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Abstract

The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics
methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural
changes. We describe a ‘‘transducer composition’’ algorithm for extending pairwise probabilistic models of RNA structural
evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of
computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition
algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which
are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural
alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to
its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for
a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment
of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared
this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models
that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler
models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference;
appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding
heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs
heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of
transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations
tractable.
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Introduction

In 1968, Francis Crick hypothesized that the first ribosome

consisted entirely of RNA, without any protein cofactors [1]. A

domain structure for this primeval ribosome was recently proposed

[2]. To synthesize such a reconstructed ribosome or reconstructions

of other evolutionarily significant RNAs such as group II introns [3]

or telomerase [4], it will be necessary to develop methods that can

predict the sequences and structures of ancient RNAs based on the

divergent sequences of their many descendants.

An inspection of RNA alignments, such as those in the RFAM

database [5], suggests that an evolutionary model for RNA

structure must eventually include multiple layers of detail: point

substitutions, covariant substitutions of base-pairs [6,7], indels [8],

local changes in secondary structure such as helix slippage [9], and

changes in domain structure [2]. Stochastic context-free grammars

(SCFGs), which can efficiently detect the long-range correlations

of RNA base-pairing structures, are natural probabilistic models of

such phenomena and have been used for ncRNA homology

detection [10–13], gene prediction [14,15], folding [16,17] and

alignment [18–20].

By analogy with models of substitution processes, which are

well-understood [21], we may take the problem of building

phylogenetic models of RNA evolution and split it into two halves.

The first half is the development of a pairwise model,
describing the probability distribution P(Y jX ) of a descendant

(Y ) conditional on its immediate ancestor (X ). In substitution

processes, the pairwise model is a conditional substitution matrix.

Often (but not always) the pairwise model, representing a finite

evolutionary time T , is derived from an instantaneous model of

change over an infinitesimal time interval, i.e., a continuous-time

Markov chain (parametrized by a rate matrix). Obtaining the

transition probabilities of this chain (via exponentiation of the rate

matrix) yields a pairwise model whose parameters are smoothly-

varying functions of T . A pairwise model represents an individual

branch of a phylogenetic tree, with T representing the length of

that branch.

The second half of the phylogenetic modeling problem involves

extending the model (and related inference algorithms) from a

single branch to a complete phylogeny, i.e., from a pairwise model

of two sequences to a multiple-sequence model of many

sequences. In a typical situation, the sequences at the leaves of the

tree are observed but those at internal nodes are not. Questions of

interest then include:

A. What is the likelihood for the observed sequence data?
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B. Can we sample (find the mode, take moments, etc.) from the

posterior distribution of the unobserved sequence at the root

node?

C. Can we sample from the posterior of the unobserved

sequences at the other internal nodes?

D. Can we estimate summaries of the evolutionary history, such

as the number of substitution events on each branch (for a

substitution model), the alignment (for a model which

includes indels), or changes in the underlying structure (for

a model of RNA structure)?

For substitution models, there has been extensive work focused

on answering each of these questions. Given a pairwise

substitution model, questions A and B can be answered exactly

by Felsenstein’s pruning algorithm [22] and question C can be

answered by the peeling algorithm (first presented for pedigree

analysis by Elston and Stewart [23]). The estimation of

evolutionary histories (question D) has been addressed by exact

summarization [24] and sampling [25] approaches. Another

representation of answers A–C is that the pruning and peeling

algorithms (combined) are just the sum-product algorithm on a

directed graphical model [26], yielding exact marginal distribu-

tions for unobserved variables. Graphical models also suggest

general-purpose sampling approaches in addition to the exact

sum-product algorithm.

The two halves of the reconstruction problem — developing a

pairwise model and then extending it to multiple sequences — are

largely independent. Felsenstein’s pruning algorithm, for example,

is essentially blind to the parametric form of the pairwise

substitution model; it just assumes that a substitution matrix is

provided for every branch. Subsequent models developed by other

researchers can be plugged into the pruning algorithm without

modification [27,28].

We therefore addressed the problem of modeling the indel-

evolution of multiple structured RNAs in a similarly-modular

fashion by separating the creation of pairwise and multiple-

sequence models. In previous work, we addressed the first

(pairwise) part of the RNA reconstruction problem by describing

a simple continuous-time model of RNA structural evolution [29].

This model corresponded to a Pair SCFG with a time-dependent

parametrization which we used to simultaneously align and predict

the structure of pairs of related RNAs. The focus of the present

work is to solve the second (multiple-sequence) part of the RNA

reconstruction problem by giving a general procedure for

extending a pairwise model to multiple sequences related by a

phylogenetic tree. This process yields a multiple-sequence SCFG,

a natural model of the evolutionary relationships between multiple

structured RNAs.

The main contributions of this paper are (1) an algorithm that

transforms a phylogenetic ensemble of pair grammars, represent-

ing models on branches of a phylogenetic tree, into a coherent,

multiple-sequence SCFG, (2) dynamic programming (DP) algo-

rithms for performing inference under this multiple-sequence

SCFG, and (3) freely-available software implementing algorithms

(1) and (2) for the simplified case of a three-taxon star-topology

tree. While the idea of composing conditionally-normalized

models on trees is intuitive, the resulting models can be very

complex, even for simple models of RNA evolution, making (1)

necessary. Studies of related indel models have suggested that an

implementation of dynamic programming (DP) algorithms on a

three-taxon tree is sufficient to draw samples from the posterior

distribution of ancestral sequences on more complex tree

topologies, using Markov Chain Monte Carlo or MCMC [30–

32], suggesting that (2) and (3) are, in principle, sufficient for

analyzing trees relating many sequences.

We show that our algorithm produces a multiple-sequence

grammar which is much more compact than suggested by naive

approaches to model construction. We provide analyses of the

asymptotic complexities of models constructed using our proce-

dure and provide estimates of the time and memory required to

reconstruct the structures of several RNA families for the case of a

three-taxon phylogeny, which we have implemented in the

program Indiegram. While by these estimates only the smallest

sequences currently fit into affordable memory, thereby preventing

us from applying our method to many problems of interest, a

simulation study suggests that we can hope to accurately

reconstruct ancestral structures over long evolutionary time, even

in the presence of structural divergence.

In the Discussion, we speculate on algorithmic extensions that

may reduce memory requirements, inspired by related work in

reconstructing DNA and protein sequences.

Methods

We describe below a general method for constructing a

multiple-sequence stochastic grammar for alignment, folding and

ancestral reconstruction of RNA, given a phylogenetic tree and a

description of the evolutionary process acting along each branch.

Overview
Our problem statement is this: Given a phylogenetic tree

relating several structured RNAs and a description of
the evolution of a structured RNA along a single branch
of the tree (in the form of a Pair SCFG), (1) find the
corresponding phylogenetic multiple-sequence gram-
mar and (2) use that grammar to reconstruct, a poster-
iori, the evolutionary histories of the RNAs. We assume

here that the phylogeny, including both the tree topology and

branch lengths, is given.

This paper focuses on model construction and inference

algorithms rather than the heuristics which will be necessary to

make these algorithms fast enough for analysis of many biological

datasets. As discussed below, the complexity of general inference

algorithms is prohibitively high for many problems of interest.

Author Summary

A number of leading methods for bioinformatics analysis
of structural RNAs use probabilistic grammars as models
for pairs of homologous RNAs. We show that any such
pairwise grammar can be extended to an entire phylogeny
by treating the pairwise grammar as a machine (a
‘‘transducer’’) that models a single ancestor-descendant
relationship in the tree, transforming one RNA structure
into another. In addition to phylogenetic enhancement of
current applications, such as RNA genefinding, homology
detection, alignment and secondary structure prediction,
this should enable probabilistic phylogenetic reconstruc-
tion of RNA sequences that are ancestral to present-day
genes. We describe statistical inference algorithms, soft-
ware implementations, and a simulation-based compari-
son of three-taxon maximum likelihood alignment to
several other methods for aligning three sibling RNAs. In
the Discussion we consider how the three-taxon RNA
alignment-reconstruction-folding algorithm, which is cur-
rently very computationally-expensive, might be made
more efficient so that larger phylogenies could be
considered.

Evolutionary Triplet Models of Structured RNA
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However, this complexity can be significantly reduced by

incorporating outside knowledge. For example, if we know the

consensus structure of several sequences or their individual

structures, then we can constrain our algorithms accordingly.

Similarly, we might consider only ancestral structures which are

compatible with a given multiple sequence alignment, or a

relatively small set of candidate alignments (as in the ORTHEUS

program [33]). Such constraints are commonly used by programs

for SCFG-based RNA sequence analysis such as QRNA [34],

Stemloc [18] and CONSAN [19]. Alignment and structural

constraints can be combined [18].

In the following sections we introduce more precise definitions

for two-sequence models of RNA structure and outline our

algorithms for (1) combining these two-sequence models on a

phylogenetic tree and (2) using the composite phylogenetic

grammars for inference.

Two-sequence models
We discuss the general problem of creating state-space models

of the evolution of related sequences, beginning with models of

substitution processes acting at independent sites (as studied in

likelihood phylogenetics) and generalizing to models of indels, first

in primary sequences and then in sequences with conserved

secondary structure.

A stochastic model for the evolution of one sequence (the

ancestor, X ) into another (the descendant, Y ) over an interval of

time (T ) can be described by a joint distribution, P(X ,Y jT). This

joint distribution can be factored, P(X ):P(Y jX ,T), where P(X ) is

the marginal distribution over ancestral sequences and P(Y jX ,T)
is the conditional distribution over descendant sequences given an

ancestral sequence. In terms of phylogenetics, the conditional

distribution P(Y jX ,T) describes the evolution X ?
T

Y along a

branch of length T .

It is possible to ‘‘multiply’’ two such models together. More

precisely, one multiplies two conditional distributions and sums

out the intermediate sequence. Thus, successive evolution along

two branches X ?
T1

Y ?
T2

Z is modeled by the distribution

P(Y ,ZjX ,T1,T2)~P(Y jX ,T1)P(ZjY ,T2)

and we can sum sequence Y out of this, obtaining the distribution

P(ZjX ,T1zT2)~
X

Y

P(Y jX ,T1)P(ZjY ,T2)

for the composite branch X ?
T1zT2

Z.

This formalism underlies likelihood phylogenetics. Working

under the independent-sites assumption, P(X ,Y jT) is the

(X ,Y )’th element of the joint substitution matrix for a single site

and P(Y jX ,T) is the corresponding element of the conditional

matrix. The conditional matrix is in fact the matrix exponential

exp(RT), where R is the substitution rate matrix [24].

Composition of two branches just amounts to a matrix

multiplication.

A similar formalism can be used to describe the evolution of

whole sequences with indels. Suppose that the joint distribution

P(X ,Y jT) is the distribution modeled by a pair hidden Markov

model (Pair HMM) [11], a probabilistic model of the evolution of

two sequences under the approximation that only adjacent

characters are directly correlated, and the marginal P(X ) is the

distribution of a single-sequence HMM, a probabilistic model of

single sequences under the same approximation. The conditional

distribution P(Y jX ,T) then corresponds to a conditional Pair

HMM, a discrete-state machine which transforms one sequence

(the input, X ) into another (the output, Y ). Following computa-

tional linguists, we call this conditionally-normalized state machine

a string transducer or simply a transducer [35]. Because of

its conditional normalization, this state machine is distinct from a

standard Pair HMM. A Pair HMM has two outputs X and Y and

emits symbols to both of those outputs, while a transducer absorbs

symbols from the input X and emits symbols to the output Y .

Despite this distinction, Pair HMMs and transducers share very

similar inference algorithms; for example, P(Y jX ,T) is computed

using a direct analogue of the Forward algorithm [11].

We extend this formalism to the case of structured RNA as follows.

Let X and Y now represent structured RNA sequences or, more

precisely, parse trees. A single-sequence SCFG models the marginal

P(X ); a jointly-normalized Pair SCFG [11] models the the joint

distribution P(X ,Y jT). The conditional distribution P(Y jX ,T) is

modeled by a conditionally-normalized Pair SCFG. Following

terminology from computational linguistics [36], we call this

conditionally-normalized grammar a parse-tree transducer.

String transducers are special cases of parse-tree transducers,

just as HMMs are special cases of SCFGs. Henceforth, we will

drop the distinction between strings and parse trees. We will also

refer interchangeably to ‘‘states’’ (in the state-machine represen-

tation) and ‘‘nonterminals’’ (in the grammar representation).

Likewise, we will refer interchangeably to ‘‘state paths’’ (machines)

and ‘‘parse trees’’ (grammars).

Terminology and normalization. Consider the stochastic

grammar which generates parse trees from the marginal

distribution P(X ). It is convenient to represent this grammar as

a transducer whose input is constrained to be null, i.e. a machine

that accepts a dummy (empty) input sequence, and outputs

sequence X . We refer to this as the singlet transducer. In

contrast, the more general type of transducer that absorbs parse

trees X and generates modified parse trees Y from the conditional

distribution P(Y jX ,T) is a branch transducer. By definition,

singlet transducers only emit symbols to their output sequence,

and use a restricted set of state types. Branch transducers, in

contrast, can both emit symbols to their outputs and absorb

symbols from their inputs, and so use the full range of state types.

Transducers can have states of type Start, End, Wait, Insert
and Match. The first three state types, Start, End and Wait, are

null: they do not emit or absorb any symbols and are required

solely for organizational purposes (see following section). Two

types of states can emit and/or absorb symbols, Insert and Match.

An Insert state emits a symbol to the output without absorbing

anything. A Match state absorbs a symbol on the input and either

emits the same symbol to the output, substitutes a different output

symbol, or emits no output symbol at all, the last corresponding to

a deletion.

As stated above, the Pair SCFG must be conditionally

normalized so that models can be chained together, extending

the pairwise model to multiple sequences. The transformation

rules are partitioned into co-normalized groups; within each

group, the rule probabilities must sum to one. In a jointly-

normalized Pair SCFG, each group corresponds to the set of all

rules that can be applied to a given nonterminal (i.e., all outgoing

transitions from a particular state). In a conditionally-normalized

Pair SCFG, in contrast, each co-normalized group includes all

rules that can be applied to a given nonterminal for a given set of

absorbed symbols.

Multiple-sequence models
We can use the concepts of factoring probability distributions

introduced in the two-sequence framework to model the common

Evolutionary Triplet Models of Structured RNA
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descent of many homologous sequences. Given a phylogenetic tree

and a two-sequence model, we wish to obtain a multiple-sequence

SCFG describing the common descent of the observed sequences.

A singlet transducer (which emits, but does not absorb, symbols)

lies at the root of the phylogeny and serves as a generative model

of the ancestral sequence. To represent the evolution of an

ancestral sequence into many descendant sequences, we place a

branch transducer on each branch of the phylogeny.

Throughout this paper we frequently refer to two and three-

taxon (star) phylogenies. In all cases, the sequence W is assumed to

be the (unobserved) ancestral sequence and the sequences X , Y ,

and Z the (observed) extant sequences.

The composition algorithm. While this composition of

conditionally-normalized models on a phylogenetic tree is

intuitive, in practice building such an ensemble model is

challenging due to the sheer number of possible states and

transitions of the ensemble model. The maximum possible state

space of the ensemble is the Cartesian product of the individual

transducer state spaces. If the singlet transducer has a states, each

branch transducer has b states, and the phylogeny has N branches,

then an upper bound on the number of ensemble states is O(a:bN ).
However, in practice there are many fewer states than suggested

by this bound; many state configurations are not reachable. For

example, for the tree with two extant sequences and a single

parent, the branch transducers above leaves X and Y cannot

simultaneously be in Insert states, as this would correspond to

aligning non-homologous (inserted) characters. Similarly, while an

upper bound on the number of possible transitions in the transition

matrix of the ensemble model is O((a:bN )2), in practice models

never reach this bound, due both to inaccessible configurations,

such as the one described above, and the sparseness of transitions

between the remaining, accessible configurations.

While the accessible state space of the ensemble is smaller than

that given by the exponential upper bound, it is generally

nonetheless too complex to deal with by hand. For example, the

simple model of RNA structural evolution described in Results

yields an ensemble model of three sequences with 230 states and

1,789 transitions. More realistic models of RNA give rise to even

larger ensemble models.

We therefore need an algorithm to efficiently construct the state

graph of the ensemble model, consisting of a list of accessible states

and the possible transitions between them. By analogy with

algorithms for uninformed graph search in artificial intelligence,

the transition graph of the ensemble can be constructed by an

uninformed depth-first search, where at each step of the search we

obtain the next possible ensemble states by changing the state of

one or more of the singlet or branch transducers. Beginning with

the entire ensemble in state Start, the depth-first search of states

continues until all nodes are in state End.

The allowed transitions of the ensemble can be categorized as

follows:

Null Transition: A branch transducer makes a transition into a

Wait state, with no terminal emission or bifurcation.

Terminal Emission: A singlet or branch transducer makes a

transition into a state of type Insert, emitting left and/or

right terminal symbols (e.g., a single base or base-pair).

These symbols are absorbed by the immediately-

descended transducers, which are pushed into states of

type Match and may themselves emit terminal symbols

that will be absorbed by their descendant transducers.

This continues down the tree: The terminal symbols are

passed from parents to children to grandchildren (albeit

possibly being replaced by other terminal symbols as

they are propagated down) and they propel branch

transducers into Match states as they go. Eventually, the

cascade of emitted terminal symbols stops when all the

symbols have been deleted or when the cascade reaches

the leaves of the tree.

Bifurcation: A singlet or branch transducer makes a transition

into a state of type Insert that spawns left and/or right

nonterminal states. These nonterminals are processed

recursively down the tree, just as in a terminal emission

(conceptually, a bifurcation is a ‘‘nonterminal emis-

sion’’). As with terminal emissions, absorption of

nonterminal emissions propels descendant transducers

into Match states, making transitions which may

themselves propagate nonterminals further down the

tree. A biologically-relevant example of a bifurcation is

the insertion of a stem into an ancestral RNA structure,

which may then be conserved or deleted in the

descendant structures.

End Transition: The singlet transducer at the root makes a

transition to the End state, pushing all the descendant

branch transducers into End states and terminating the

current branch of the parse tree.

Co-ordination between the various branch machines is achieved

by specifying an ordering on the nodes and by having branch

transducers pause in Wait states while waiting to absorb a symbol

from the node above. Only one transducer is allowed to make a

spontaneous transition at a time. If this transition corresponds to a

terminal emission or a bifurcation, then this may force descendant

transducers into making reactive transitions.

The four types of allowed transitions listed above can be

formalized as follows. Let the total order on the nodes correspond

to any preorder traversal of the tree; thus, ‘‘m is ancestral to n’’ is

sufficient-but-not-necessary for ‘‘m[n.’’ Let Tm denote the singlet

or branch transducer which emits symbols to node m. Transducer

Tm changes state if and only if one of the following three mutually-

exclusive conditions holds:

Type 1: Transducer Tm is not in a Wait state, while all its

successor transducers Tn are in Wait states (where m[n). Tm is

free to make any transition.

Type 2: Transducer Tm is in a Wait state. Its parent transducer

enters a Match or Insert state, emitting a symbol and forcing Tm

into a Match state so it can absorb that symbol.

Type 3: Transducer Tm is in a Wait state. Its parent transducer

enters the End state, forcing Tm into the End state as well.

A notational prescription for the allowed transitions may be

found in Text S1.
How the ensemble generates multiple alignments. The

possible transitions of the ensemble generate multiple alignments

as follows:

1. The singlet transducer and all branch transducers begin in

their respective Start states.

2. Before any residues can appear at the root, the branch

transducers all wind back into Wait states, via type-1

transitions. This occurs in reverse order (i.e., a postorder

traversal of the tree).

3. During this initial windback, clade-specific insertions can

occur. This process is described in detail at step 9.

4. With all the branch transducers wound back into Wait states,

the singlet transducer makes a (type-1) transition into an Insert
state, emitting a symbol to the sequence at the root node.

Evolutionary Triplet Models of Structured RNA
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5. The transducers on outgoing branches from the root then

make (type-2) transitions into Match states, either copying the

root symbol to their own outputs, substituting it for a different

symbol or staying silent (this silence corresponds to a clade-

specific deletion; in our formalism, both substitutions and

deletions are handled by Match states.)

6. The transducers on branches one step away from the root then

process the symbols which reached them (if any did), followed

by transducers on branches two steps away from the root, then

three steps, and so on (these can all be regarded as occurring

simultaneously, in a single cascading wave of emissions).

7. Eventually the emitted symbols are propagated, via type-2

transitions, all the way to the tips of the tree (if they survived) or

to the nodes where they were deleted (if they did not survive).

The wave of type-2 transitions has left a lot of branch

transducers in Insert and Match states.

8. The branch transducers then, in postorder, each wind back

into Wait states, just as at step 2. (These windback transitions

can be collapsed into a single ensemble transition, as with the

emission cascade; however, the windback may be interrupted

by clade-specific insertions; see below.)

9. During the postorder windback, each branch transducer gets

an opportunity to generate a new symbol (via type-1 transitions

to Insert states). (If such a transition to Insert occurs, it

corresponds to a clade-specific insertion. This insertion is

propagated down the tree via a wave of type-2 transitions, as

above, then we go back to step 7.)

10. Eventually, the entire ensemble has wound back, so that

every transducer is in a Wait state except the singlet

transducer at the root, which is still in an Insert state. At this

point, all clade-specific insertions have been processed.

11. The singlet transducer now makes another type-1 transition.

If this transition is to an Insert state, the entire cycle begins

again: the singlet transducer emits the next symbol at the

root, and we go back to step 4.

12. If, on the other hand, the singlet transducer enters its End
state, then a wave of type-3 transitions drives all the branch

transducers into their respective End states too, bringing the

entire ensemble to a halt.

Complexity of the transducer ensemble. The total sizes of

both the state space and the transition matrix are, in general,

dramatically smaller than implied by the exponential upper

bounds of O(a:bN ) and O((a:bN )2). While we do not have

provable bounds on the size of the state space, we have observed

that the size of the state space is roughly linear in the number of

branches, O(a:b:N), and the number of transitions is

approximately linear in the number of states for several pairwise

models, including the pairwise model which we use here.

However, these empirical observations are based on a limited

class of pairwise models and we do not have theoretical results for

how they will generalize to other pairwise models. We do believe,

however, that the worst-case exponential bound will be avoided by

(1) omitting inaccessible state configurations and (2) eliminating

null windback states as described in the following section (which

we believe will prevent affine gap penalties from generating

exponential growth in the number of states).

Therefore, for the models which we have characterized, the

search algorithm given above for enumerating all allowed

transitions of the ensemble model typically generates O(b)
transitions from any given state, thereby creating a very sparse

transition matrix of size O(a:b2:N).

Inference algorithms for multiple-sequence models
In this section, we describe dynamic programming (DP)

algorithms for inferring the alignment, structure and evolutionary

history of multiple related RNAs, using the multiple-sequence

SCFG we have derived.

The transducer composition algorithm described above constructs

a phylogenetic SCFG for both ancestral and extant sequences. A

parse tree for this SCFG represents a structural and evolutionary

explanation of the extant sequences, including a complete ancestral

reconstruction. Consequently, given a set of extant sequences, many

of the questions of interest to us can be reduced to searches over, or

summarizations of, the set of possible parse trees.

Well-known algorithms already exist for maxing or summing

over SCFG parse tree likelihoods. The Cocke-Younger-Kasami

(CYK) algorithm performs maximum-likelihood (ML) inference;

the Inside algorithm can be used to sum over parse trees or sample

them a posteriori; and the Inside-Outside algorithm yields posterior

probabilities for individual parse tree nodes [11].

All of these algorithms are, however, complicated (at least in our

models) by the existence of ‘‘null cycles’’ in the grammar. A null cycle is

a parse tree fragment that is redundant and could be removed, such as

a detour through Null states (A?X?Y?X?Y?B) that could be

replaced by a direct transition (A?B). Biologically, null cycles

correspond to fragments of ancestral sequence that were universally

deleted and therefore are unobserved in any of the extant sequences.

These unobserved fragments can be unbounded in length (and so,

therefore, can the parse tree). Within the CYK, Inside and Outside

recursions, this causes cyclic dependencies which cannot be resolved.

Below we describe a method to eliminate null cycles from the

ensemble model by transforming any SCFG to an equivalent

acyclic SCFG. We then present multiple-sequence versions of the

CYK, Inside and Outside algorithms.

While some sort of null-cycle elimination is often required in

order to deal with cyclic dependencies, there are several ways to

accomplish this other than the algorithm presented below. A

simpler approach (that only works for the CYK algorithm) appears

in the computational linguistics literature [37]. We have also

developed a heuristic for CYK that simply ignores null cycles as

well as an iterative approximation that loops several times over

cyclically-dependent cells of the DP matrix until the estimate starts

to converge. For conciseness, we have omitted descriptions of these

methods, presenting only the exact elimination algorithm.

Exact elimination of null cycles in SCFGs. As noted

above, the ensemble grammar contains many rules that can be

applied redundantly, together or in isolation, to generate subtrees

of the parse tree that do not generate any terminals. This generates

cyclic dependencies in the standard DP recursions for inference. In

this subsection, we describe how to transform the SCFG so as to

eliminate such redundant rules, yielding strictly acyclic DP

recursions. This transformation can be applied to any SCFG so

as to remove null states and/or bifurcations: the procedure is not

restricted to grammars that were generated using our transducer

composition algorithm.

We begin by identifying two distinct classes of redundant parse-

subtree: empty bifurcations and empty paths. We will

eliminate each of these in turn.

An empty bifurcation occurs when a child branch of a

bifurcation state transitions to the End state without emitting any

symbols and can be removed from the model by creating an

effective direct transition encapsulating the empty bifurcation. For

example, we can create an effective direct transition N1?N3

between null states N1 and N3 in place of the empty parse-subtree

N1?B?(N2 N3)?(End N3), where B is a bifurcation state with

children (N2 N3). Bifurcation states are the most computationally-
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costly part of our models, so it is important to eliminate as many as

possible without reducing model expressiveness.

In contrast, an empty path is defined as any parse-subtree

without bifurcations that does not emit terminal symbols. If Emit
states E1 and E2 are connected in the state graph via Null states

N1 and N2, then the path E1?N1?N2?E2 with probability

P(E1?N1):P(N1?N2):P(N2?E2) can be replaced by a single

direct transition E1?E2 with an identical probability.

Empty paths occur in Hidden Markov Models (which are

special cases of SCFGs) and independent-sites models (which can

be viewed as special cases of HMMs). Conceptually, empty paths

can represent histories that are valid according to the model but

cannot be resolved by direct observation. Such null events can be

real (e.g., ancestral residues that have been deleted in all extant

lineages) or they can be artefactual (e.g., transitions between

placeholder null states of an HMM).

In our composite model, empty paths occur whenever a series of

branch transducers winds back into Wait states. Empty bifurca-

tions occur when an entire substructure, present in an ancestor, is

deleted in all that ancestor’s extant descendants.

Empty paths and empty bifurcations are problematic because

they can be combined to give finite-probability sequences of rules

that transform a nonterminal back into itself, with no observable

emissions. We refer to such sequences of rules as null cycles. As

noted, null cycles generate cyclic dependencies in the CYK, Inside

& Outside algorithms. Our goal is an algorithmic procedure to

resolve these dependencies and account for the likelihood of such

cycles by exact marginalization.

For simpler models, solutions to this problem are published.

Missing (empty) columns in independent-sites models can be

accounted for by applying a correction factor (1{p){1 to

account for the proportion of columns p that are unobserved

[38]. The slightly more complicated situation of missing

emissions in a HMM can be dealt with by summing over all

empty paths, yielding a geometric series that is solvable by matrix

inversion [39–41]. Such algorithms effectively replace the HMM

with another HMM that contains no null cycles but is equivalent

to the original, in that it models the same probability distribution

over sequences. However, these solutions do not easily generalize

to SCFGs (which may have empty bifurcations as well as empty

paths).

Text S2 includes a complete formal algorithm for exact null-

cycle elimination in SCFGs, along with procedures for probabi-

listically restoring null cycles to sampled parse trees and Inside-

Outside expectation counts. Informally, the essence of the

algorithm is contained within the following two steps:

(i) separating bifurcations into those which have one or more

empty children (and can therefore be represented using

transition or termination rules) and those that have two

nonempty children;

(ii) replacing all empty paths through null states with effective

direct transitions between non-null states, obtaining sum-

over-paths probabilities by inverting the grammar’s transition

matrix.

Note that step (i) is unique to SCFGs; step (ii), in contrast, is very

similar to the empty-path elimination algorithm for HMMs.

Dynamic programming algorithms for inference. Once

we have performed the transformations described above to remove

null cycles from the multiple-sequence SCFGs generated by our

model-construction algorithm, we can compute likelihoods and

sample parse trees using the standard CYK, Inside and Outside

algorithms for multiple-sequence SCFGs [11,42].

The asymptotic time and memory complexities of our inference

algorithms are essentially the same as for Sankoff’s algorithm [42]:

the DP algorithms take memory O(A:L2N ) and time O(B:L3N ) for

N sequences of length L, where A is the number of (accessible)

states in the multiple-SCFG and B is the number of bifurcations.

Note that A and B are also dependent on N (see ‘‘The TKFST

model on a three-taxon phylogeny’’).

Exact inference on a star phylogeny with N extant sequences

therefore has complexities O(A:L2N ) and O(B:L3N ) in memory

and time (respectively) for a multiple-SCFG with A states and B
bifurcations. As described earlier, in practice we frequently have

expert knowledge (such as a curated multiple alignment) about the

structures and/or evolutionary histories of the sequences of

interest. We can use this knowledge as a constraint to reduce the

accessible volume, and hence the storage requirements, of the DP

matrix [18]. The Inside, Outside, and CYK+traceback algorithms

for a three-taxon star phylogeny can be constrained using the ‘‘fold

envelope’’ concept, which will now be described.

We use the fold envelope concept [29,43] to constrain the set of

structures which our algorithms consider. A fold envelope F (X ) for

a sequence X is a set of coordinate pairs satisfying

F (X )( (i,j) : 0ƒiƒjƒL(X )
� �

; L(X )~jX j : ð1Þ

We consider a subsequence xiz1 . . . xj only if the corresponding

coordinate pair (i,j)[F (X ). The unconstrained fold envelope has

set equality in Equation 1.

An inside?outside ordering is used for the iteration in the

Inside algorithm: Subsequences are ordered such that each

successive subsequence contains all previous subsequences in the

fold envelope. More precisely, subsequences in F (X ) are sorted in

the same order as coordinate pairs (i,j) are generated by the

iteration f for i~L(X ) to 0 ffor j~i to L(X )gg.
The Outside algorithm uses the exact reverse of the

inside?outside ordering described above; we call this the

outside?inside ordering. Subsequences in F (X ) are sorted in

the same order as coordinate pairs (i,j) are generated by the

iteration f for i~0 to L(X ) ffor j~L(X ) to igg.
We frequently refer to subsequences by their index in the fold

envelope. The mth subsequence in F (X ) is labeled m(X ) and

corresponds to the coordinate pair (im,jm). The index of a pair

(i,j)[F (X ) is n(X )½i,j�.
In order to take full advantage of the reduction in computational

complexity offered by restricting our inference algorithms to

subsequences contained in the fold envelopes, we must avoid iterating

over unreachable combinations of subsequences (unreachable

because they are not permitted by the fold envelope constraints).

An efficient implementation relies on iterators over subsequences in

the fold envelope which are connected by production rules of the

ensemble grammar. Inward and outward emission connections for a

sequence X , specifying which subsequence is reachable from a given

subsequence m(X ) and ensemble state b, are defined as

cin b; m Xð Þ
� �

~n Xð Þ imzD
Xð Þ

L bð Þ,jm{D
Xð Þ

R bð Þ
h i

cout b; m Xð Þ
� �

~n Xð Þ im{D
Xð Þ

L bð Þ,jmzD
Xð Þ

R bð Þ
h i

,

where the quantities D
Xð Þ

L bð Þ and D
Xð Þ

R bð Þ are the lengths of the left

and right emissions of the ensemble state b to the sequence X. (Recall

that the mth subsequence in F Xð Þ is labeled m(X) and corresponds to

the coordinate pair (im, jm).) The emission connection is undefined if

the corresponding subsequence is not in the fold envelope. Inward,
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outward-left and outward-right bifurcation connections, specifying

which subsequences are connected by bifurcation production rules of

the ensemble SCFG, are defined for a subsequence n(X) as

bin n Xð Þ� �
~ n

Xð Þ
L ,n

Xð Þ
R

� �
: i

n
Xð Þ

L

~in Xð Þ ,j
n

Xð Þ
L

~i
n

Xð Þ
R

,j
n

Xð Þ
R

~jn Xð Þ

n o
ð2Þ

bout,L n Xð Þ� �
~ n

Xð Þ
O ,n

Xð Þ
L

� �
: i

n
Xð Þ

L

~i
n

Xð Þ
O

,j
n

Xð Þ
L

~in Xð Þ ,jn Xð Þ~j
n

Xð Þ
O

n o
ð3Þ

bout,R n Xð Þ� �
~ n

Xð Þ
O ,n

Xð Þ
R

� �
: in Xð Þ~i

n
Xð Þ

O

,jn Xð Þ~i
n

Xð Þ
R

,j
n

Xð Þ
R

~j
n

Xð Þ
O

n o
ð4Þ

We generally write out explicit subsequence coordinate pairs (i, j)

when their usage will make mathematical formulas clearer and fold-

envelope labels n(X) when writing pseudocode.

Using the fold envelope formalism, the main iteration over cells

in the Inside and CYK matrices can be expressed as three nested

loops: one for each sequence, traversing the fold envelope

subsequences in insideRoutside order. Conversely, the main

iteration of the Outside algorithm consists of three nested

outsideRinside loops.

The Inside algorithm is used to calculate the likelihood of

sequences under an ensemble model. It is analogous to the

Forward algorithm for HMMs.

The inside probability aa (n(X), n(Y), n(Z)) is the summed probability

of the triplet of subsequences (n(X), n(Y), n(Z)) for sequences X,Y,Z

under all paths through the model which are rooted in state a.

Figure 1 gives pseudocode for the fold-envelope version of the Inside

algorithm. The subroutines calcTransEmitProb, calcLBifurcProb

and calcRBifurcProb used in the Inside algorithm are defined

below.

The transition and emission probability calcTransEmitProb

(a; ?) can be calculated by iterating over ensemble states b which

connect the subsequence triplet (n(X), n(Y), n(Z)) to others in the fold

envelopes.

Pseudocode for the constrained calculation is given in Figure 2.

The left-bifurcation probability for an ensemble state a
bifurcating to two ensemble states, calcLBifurcProb (a; n

Xð Þ
L ,

n
Xð Þ

R , n
Yð Þ

L , n
Yð Þ

R , n
Zð Þ

L , n
Zð Þ

R ), is

X
b A a?cbj

P a?cbð Þ ac n
Xð Þ

L ,n
Yð Þ

L ,n
Zð Þ

L

� �
ab n

Xð Þ
R ,n

Yð Þ
R ,n

Zð Þ
R

� �

and the right-bifurcation probability for an ensemble state a

bifurcating to two ensemble states, calcRBifurcProb (a; n
Xð Þ

L , n
Xð Þ

R ,

n
Yð Þ

L , n
Yð Þ

R , n
Zð Þ

L , n
Zð Þ

R ), is

X
b A a?bdj

P a?bdð Þ ab n
Xð Þ

L ,n
Yð Þ

L ,n
Zð Þ

L

� �
ad n

Xð Þ
R ,n

Yð Þ
R ,n

Zð Þ
R

� �
:

The boundary condition of the probability of 0-length subse-

quences is determined by the probability of transitions to End. The

termination condition is

Figure 1. Algorithm 1. The constrained Inside algorithm for three sequences X, Y, Z. Ensemble states a in the iteration over states are sorted in
Inside fill order with Emit states first, then Null states in reverse topological order.
doi:10.1371/journal.pcbi.1000483.g001
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P X ,Y ,Zð Þ~aStart N Xð Þ,N Yð Þ,N Zð Þ
� �

,

where Start is the unique start state of the ensemble grammar and

N(X) is the outermost subsequence for sequence X, etc.

Note that we are assuming that the transformations described in

‘‘Exact elimination of null cycles in SCFGs’’ have been performed,

such that there are no cycles of Null states as well as no empty

bifurcations.

The CYK algorithm is used to calculate the probability of

the most-likely state path (or parse) capable of generating the

input sequences. It is analogous to the Viterbi algorithm for

HMMs.

The CYK algorithm can be obtained from the Inside algorithm

by replacing sums over paths through the ensemble model with the

max operation. The CYK probability for indices ca (n(X), n(Y), n(Z))

then represents the probability of the most likely path through the

model generating the triplet of subsequences (n(X), n(Y), n(Z)).

The resulting CYK algorithm is shown in Figure 3. The

subroutine caleTransEmitProb is defined in Figure 4. The

subroutines calcLBifurcProb and calcRBifurcProb used in the

Figure 2. Algorithm 2. Subroutine calcTransEmitProb() for the Inside algorithm. a and b are ensemble states; l and r are left and right terminal
emissions.
doi:10.1371/journal.pcbi.1000483.g002

Figure 3. Algorithm 3. The constrained CYK algorithm for three sequences X, Y, Z. Ensemble states a in the iteration over states are sorted in Inside
fill order with Emit states first, then Null states in reverse topological order.
doi:10.1371/journal.pcbi.1000483.g003
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CYK algorithm are defined as

max
b A a?cbj

P a?cbð Þcc n
Xð Þ

L ,n
Yð Þ

L ,n
Zð Þ

L

� �
cb n

Xð Þ
R ,n

Yð Þ
R ,n

Zð Þ
R

� �

and

max
b A a?bdj

P a?bdð Þcb n
Xð Þ

L ,n
Yð Þ

L ,n
Zð Þ

L

� �
ad n

Xð Þ
R ,n

Yð Þ
R ,n

Zð Þ
R

� �
:

The CYK traceback algorithm, in combination with the CYK

algorithm, is used to find the most-likely state path generating the

extant sequences (in other words, the maximum-likelihood parse

generating the observed data). It is analogous to the Viterbi

traceback algorithm for HMMs. Figure 5 gives the constrained

CYK traceback algorithm.

The Outside algorithm is primarily used an an intermediary for

calculating nucleotide-level posterior probabilities, e.g. for poste-

rior decoding on the model. It is analogous to the Backward

algorithm for HMMs.

The outside probability bb (n(X), n(Y), n(Z)) for an ensemble state b
is the summed probability of the sequences X,Y,Z under all paths

through the ensemble model which are rooted in the start state of

the model, excluding all paths for the triplet of subsequences (n(X),

n(Y), n(Z)) which are rooted in the ensemble state b. Figure 6 gives

pseudocode for the fold-envelope version of the Outside algorithm.

The subroutines calcTransEmitProb, calcLBifurcProb and calcR-

BifurcProb used in the Outside algorithm are defined below.

As with the Inside and CYK algorithms, the transition and

emission probability calcTransEmitProb can be calculated effi-

ciently using the subsequence connections defined earlier

(Figure 7). The left-bifurcation probability calcLBifurcProb (b;

n
Xð Þ

O , n
Xð Þ

L , n
Yð Þ

O , n
Yð Þ

L , n
Zð Þ

O , n
Zð Þ

L ) is

X
ajAa?cb

P a?cbð Þba n
Xð Þ

O ,n
Yð Þ

O ,n
Zð Þ

O

� �
ac n

Xð Þ
L ,n

Yð Þ
L ,n

Zð Þ
L

� �

and the right-bifurcation probability calcRBifurcProb (b; n
Xð Þ

O ,

n
Xð Þ

R , n
Yð Þ

O , n
Yð Þ

R , n
Zð Þ

O , n
Zð Þ

R ) is

X
ajAa?bd

P a?bdð Þba n
Xð Þ

O ,n
Yð Þ

O ,n
Zð Þ

O

� �
ad n

Xð Þ
R ,n

Yð Þ
R ,n

Zð Þ
R

� �

The boundary condition is just

bStart N Xð Þ,N Yð Þ,N Zð Þ
� �

~1,

where N(X) is the outermost subsequence for sequence X, etc.

Results

Automated grammar construction
We implemented our model construction algorithm on the

three-taxon star phylogeny. Given a singlet transducer modeling

ancestral structures and a branch transducer modeling structural

evolution, our Perl modules generate C++ code for the

corresponding jointly-normalized three-sequence (Triplet) SCFG.

Any model of structural evolution which can be represented as a

Pair SCFG and factored into singlet and branch transducers is

permitted as input to the packages, allowing for flexible,

automated model design. The available software is described in

Text S3.

A simple model of RNA structural evolution
We illustrated our method for building models of structured

sequences using a model which was introduced in previous work,

the TKF Structure Tree [29], a simplified probabilistic model of

the evolution of RNA structure.

The TKF Structure Tree (TKFST) model is based on the

Thorne-Kishino-Felsenstein (TKF) model of the stochastic evolu-

tion of primary sequences via indel events [44]. In the original

TKF model, sequence evolves under a time-homogeneous linear

birth-death-immigration process [45]. Single characters (‘‘links’’)

are inserted with rate l and deleted with rate m. At equilibrium,

sequences obey a geometric length distribution with parameter k.

Although this model has flaws (e.g., it lacks affine gap penalties,

rate heterogeneity and context-dependent mutation rates), it

illustrates many of the key ideas used by more sophisticated indel

models, notably the possibility for systematic derivation of pairwise

alignment automata from first principles via analysis of birth-death

processes [44,46].

The TKF Structure Tree model is an extension of the TKF

model to RNA structure. In this model, loop and stem regions are

mutually nested (Figure 8): the parameter pl(S) determines the

proportion of links within loop sequences that are nested stems,

and every stem sequence has a nested loop at the end. Single bases

are inserted and deleted in loops with rates ll and ml ; similarly,

base-pairs are inserted and deleted in stems with rates ls and ms.

Both loops and stems have geometric length distributions with

parameters kl~ll=ml and ks~ls=ms. Insertions of a new stem into

Figure 4. Algorithm 4. Subroutine calcTransEmitProb() for the CYK algorithm. a and b are ensemble states; l and r are left and right terminal
emissions.
doi:10.1371/journal.pcbi.1000483.g004
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an existing loop sequence (or deletions of an existing stem) occur at

the same rate as single-base insertions (or deletions) and can model

large-scale structural changes (Figure 9).

We parametrized the singlet and branch transducers of the

TKFST model using estimates reported by a phylo-grammar

for RNA secondary structure prediction, PFOLD [16], and an

implementation of pairwise alignment for the TKF Structure

Tree model, Evoldoer [29]. The equilibrium distributions of

unpaired and paired nucleotides of the singlet and branch

transducers, as well as the substitution models of unpaired and

paired nucleotides of the branch transducers, were derived

from the substitution rate matrices of the PFOLD program.

These rate matrices, which have proven useful for RNA

structure prediction [16,17,47], were derived from the Bayr-

euth tRNA database [48] and the European large subunit

rRNA database [49].

This continuous-time model corresponds to a Pair SCFG and as

such fits neatly into our modeling framework once the probability

distribution is appropriately factored into marginal and condi-

tional distributions (generated by singlet and branch transducers).

Tables 1 and 2 show the states and transitions of the singlet

transducer (single-sequence SCFG) which generates ancestral

sequence under the Structure Tree model. Tables 3 and 4 show

the states and transitions of the branch transducer (conditionally-

normalized Pair SCFG) which evolves a sequence and structure

along a branch of the phylogenetic tree.

Figure 5. Algorithm 5. The constrained CYK traceback algorithm for three sequences X, Y, Z.
doi:10.1371/journal.pcbi.1000483.g005
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The equilibrium distribution and transition probabilities

between states of the TKFST model can be expressed in terms

of functions of the evolutionary time along a branch and the

insertion and deletion rates ll and ml of the model. The length of

ancestral sequences is geometric in kl (Table 2), defined as

kl~ll=ml . The three functions a(t), b(t) and c(t) which govern the

Figure 6. Algorithm 6. The constrained Outside algorithm for three sequences X,Y,Z. Ensemble states a in the iteration over states are sorted in
Outside fill order with Emit states first, then Null states in topological order.
doi:10.1371/journal.pcbi.1000483.g006

Figure 7. Algorithm 7. Subroutine calcTransEmitProb() for the Outside algorithm. a and b are ensemble states; l and r are left and right terminal
emissions.
doi:10.1371/journal.pcbi.1000483.g007
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transition probabilities in Table 4 are defined for loop sequences as

al(t)~exp {ml tð Þ

bl(t)~
ll 1{exp (ll{ml)tð Þð Þ
ml{llexp (ll{ml)tð Þ

cl(t)~1{
ml 1{exp (ll{ml)tð Þð Þ

1{exp({ml t)ð Þ ml{llexp (ll{ml)tð Þð Þ

and similarly for stem sequences [29].

The above-described TKFST SCFGs must be transformed

slightly before they can be loaded into Indiegram. The grammars

are presented in Indiegram format in Text S4.

A few other useful statistics for the TKFST model: the expected

number of links in a loop sequence is Kl~
ll

ml{ll

and in a stem

sequence Ks~
ls

ms{ls

. Since pl(S) of the links in a loop sequence

are nested stems, and since each stem has twice as many

nucleotides as it has links (since each link is a base pair), the

expected number of bases in a loop sequence is

Bl~
Kl(1{pl(S))z2Klpl(S)

1{pl(S)Kl

The expected number of bases in a stem sequence is

Bs~2KszBl

The expected number of bases that are created/removed when a

loop-sequence link is inserted/deleted is

Dl~(1{pl(S))zpl(S)Bs

The expected number of stems directly rooted in a given loop

sequence is U~pl(S)Kl and the expected number of stems

directly rooted in, or indirectly descended from, a given loop

sequence is V~U=(1{U) (note that this is also the expected total

number of loop sequences indirectly descended from a given loop

sequence). Therefore, in the equilibrium structure, the expected

number of stems is V ; of loops, Vz1; of unpaired bases,

Kl(1{pl(S))(Vz1); and of base-pairs, KsV . In a tree with total

branch length T , the expected number of single-base deletions is

mlTKl(1{pl(S))(Vz1); of base-pair deletions, msTKsV ; and of

substructure deletions, mlTV .

Assessing TKFST as a model of RNA structure
The TKFST model, like the original TKF model, probably

needs refinements in order to accurately model many structural

RNAs. For example, it fails to model certain phenomena

observed in natural RNA structures (such as base-stacking or

tetraloops) and in alignments of those structures (such as helix

slippage). We assessed its appropriateness as a model of RNA

structural evolution by conducting benchmarks of its capabilities

for (1) multiple sequence alignment of structured RNAs,

summing over all possible structures, and (2) structure prediction

of homologous structured RNAs and comparing its performance

to Stemloc (one of the better-performing pairwise SCFGs used

for RNA multiple alignment [20]). The results of these

benchmarks, reported in Table 5 and Table 6, suggest that

TKFST is a useful guide for deriving more complicated models of

RNA evolution: while it has relatively poor sensitivity (but high

positive predictive value) as a base-pairing predictor, it is

competitive with one of the most accurate RNA multiple

sequence alignment programs [20].

TKFST’s poorer performance at base-pairing prediction is

likely due to its much-simpler model of RNA structure. The

richer grammar, as described in [18], is much more complex

than TKFST: excluding the substitution model, it has 14 free

parameters (compared to TKFST’s 4), uses an affine gap penalty

(compared to TKFST’s linear gap penalty), and explicitly

models structural features such as multiple-branched loops,

symmetric/asymmetric bulges, and minimum loop lengths.

Figure 8. The TKF Structure Tree model represents the evolution of RNA structure as nested stem and loop sequences. The model
consists of recursively nested loop sequences (gray, horizontal) and stem sequences (black, vertical). The loops are sequences of unpaired bases and
the stems are sequences of covarying base-pairs. Both loop and stem sequences evolve according to the Thorne-Kishino-Felsenstein (TKF) model [44]
of molecular evolution. Figure is extended from a similar version in [29].
doi:10.1371/journal.pcbi.1000483.g008
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Unlike TKFST, the richer grammar is structurally unambigu-

ous: a one-to-one mapping exists from structures to parse trees.

Although we use the TKFST model as an illustrative example of

a Pair SCFG that can be extended with our method, the model is

not fundamental to our approach and can be replaced by a

different and more realistic pairwise model, such as the Stemloc

pairwise SCFG used in these comparisons [20]. We anticipate

that further improvements should be possible by reviewing other

comparisons of SCFGs at structure prediction, such as the study

of [17].

Figure 9. Evolution of a RNA structure under the TKF Structure Tree model. The TKF Structure Tree model includes phenomena such as
point mutations in loop sequences (1?2 and 4?5), covariant mutations in stem sequences (2?3), insertions in loop sequences (3?4), insertions in
stem sequences (5?6), structural insertions (6?7), and structural deletions (7?8). Figure is extended from a similar version in [29].
doi:10.1371/journal.pcbi.1000483.g009
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The TKFST model on a three-taxon phylogeny
We used our model-construction algorithm to build the

grammar corresponding to the TKFST model acting on a star

phylogeny with three (extant) leaf sequences and a single

(unobserved) ancestral sequence. We chose this phylogeny for

two reasons: (1) it is the simplest extension of the well-studied,

standard two-sequence (Pair SCFG) model and (2) algorithms on a

phylogeny with three leaves should be sufficient for ergodic

sampling of reconstructions on any larger phylogeny, using, e.g., a

Gibbs-sampling MCMC kernel [31] or a progressive suboptimal-

alignment sampling heuristic [33].

The statistics of the TKFST model on the three-taxon phylogeny

illustrate the advantages of our procedure for model construction.

While the singlet and branch transducers are relatively simple—the

singlet transducer, shown in Table 2, has 7 total states and 2

bifurcation states and the branch transducer, shown in Table 4, has

21 total states and 6 bifurcation states—the ensemble model of three

extant sequences is very complex. The naive exponential upper-

bound gives a maximal state space of size O(7:213)[6:104 states.

Using our uninformed search algorithm, we determined that there

are 287 accessible states and 686 possible transitions between these

states (compare with the 2872^8:104 transitions estimated with the

exponential calculation). After performing the transformations

described in ‘‘Exact elimination of null cycles in SCFGs’’ to

eliminate useless windback states, the ensemble model has a reduced

state space with 230 states, albeit at the cost of extra transitions,

bring the total to 1,789 transitions (here we are trading reduced

memory complexity, which is linear in the number of states, for

increased time complexity, which is linear in the number of

transitions). Note that both before and after the reduction in

complexity, the total number of states and transitions are less than

the approximate bounds of O(a:b:N)~O(7:21:3)[441 states and

O(a:b2:N)~O(7:212:3)[9,261 transitions suggested in ‘‘The

composition algorithm’’. Nonetheless, the extreme complexity of

the ensemble model, despite the simplicity of the underlying model

of RNA structure, makes clear the necessity for automated

procedures for model construction. Dataset S1 gives the state space

of the ensemble model constructed by the search algorithm and

Dataset S2 the reduced model after eliminating windback states;

both are in Graphviz format for visualization and show the state of

the singlet transducer generating ancestral sequence as well as the

states of the branch transducers generating observed sequences.

We implemented constrained maximum-likelihood inference of

the structural alignment and ancestral structure of three extant

sequences in a C++ program (Indiegram). For tractability,

Indiegram uses the concept of fold envelopes described earlier to

limit the fold space considered by the CYK algorithm, permitting

structural information for the three extant sequences to be

(optionally) supplied as input. If no structural information is

supplied, then Indiegram uses a single-sequence SCFG to estimate

a set of plausible folds [18], which are used to constrain the CYK

algorithm.

The inference algorithms in Indiegram could be further

constrained to enforce, for example, a fixed multiple alignment

or a consensus structure for extant sequences. While experimen-

tally-determined structures of individual RNAs are relatively rare,

Table 1. State types of the singlet transducer (single-
sequence SCFG) of the TKF Structure Tree model.

State type absorb emit description

L Start Start of a loop

IL Insert (x,null) Single-base emission

S Start Start of a stem

IS Insert (x,y) Base-pair emission

B Insert (LS) Bifurcation

Singlet transducers can only have states of type Start or Insert.
doi:10.1371/journal.pcbi.1000483.t001

Table 2. Singlet transducer (single-sequence SCFG) of the
TKF Structure Tree model.

SourceRDestinatioon probability SourceRDestinatioon probability

L?u IL kl :pl (u) S?u IS v ks:ps(uv)

?B kl :pl (S) ?Be 1{ks

?End 1{kl

IL?u IL kl :pl (u) IS?u IS v ks:ps(uv)

?B kl :pl (S) ?Be 1{ks

?End 1{kl

B?(L S) 1

Be?(L End) 1

The state types for this model are shown in Table 1. The singlet transducer
generates ancestral RNA sequences and structures. We use the notation of
formal grammars to represent state transformation rules; for example, the rule
IL?u IL corresponds to (in a Pair HMM) an Insert state IL emitting a nucleotide
u and then making a self-transition. Both loop (L and IL) and stem (S and IS )
sequence evolve as TKF sequences with length parameters kl and ks (defined in
‘‘A simple model of RNA structural evolution’’). pl (u) and ps(uv) are the
equilibrium distributions of unpaired nucleotides u and paired nucleotides (u,v)

and are normalized such that pl (S)z
X

u
pl (u)~1 and

X
u,v

ps(uv)~1. The
bifurcation state Be is used to end stem sequences (only loop sequences are
allowed to transition to the empty string).
doi:10.1371/journal.pcbi.1000483.t002

Table 3. State types of the branch transducer (conditionally-
normalized Pair SCFG) of the TKF Structure Tree model.

State type absorb emit description

L Start Start of a loop

IL Insert (u,null) Single-base insertion

ML Match (x,null) (u,null) Single-base substitution

DL Match (x,null) Single-base deletion

WL Wait Wait for next base

S Start Start of a stem

IS Insert (u,v) Base-pair insertion

MS Match (x,y) (u,v) Base-pair substitution

DS Match (x,y) Base-pair deletion

WS Wait Wait for next base-pair

Bi Insert (Li Si) Stem insertion

B Match (LS) (LS) Stem conservation

Bp Match (LS) (LEnd) Stem deletion

Be Match (LEnd) (LEnd) Stem extinction

States which have the same names as states of the singlet transducer in Table 1
are the branch-transducer equivalents of the corresponding singlet-transducer
states (e.g., a Match state might be the branch equivalent of an Insert state).
States Li and Si are the Start states of a sub-model (not shown) identical in
structure to the singlet transducer. They are used to insert a new stem-loop
structure.
doi:10.1371/journal.pcbi.1000483.t003
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curated deep sequence alignments, such as those constructed for

ribosomal RNAs [50], are frequently available for characterized

RNA families. By constraining the inference algorithms with such

sequence alignments, the memory and time complexity of the

algorithms could be dramatically reduced. Such constraints can be

naturally expressed with ‘‘alignment envelopes,’’ the alignment-

space analogue of fold envelopes [18]. However, in this paper we

focus on model construction and inference algorithms and

postpone exploration of heuristics and constraints of these

algorithms for future work.

Reconstructing small RNAs with the TKFST model
While reconstructing large RNAs such as ribosomal subunits is

currently computationally-inaccessible without further heuristics to

constrain our algorithms, reconstructing small RNAs of biological

interest will soon be feasible. Table 7 shows estimates of the

memory and time required to reconstruct biologically-interesting

subunits of the nanos 39 translational control element and tRNAs,

as well as two small RNAs which show significant structural

divergence, the Y RNAs and Group II introns, and therefore

promise to be interesting candidates for ancestral reconstruction.

The reconstructed structures for three nanos 39 translational

control elements (TCEs) and three tRNAs, which could be

analyzed given current computational limitations, can be found at

http://biowiki.org/IndieGram; however, the phylogenetic trees

Table 4. Branch transducer (conditionally-normalized Pair
SCFG) of the TKF Structure Tree model.

SourceR
Destinatioon probability

SourceR
Destinatioon probability

L?w IL bl (t):pl (w) S?w IS x bs(t):ps(wx)

?Bi bl (t):pl (S) ?WS 1{bs(t)

?WL 1{bl (t)

IL?w IL bl (t):pl (w) IS?w IS x bs(t):ps(wx)

?Bi bl (t):pl (S) ?WS 1{bs(t)

?WL 1{bl (t)

ML?w IL bl (t):pl (w) MS?w IS x bs(t):ps(wx)

?Bi bl (t):pl (S) ?WS 1{bs(t)

?WL 1{bl (t)

DL?w IL cl (t):pl (w) DS?w IS x cs(t):ps(wx)

?Bi cl (t):pl (S) ?WS 1{cs(t)

?WL 1{cl (t)

WL?w ML al (t):Ml (u?w) WS?w MS x as(t):Ms(uv?wx)

?DL 1{al (t) ?DS 1{as(t)

?B al (t) ?Be 1

?Bp 1{al (t)

?End 1

B?(L S) 1 Bp?(L End) 1

Bi?(Li Si) 1 Be?(L End) 1

The state types for this model are shown in Table 3. The branch transducer
evolves a sequence and structure along a branch of the phylogenetic tree.
States Li and Si are the Start states for a sub-model corresponding to an
insertion of a new stem in the descendant sequences; the sub-model (not
shown) is identical in structure to the singlet transducer shown in Table 2. pl (w)

and ps(wx) are the equilibrium distributions of, respectively, descendant
unpaired nucleotide w and descendant paired nucleotides (w,x); Ml (u?w) and
Ml (uv?wx) are the conditional distributions (i.e., match probabilities) of a
descendant unpaired nucleotide w given an ancestral unpaired nucleotide u

and descendant paired nucleotides (w,x) given ancestral nucleotides (u,v). The
functions al,s(t), bl,s(t) and cl,s(t) are parametrized by the insertion and deletion
rates of the TKFST model and are defined in ‘‘A simple model of RNA structural
evolution’’.
doi:10.1371/journal.pcbi.1000483.t004

Table 5. Percentage sensitivity and positive predictive value
(Sensitivity/PPV) for pairwise nucleotide-level alignments in
the BRalibaseII benchmark.

U5 g2intron rRNA tRNA

TKFST grammar 81.6/81.7 75.4/75.0 91.4/92.6 94.6/94.4

Stemloc grammar 82.6/83.7 74.2/74.8 92.6/92.8 93.2/93.9

We compared the performance of the TKFST model for progressive multiple
alignment of RNAs against the performance of a grammar with a richer model
of RNA structure (Stemloc [18]). Sensitivity is defined as TP=(TPzFN ) and
PPV is defined as TP=(TPzFP ), where TP is the number of true positives
(correctly aligned residue pairs), FN is the number of false negatives (residue
pairs that should have been aligned but were not) and FP is the number of false
positives (residue pairs that were incorrectly aligned). These statistics are
summed over all pairs of sequences in the multiple alignment; therefore,
‘‘Sensitivity’’ for pairwise residue alignments is equivalent to the Sum of Pairs
Score or SPS [103]. ‘‘g2intron’’ is the RFAM entry Intron_gpII, containing
domains V and VI of the Group II intron.
doi:10.1371/journal.pcbi.1000483.t005

Table 6. Percentage sensitivity and positive predictive value
(Sensitivity/PPV) for predicted base-pairs in the BRalibaseII
benchmark.

U5 g2intron rRNA tRNA

TKFST grammar 37.9/68.0 42.1/63.8 37.4/66.5 70.9/88.3

Stemloc grammar 74.9/73.9 64.3/56.7 51.0/59.0 74.0/76.4

We compared the performance of the TKFST model for structure-prediction
accuracy during progressive multiple alignment of RNAs against the
performance of a grammar with a richer model of RNA structure (Stemloc [18]).
‘‘g2intron’’ is the RFAM entry Intron_gpII, containing domains V and VI of the
Group II intron.
doi:10.1371/journal.pcbi.1000483.t006

Table 7. Estimates of the memory and time required to
reconstruct ancestral structures of three RNAs from several
families of biological interest (as reported by Indiegram).

Family Sequence lengths Memory Time

nanos 39 TCE 61–64 nt 3 Gb 3 min

tRNA 69–73 nt 11 Gb 19 min

Y RNA 47–81 nt 33 Gb 70 min

Group II intron (domains V and VI) 76–91 nt 122 Gb 90 min

The nanos 39 translational control element (TCE) sequences are the seed
sequences of the corresponding RFAM family [5] and the three tRNA sequences
are from the BRalibaseII database [55] (identifiers AB042432.1-14140_14072,
Z82044.1-16031_16103 and AC008670.6-83725_83795). The group II intron
sequences (identifiers Z00044.1-87253_87177, X57546.1-2817_2907 and
X04465.1-2700_2775) are from BralibaseII [55]. The Y RNAs are hY1, hY4, and
hY5 from [104]; sequence lengths exclude the conserved stem S1. The time
estimates are for a 2.2 GHz AMD Opteron 848 CPU.
doi:10.1371/journal.pcbi.1000483.t007
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relating the tested sequences have short branch lengths, making

the reconstruction problem easy by forcing the reconstructed

structures to be essentially-identical to those of one of the extant

RNAs.

Comparison of alignment methods
Guided by our experience with the nanos 39 TCE and tRNA,

where the reconstruction problem was made easy by the presence

of a close outgroup, we conducted a simulation study of the

dependence of reconstruction accuracy on outgroup branch

length, with the further goal of comparing the performance of

our reconstruction method (when simulating directly from the

model) to simpler reconstruction methods that ignore either

structure or phylogeny. (We here use the term ‘‘outgroup’’ loosely

to denote the variable-length branch in our three-taxon study,

where the other two branches are held at unit length.)

We simulated the evolution of RNAs under the TKFST model

along three-taxon phylogenies (with one internal node), where we

kept the branch lengths of two sibling species constant and varied

the branch length of the outgroup between ½0,2:5� at steps of size

0:1. Parameters used in the simulation were ll~0:025 and

ml~0:03 for loop sequence and ll~0:007 and ml~0:01 for stem

sequence; the probability of a stem insertion was 0:1. These

yielded a mean loop length of 5 bp and a mean stem length of

2.33 bp, with *0:3 substructure indels per alignment. We selected

alignments to reconstruct by requiring that there be at least two

ancestral stems, loops of length[½3,10� bp and stems of

length[½1,20� bp; to reduce the complexity of our algorithms we

additionally required that the sequences have lengths[½30,70� bp.

We then attempted three-way multiple alignment (and, in some

cases, reconstruction of the ancestor) using a variety of statistical

inference algorithms. We sought insight as to the relative

importance of the following factors in reconstructing ancestral

RNA: (i) modeling the secondary structure; (ii) modeling the

phylogenetic topology & branch lengths; (iii) using posterior-

decoding algorithms to maximize the expected alignment accuracy,

rather than picking the single most likely alignment [20,51,52].

The alignment programs we used in this benchmark were

Indiegram (exact ML inference of alignment and ancestral

structure, given phylogeny, descendant structures and correct

model); Stemloc (a greedy ML heuristic, ignoring phylogeny in

favor of a single-linkage clustering of the descendant structures);

Stemloc-AMA (a posterior-decoding heuristic, maximizing the

alignment’s expected accuracy rather than its likelihood); and Handel

(ML alignment under various indel models that ignore secondary

structure completely). In detail, the reconstruction methods were

Stemloc : the Stemloc program was used to align the three

sequences via single-linkage clustering with a Pair SCFG [18]. The

structures of the leaf sequences were provided, but not the

phylogenetic branch lengths. Instead of modeling a true phylogeny

by introducing unobserved ancestral sequences, it just does single-

linkage clustering of the observed sequences.

Stemloc-AMA : the Stemloc program was used to align the

three sequences in ‘‘sequence annealing’’ mode, a posterior

decoding method that attempts to optimize AMA, a sum-over-

pairs alignment accuracy metric [20]. The structures of the leaf

sequences were provided, but not the phylogenetic branch lengths.

This program uses the same underlying pair SCFG as Stemloc,

but instead of maximizing likelihood, it attempts to maximize an

alignment accuracy metric.

TKF91: with the TKF91 model [44], the Handel package

[30,39,40] was used to align the three extant sequences and

reconstruct the ancestor. The correct phylogenetic tree and

branch lengths were supplied (as they were for the Indiegram

benchmark). The insertion, deletion and substitution rates for the

TKF91 model were set equal to those of the loop submodel of

TKFST. This may be understood as a naive sequence-only

reconstruction that completely ignores basepair structure (i.e. the

stem sub-model of TKFST).

Long Indel: with a single-event trajectory approximation to the

long indel model [53], the Handel package was used to align the

three extant sequences and reconstruct the ancestor. The correct

phylogenetic tree and branch lengths were supplied. The deletion

and substitution rates were set equal to those of the loop submodel

of TKFST. The mean indel length was set equal to Dl , the mean

number of bases that are created/removed by an insertion/

deletion in the loop submodel of TKFST; the mean equilibrium

sequence length (and thereby the insertion rate) was equal to Bl ,

the mean number of bases in TKFST at equilibrium (‘‘A simple

model of RNA structural evolution’’ has formulae for these

quantities in terms of the TKFST rate parameters). This model

improves on the previous model (TKF91) by introducing affine

gap penalties.

We measured alignment accuracy, under the simplifying

assumption that this correlates well with ancestral reconstruction

accuracy.

We first consider the perfect alignment rate; that is, the number of times

each method gets the alignment exactly correct. Theory predicts that

Maximum Likelihood inference, using the correct model and

parameters, should be asymptotically optimal (if one only counts

perfect guesses). Inspecting Figure 10, we find this to be almost the

case; the exception is when the outgroup is very distant and the bins

may be undersampled (the departure from prediction that we observe

for low-identity alignments is not statistically significant: when the

optimal success rate drops below *5=125, then 125 trials are

probably insufficient to compare two near-optimal methods). We also

note that the ML version of Stemloc is near-optimal, despite the

Stemloc pair-SCFG being slightly different from the TKFST pair-

SCFG in parameterization and structure (e.g. Stemloc ’s grammar

does not allow insertion/deletion of entire substructures). The ML

version of Stemloc is also observed to have a slightly higher perfect

alignment rate than the posterior-decoding version (Stemloc -AMA).

Finally, we note that the structure-blind models (TKF91 and Long

Indel) perform consistently worse than the structure-aware methods;

furthermore, both linear (TKF91) and affine (Long Indel) gap-

penalties perform equally bad in this test (note that the TKFST

model, from which the true alignments were simulated, does not

allow long-indel events, which may partly explain why affine gap-

penalties do not help in this benchmark).

A subtly different ranking emerges from consideration of the

alignment accuracy. In Figure 11, we abandon the all-or-nothing

metric of counting only perfect alignments, instead using a metric

that shows what proportion of the alignment is correct.

Specifically, we plot the Alignment Metric Accuracy (AMA) as a

function of outgroup branch length. AMA measures the

proportion of residues which are correctly aligned, averaged over

all pairs of sequences [54]. Figure 4 reveals that Stemloc-AMA

(which attempts to find the alignment with the maximum expected

AMA) edges out both Indiegram and the ML version of Stemloc

(both of which attempt to find the alignment with the maximum

likelihood). These results, compared to the subtly different story

told by the perfect alignment rate, underscore the point that

benchmark results for alignment methods can depend exquisitely

on the choice of accuracy metric. The superiority of ML methods

is only assured in terms of perfect alignment rate, and not

necessarily other accuracy metrics.
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Taken together, these results suggest that the most important

factor distinguishing the various models we have examined is the

incorporation of some form of basepair structure: structure-blind

Handel (regardless of linear vs affine gap penalty) performs much

worse than the structure-aware SCFG methods. Intuitively, this is

to be expected: whenever a basepair-aware method aligns one half

of a basepair, it gets the other nucleotide correctly aligned for free.

In benchmarks of RNA multiple alignment programs, structure-

aware scoring schemes routinely outperform structure-blind

scoring schemes [55,56]. Since we know that modeling structure

is very important, it’s not too surprising that it turns out to be the

most important of the factors we considered.

The second most important, amongst the factors we have

considered in this experiment, is selection of the most appropriate

objective function for the task at hand (c.f. perfect alignment rate vs

AMA), followed by use of the correct posterior-decoding algorithm

for the chosen objective function (c.f. Stemloc vs Stemloc-AMA).

This is a subtle but important point: before deciding exactly what

inference algorithm we’re going to use to reconstruct ancestral

sequences, we need to decide whether we want to maximize (a) the

probability that our reconstructed sequence is 100% correct, (b)

the expected number of nucleotides that are correctly reconstruct-

ed, (c) the expected number of base-pairs that are correctly

reconstructed, (d) the expected number of stems that are correctly

reconstructed, (e) some other metric. Each of these metrics would

require a slightly different inference algorithm.

Lastly, the fine details of the scoring scheme—including branch

lengths, substitution scores, gap penalties and so forth—appear to

be the least important of the factors we considered, yielding

observable differences only when all other aspects of the inference

procedure were more-or-less equal. While such details of the

model may affect reconstruction quality, they appear to have very

minor influence on alignment quality.

Discussion

Following the conception of paleogenetics [57], a large number

of synthetic reconstructions of ancestral protein sequences have

been reported in the literature [58–65]. There is also scientific

interest in reconstructing DNA sequences [33,66–71]. Given the

importance of the RNA world hypothesis to current discussions of

the origin of life [72–78], the many modern-day relics of this world

[79–82] and the recent proposal of a structural model for the

primordial ribosome [2], we believe that phylogenetic reconstruc-

tion of ancient RNA is a significant problem, deserving of strong

bioinformatics support.

The work reported in this paper builds on extensive prior art in

the areas of evolutionary modeling and ancestral reconstruction.

Reviewing all of this would take several books, but we can note

some key references. The reconstruction of ancient sequences was

first proposed in 1963 by Pauling and Zuckerkandl [57]; current

applications of this idea, mostly using substitution models, are

surveyed in the book edited by Liberles [83]. Many algorithms in

phylogenetics implicitly reconstruct substitution histories, whether

by parsimony [84,85] or likelihood [22]. There is a substantial

Figure 11. Dependence of alignment metric accuracy on
alignment method and outgroup branch length. We simulated
the evolution of three structural RNAs under the TKFST model. The
simulation included two sister species at unit distance from the
ancestral sequence, plus one ‘‘outgroup’’ whose branch length t was
varied between ½0,2:5� by selecting 25 equally spaced values of t in this
range, spaced 0:1 apart. We then simulated 25 alignments for each
value of t, using TKFST model parameters described in the text. The
Alignment Metric Accuracy (AMA) is, roughly, the proportion of residues
that are correctly aligned, averaged over all pairs of sequences (see [54]
for a precise definition; we set the AMA Gap Factor to 1). The AMA
between the true alignment and the inferred alignment was measured
for various statistical alignment inference procedures. These procedures
are described in the text, but may be summarized very briefly as ML
under the true model (‘‘Indiegram’’); greedy approximate-ML progres-
sive alignment by single-linkage clustering with pair SCFGs (‘‘Stemloc’’);
sequence annealing, a form of posterior decoding to maximize a sum-
over-pairs accuracy metric, using pair SCFGs to get the posterior
probabilities (‘‘Stemloc-AMA’’); statistical alignment using the TKF91
model, i.e. linear gap-penalties (‘‘TKF91’’); and statistical alignment
using a long-indel model, i.e. affine gap-penalties (‘‘Long Indel’’).
doi:10.1371/journal.pcbi.1000483.g011

Figure 10. Dependence of perfect alignment rate on alignment
method and outgroup branch length. Perfect alignment is when a
given alignment program estimates the alignment 100% correctly, with
no errors. Simulating the evolution of three structural RNAs under the
TKFST model, we investigated the dependency of perfect alignment
rate on outgroup branch length. The simulation included two sister
species at unit distance from the ancestral sequence, plus one
‘‘outgroup’’ whose branch length t was varied between ½0,2:5� by
selecting 25 equally spaced values of t in this range, spaced 0:1 apart. (A
unit-length branch here corresponds to one expected substitution per
site in loop sequence.) We simulated 25 alignments for each value of t,
using TKFST model parameters described in the text. Since the perfect
alignment rate is rather low, we further aggregated the t-values into
bins of five; thus, for example, the bin named ‘‘0to0:4’’ includes
t[f0,0:1,0:2,0:3,0:4g and represents 25|5~125 trials in total. The
perfect alignment rate was measured for various statistical alignment
inference procedures. These procedures are described in the text, but
may be summarized very briefly as ML under the true model
(‘‘Indiegram’’); greedy approximate-ML progressive alignment by
single-linkage clustering with pair SCFGs (‘‘Stemloc’’); sequence
annealing, a form of posterior decoding to maximize a sum-over-pairs
accuracy metric, using pair SCFGs to get the posterior probabilities
(‘‘Stemloc-AMA’’); statistical alignment using the TKF91 model, i.e. linear
gap-penalties (‘‘TKF91’’); and statistical alignment using a long-indel
model, i.e. affine gap-penalties (‘‘Long Indel’’).
doi:10.1371/journal.pcbi.1000483.g010
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body of work to model indels on phylogenies [30,35,39,44,53,86–

92]. Recent work has extended these ideas to the reconstruction of

indel histories [93,94], particularly at the genomic scale [33,95].

There is also prior work in computational linguistics on the theory

of transducers for sequences [96] and parse trees [36,37,97,98]

(from which we take the terms ‘‘string transducer’’ and ‘‘parse-tree

transducer’’). We draw on the bioinformatics literature for SCFGs

[10,11,99], especially Pair SCFGs [14,18,19] and phylogenetic

SCFGs [16]. In particular, an early example of a pairwise

conditional model P(Y jX ) for structure-dependent RNA evolu-

tion was given by Eddy et al [12]. A conditional framework similar

to ours in some respects is described by Sakakibara et al [100]. The

dynamic programming inference algorithms for multiple-sequence

SCFGs are closely related to the protosequence algorithm of

Sankoff [42].

While we have focused on the TKF Structure Tree model in

our Results, our model-construction algorithm is applicable to any

model of the evolution of secondary structure which can be

expressed as a Pair SCFG. Realistic structural and thermodynamic

effects—such as base-stacking or loop length distributions—can, in

principle, be incorporated. Other phenomena of RNA evolution

may prove more difficult: modeling helix slippage with a branch

transducer is awkward, let alone more radical changes in structure;

pseudoknots, too, are impossible with the models we have

described here. Even so, variants of our models could be used

for proposing candidate alignments for more accurate scoring by

such models.

An implementation of inference algorithms for models on the

three-taxon phylogeny is sufficient to construct a MCMC

sampling algorithm over many sequences on an arbitrary

phylogeny. A sketch of such a sampling algorithm is as follows:

at each step of the sampling algorithm, we re-sample the sequence

and structure of the ancestral node W , conditioned on the

sequences and structures of X , Y and Z. The structural alignment

of all four sequences can change at each step, providing for fast

mixing and guaranteeing ergodicity. This move is similar to the

sampler proposed by [31] for models with a HMM structure. Note

that this, in principle, permits construction of a crude sampler to

simultaneously infer phylogeny as well, by proposing and

accepting or rejecting changes to the underlying tree as well as

the implied structural alignment.

Reconstructing structural changes of large RNAs using the

three-way sampling kernel which we have described would require

resources far in excess of those currently available; barring the

availability of supercomputers with terabytes of memory, such

algorithms will only be feasible for short RNAs (Table 7). A

promising direction is to consider variations on the three-way

sampling kernel, such as the importance-sampling approach

described for the TKF model by [32]. This approach first

proposes an ancestor W by aligning extant sequence X to Y
(ignoring Z); then, in a second step, the proposed W is

independently aligned to Z. The proposed three-way alignment

and reconstruction is then randomly accepted (or rejected) using a

Hastings ratio based on the three-way transducer composition.

The complexity of this kernel is the same as the pairwise case; with

suitable constraints, this is feasible for RNA grammars on present

hardware, at least for ribosomal domains (if not yet whole

subunits—although pairwise alignment of those should also be

possible soon). The approach of Redelings and Suchard therefore

merits future consideration in the context of modeling the

evolution of RNAs on a tree.

An alternative MCMC scheme for sampling RNA phylogeny,

structure and alignment was developed for the SimulFold program

[101]. SimulFold does not use a strictly normalized probabilistic

model, resulting in some oddities in the ways that structure and

indels interact (for example, it does not penalize deletion of one

half of a basepair). Currently, it is not clear how appropriate

SimulFold would be for ancestral reconstruction, although it has

several advantages (e.g., explicit treatment of pseudoknots). Of

course, MCMC kernels are inherently adaptable to other

purposes: the MCMC moves developed for SimulFold may be

useful for inference under different models.

This paper focuses on the case where the tree topology is

known, but many of the methods which we have described can be

extended to the more general case where none of the possible

constraints (phylogeny, structure or alignment) are final. For

example, the probabilistic framework readily allows us to compare

likelihoods of two different phylogenetic trees by constructing a

composite transducer for each tree. Thus, the MCMC samplers

described above for alignments could, in principal, be extended to

phylogenies (albeit at a computational cost).

While MCMC provides the most information about the

posterior distribution of evolutionary histories, in practice a

maximum likelihood inference may be adequate (and typically

much faster). The progressive profiling used by the Ortheus

program for reconstructing ancestral genomes is promising [33].

This approach is similar to a progressive multiple alignment

algorithm, in that it proceeds via a single postorder (leaf-to-root)

traversal of the phylogeny. As each node is visited, a profile is

generated for that node, by aligning the profiles of its children to a

composite transducer using DP, then sampling a finite number of

traceback paths through the DP matrix. The profile is not linear:

the sampled paths instead form a reticulate network, a.k.a. a

partial order graph [102]. An equivalent of Ortheus for RNA

reconstruction should be possible, representing the intermediate

profiles using transducers.

Given the excellent performance of Stemloc-AMA ’s sequence

annealing, particularly when measured using its own scoring

metric (AMA), such posterior-decoding methods should also be

considered for reconstruction.

In summary, the evolutionary models and algorithms we have

described form a systematic theoretical platform on which we can

test different optimization and sampling strategies for studying the

structural evolution of RNA gene families in detail. Stochastic

grammars are powerful tools for this task, although they will not be

the only tools we need, particularly as we move towards modeling

RNA evolution in greater detail. Our hope is that these algorithms

will allow us to test and refine our understanding of RNA

evolution by computational reconstruction and (eventually) direct

experimental investigation of early ribonucleic machines.
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