulate the exocytic

machinery and cell cycle control [48], although it is unclear

whether this would occur through ubiquitin-mediated

degradation pathways. Ddi1 also interacts with Pho81p,

part of the PHO pathway which regulates phosphate
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responsive gene expression. However, the ddi1D yeast

mutant, or rad23Dddi1D double mutant, has similar levels

of Pho81p as wild-type, indicating that they are not directly

responsible for Pho81p degradation [114].

Conclusions

The UbL–UBA family of proteasome/ubiquitin binding

proteins is a unique and diverse group of proteins. It is

clear from the current body of work that this group of

proteins cannot be placed in one simple category of func-

tion. There are reported differences in binding partners, in

proteasomal function (promotion or inhibition of prote-

asomal degradation), and in interactions between the

domains of the family members. While much work has

already been done studying several of these proteins,

especially Rad23 and Dsk2, and to a lesser degree Ddi1,

elucidating a clearer role that the UbL–UBA family of

proteins plays in proteasomal degradation will require

more extensive study. In addition, it is becoming increas-

ingly evident that facilitating proteasomal degradation is

not the only role for these proteins. Thus, identifying

additional interacting partners and studying the effects that

the UbL–UBA proteins have on them will likely help to

define these additional roles.
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