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THE IMPORTANCE OF DIETARY IRON 
AND HEME
Iron is a vitally important element in biological terms 
(for review see[1]). Iron is a transition metal with the 
ability to readily accept and donate electrons, allowing 
it to function as an oxidant or reductant in a large 
number of  biochemical reactions. In mammals, iron is 
notably required for oxygen transport as a component 
of  hemoglobin, DNA synthesis as a component of  
ribonucleotide reductase, and as an electron acceptor/
donor in the cytochromes that are essential for energy 
transduction. Currently, iron deficiency is the most 
common diet related health problem in the world[2], 
and the effects on human health are wide ranging. Iron 
deficiency manifests as anaemia in up to 2 billion people, 
impairs physical and mental development in children, 
and can exacerbate many other health problems.

Heme is a biologically important iron containing 
compound and a key source of  dietary iron. Historically, 
it was doubted that heme iron could be absorbed by the 
enterocyte and it was not until 1955 that the absorption 
of  heme-derived iron was demonstrated for the first 
time[3]. Currently, the importance of  heme iron in the 
diet cannot be underestimated. Studies estimate that 
in Western societies, iron derived from heme sources 
such as myoglobin and hemoglobin make up two-
thirds of  the average person’s total iron stores despite 
only constituting one-third of  the iron that is actually 
ingested[4-6]. This likely explains why vegetarians are 
more prone to iron deficiency than those who regularly 
consume red meat[7].

The re la t ive impor tance of  d ie tar y heme i s 
attributable to its high bioavailability compared with 
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Abstract
Iron is a critical micronutrient, and iron derived from 
heme contributes a large proportion of the total iron 
absorbed in a typical Western diet. Heme iron is 
absorbed by different mechanisms than non-heme 
iron, but despite considerable study over many years 
these mechanisms remain poorly understood. This 
review provides an overview of the importance of 
heme iron in the diet and discusses the two prevailing 
hypotheses of heme absorption; namely receptor 
mediated endocytosis of heme, and direct transport 
into the intestinal enterocyte by recently discovered 
heme transporters. A specific emphasis is placed on 
the questions surrounding the site of heme catabolism 
and the identity of the enzyme that performs this task. 
Additionally, we present the hypothesis that a non-
heme iron transport protein may be required for heme 
iron absorption and discuss the experiences of our 
laboratory in examining this hypothesis.

© 2008 The WJG Press. All rights reserved.

Key words: Iron; Heme absorption; Receptor mediated 
endocytosis; Heme transporter; Heme oxygenase

Peer reviewers: Trevor Redgrave, Professor, Department 
of Physiology, School of Biomedical and Chemical Sciences, 
The University of Western Australia, Perth, WA, Australia; 
Dr. Nathan Subramaniam, Membrane Transport Laboratory, 
The Queensland Institute of Medical Research 300 Herston 
Road, Herston, Brisbane, QLD 4006, Australia; Paul E Sijens, 
PhD, Associate Professor, Department of Radiology, UMCG, 

www.wjgnet.com



non-heme iron in the predominantly alkaline conditions 
found in the lumen of  the small intestine. In aqueous 
solutions at or above pH 7.0, non-heme iron is present 
as Fe(Ⅱ) and Fe(Ⅲ). Fe(Ⅱ) readily oxidizes to Fe(Ⅲ) 
which precipitates from solution as ferric hydroxide 
or forms soluble hydroxyl-iron dimers which are not 
directly available for absorption[8]. Further, many dietary 
components (particularly humic substances such as 
tannins and phytate) can chelate iron making it non-

bioavailable[9-11], while only select reductants in the diet 
(such as ascorbate) can act as solubilizing agents[12].

In contrast polymerization of  heme, which reduces 
its absorption, is minimised in alkaline conditions[13] 
while humic substances[14,15] and chelators such as 
desferrioxamine[16,17] do not reduce heme bioavailability. 
Heme solubility is also increased significantly by the 
presence of  protein[13,18-20] which is important con-
sidering heme-rich foods typically contain high quantities 
of  protein. Paradoxically, the absorption of  heme iron 
cannot upregulate to the same extent as non-heme 
iron during iron deficiency[14,15,21-25]. This is possibly 
due to rate limitations at the step of  heme catabolism 
(see ‘Heme Catabolism’ below) although the extent to 
which enterocyte adaptation (particularly transfer to the 
circulation by ferroportin[26-29] and humoral regulation 
by hepcidin[30-33]) affects heme iron absorption is very 
poorly characterised compared to non-heme iron.

Despite the clear importance of  dietary heme as 
a source of  body iron, the mechanism by which the 
enterocyte takes up heme and catabolizes it to utilise 
the iron is still poorly understood. Heme is taken up as 
an intact metalloporphyrin[34,35] and comparative studies 
show that a molecule with a similar size, structure, and 
ionic charge to heme (namely Vitamin B12) was not 
absorbed by enterocytes because of  the absence of  
specific carriers on the apical membrane, whereas in 
identical conditions up to 19% of  an equivalent dose of  
heme was absorbed[36]. This strongly suggests that heme 
uptake is a facilitated process, as opposed to simple 
diffusion.

Currently, there are two prevailing hypotheses 
explaining the mechanisms of  this process; firstly, a 
long-standing hypothesis that heme is taken up by 
receptor mediated endocytosis; secondly, the recent 
discovery of  a heme transporter that may have the 
capability of  transferring heme from the small intestinal 
lumen directly into the cytoplasm. These pathways are 
summarised in Figure 1 and discussed in detail below.

HEME RECEPTOR MEDIATED 
ENDOCYTOSIS
The hypothesis of  heme uptake by receptor mediated 
endocytosis originated in 1979 from the discovery of  a 
heme binding protein on the microvillus membrane of  
the upper small intestine of  both pigs and humans[37]. 
Characterisation of  this binding protein demonstrated 
that it was not albumin, hemopexin, glutathione-S-
transferase, or aggregated heme[38]. The dissociation 
constant for the binder/heme complex was found to 
be 10-6 to 10-7 mol/L using radioactive ligands, and  
10-9 mol/L in spectral studies[39]. This high affinity binding, 
along with loss of  binding capacity with trypsin digestion, 
indicated the presence of  a protein receptor for heme on 
the microvillus membrane. Heme uptake by rat duodenal 
enterocytes increases with iron deficiency and correlates 
with a modest but statistically significant increase in 
heme binding capacity[36], suggesting that the quantity of  

Intestinal lumen

HO-1

HO-2

D
M

T1

Nucleus

D
M

T1

D
cy

tB

H
ep

h

FP
N

1

FL
VC

R

Endoplasmic reticulum

Bloodstream

Heme

Ferrous iron

Ferric iron Diferric transferrin

Apo transferrin

Heme receptor
Hemopexin

Biliverdin

Figure 1  Summary diagram of established and putative iron absorption 
pathways in the intestinal enterocyte. Non-heme iron: All non-heme iron 
is ultimately taken up from the lumen by DMT1 situated on the microvillus 
membrane, before joining the labile iron pool in the cytoplasm. Ferric iron 
must first be reduced to the ferrous form by DcytB before uptake. Ferrous 
iron in the labile iron pool is then transferred to the circulation by FPN1, 
which requires hephaestin for oxidation to the ferric form in order to bind to 
circulating apotransferrin. Heme iron: Heme iron is hypothesized to be taken 
up by receptor mediated endocytosis. Internalised heme is degraded by HO-2 
inside the vesicles, releasing non-heme iron and generating biliverdin. The 
non-heme iron is then transported to the cytoplasm by DMT1. Heme iron may 
also be taken up by PCFT/HCP1 directly into the cytoplasm. Intact heme may 
be transported across the basolateral membrane by FLVCR where it binds 
circulating hemopexin. Alternatively, heme may be catabolized to non-heme iron 
and biliverdin by HO-1 located on the endoplasmic reticulum. Any iron released 
from heme inside the enterocyte, regardless of the mode of uptake, ultimately 
joins the labile iron pool and is transferred to the bloodstream by FPN1 in the 
same fashion as non-heme iron.
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receptor present on the microvillus membrane contributes 
to regulation of  heme iron absorption.

A heme binding protein has also been characterised on 
the membrane of  erythroleukemia cells with very similar 
properties to that observed in the duodenum[40]. These 
cell types are capable of  internalising heme intact, as 
evidenced by the binding and uptake of  heme-embedded 
latex beads[41,42]. Heme uptake is also temperature[43] and 
ATP[44] dependent, and these combined data provide 
strong evidence for the ability of  cells to actively take up 
heme by endocytosis. 

Morphological evidence corroborates this assess-
ment. In two similar studies, heme or hemoglobin were 
administered into closed duodenal loops of  rats or dogs, 
and duodenal tissue samples collected over a time period 
of  up to 3 h thereafter[45,46]. Heme in the duodenal 
mucosa was reacted with DAB to produce an electron 
dense precipitate that was then observed by electron 
microscopy. Both studies reported the appearance of  
heme initially on the microvillus membrane, then within 
tubulovesicular structures in the apical cytoplasm, 
before collecting in vesicles identified as secondary 
lysosomes[46]. Heme disappeared from within these 
vesicles approximately 2-3 h after the initial dose. There 
was no heme observed in the basal cytoplasm or the 
extracellular space, consistent with heme uptake at the 
microvillus membrane by an endocytotic pathway and its 
catabolism within the apical cytoplasm of  the cell.

One important criticism of  the receptor mediated 
endocytosis hypothesis is that it assumes iron released 
from heme is transported out of  the internalised vesicles 
in order to join the labile iron pool. Currently, no such 
transport process has been identified. However, it is 
possible that divalent metal transporter 1 (DMT1) may 
fulfil this role in a manner analogous to its role in the 
transferrin receptor cycle[47-50] (see ‘A Possible Role for 
DMT1?’ below).

HEME TRANSPORTERS
In recent years, two mammalian heme transporters 
have been discovered, namely PCFT/HCP1[51,52] and 
FLVCR[53]. These appear to function independently 
of  the putative heme receptor and receptor mediated 
endocytosis in that they act as a direct transfer process 
across plasma membranes. At this early stage the 
physiological relevance of  these transporters to intestinal 
heme iron absorption is unclear, but the information 
that is available will be considered below.

The PCFT/HCP1 cDNA was initially isolated by 
the subtractive suppressive hybridisation of  ileal cDNA 
from duodenal cDNA in hypotransferrinaemic mice[51]. 
Heme transport capability by PCFT/HCP1 has been 
demonstrated in vitro, with expression in Xenopus 
oocytes and the HeLa cell line resulting in a 2-fold to 
3-fold increase in heme uptake. Heme uptake by HeLa 
cells expressing PCFT/HCP1 was greatly reduced at 
4℃ compared to 37℃ which was interpreted as energy 
dependence, although without the specific use of  
metabolic inhibitors to distinguish between temperature 

dependent kinetic properties of  the transporter and a 
requirement for metabolic fuels, this interpretation is 
ambiguous.

Uptake of  radio-labelled heme by transfected CHO 
cells was competitive with the uptake of  unlabelled 
heme, zinc protoporphyrin, and protoporphyrin 
suggesting that transport is selective for the porphyrin 
ring, although no non-porphyrin competitors appear 
to have been assessed. However, the addition of  
PCFT/HCP1 siRNA to CHO cells did not reduce the 
substantial basal heme uptake of  control cells[51]. Clearly, 
CHO cells have significant pre-existing heme acquisition 
pathways that are not related to PCFT/HCP1. In vivo, 
heme uptake from closed duodenal loops in normal and 
hypoxic mice was modestly reduced (30%-40%) by the 
addition of  a PCFT/HCP1 antibody but no decrease 
was seen with pre-immune serum. PCFT/HCP1 gene 
expression was significantly increased by hypoxia but 
was not significantly altered by iron deficiency which 
appears contrary to the upregulation of  heme binding 
and uptake shown in other studies[36], although regulation 
of  heme transport may instead be regulated by the sub-
cellular location of  PCFT/HCP1.

PCFT/HCP1 has been independently characterised 
as a folate/proton symporter and appears to play a key 
role in intestinal folate absorption[52,54]. This is evidenced 
by a 55%-80% reduction in pH dependent folate uptake 
in the enterocyte-like CaCo-2 cell line following RNA 
interference for PCFT/HCP1. Additionally, human 
patients diagnosed with hereditary folate malabsorption 
carry a point mutation to PCFT/HCP1 that results 
in the formation of  a non-functional splice variant. 
Interestingly, the folate transport capabilities of  PCFT/
HCP1 are at least an order of  magnitude higher than 
that observed for heme, suggesting that folate may be 
the more physiologically relevant target of  this transport 
protein. It is clear that the generation of  a knockout 
model for PCFT/HCP1 is required to assess the 
importance of  this heme/folate transporter in vivo.

FLVCR was initially characterised as the cell surface 
protein receptor for feline leukaemia virus subgroup C 
which causes severe anaemia in infected cats[55,56]. It has 
since been demonstrated that loss of  FLVCR function 
in erythropoietic cells is associated with impairment 
of  erythroid maturation and increased apoptosis, 
and that heme content of  erythropoietic primary 
cultures is dependent upon FLVCR expression[53]. 
Since cells expressing FLVCR are capable of  actively 
exporting heme, it was concluded that FLVCR acts as 
an overflow valve for excess manufactured heme that 
would otherwise result in cellular toxicity by producing 
oxidative stress before it can bind to globins for 
hemoglobin production.

With regard to intestinal heme iron absorption, no 
studies have yet directly examined FLVCR function  
in vivo, though the polarized intestinal cell line CaCo-2 
does express the protein[53]. It has also been demonstrated 
that CaCo-2 cells are capable of  heme transport in both 
directions, equivalent to both absorption and secretion  
in vivo, and that the secretory pathway is significantly 
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more active under control conditions[57]. Presumably, 
FLVCR is acting on the basolateral membrane to 
regulate heme content when heme synthesis rates are at 
their peak just prior to differentiation, and the potential 
for cell damage from oxidative stress is greatest if  HO-1 
activity is impaired[58-60] (see ‘Heme Oxygenase’ below). 
In this case it is highly unlikely that FLVCR is involved 
with heme uptake at the apical membrane. Studies of  
FLVCR in vivo are required to confirm this assessment.

HEME CATABOLISM IN THE 
ENTEROCYTE
It was initially hypothesized that following uptake, 
heme passed directly into the portal circulation where it 
bound hemopexin and was most likely sequestered by 
hepatocytes using the hemopexin receptor and degraded, 
based on early observations in guinea pigs[23]. However, 
this theory is questionable for other species, with strong 
evidence that heme is catabolized within the enterocyte 
in most omnivorous and carnivorous mammals. This 
is best demonstrated by experiments in which dogs 
were administered an intragastric dose of  radio-labelled 
hemoglobin, and 90% of  the recoverable radioactivity 
in samples of  portal blood over a period of  3 h was 
present as non-heme iron[35]. Similar observations have 
been made in human[14,34] and rat[17] experiments.

The presence of  a heme splitting substance in 
the mucosa was first demonstrated in 1968[61]. The 
high molecular weight of  this substance (MW about 
64 kDa) and the kinetic properties of  the reaction 
indicated that the heme splitting substance was an 
enzyme. Initial studies suggested that xanthine oxidase 
could play a role by generating hydrogen peroxide to 
chemically degrade heme, resulting in iron release and 
a non-specific mixture of  four bilirubin isomers[62-64]. 
However, this hypothesis was problematic since in vivo 
heme degradation typically results in a single dominant 
isomer, namely bilirubin Ⅸ-α[65,66].

Further research generated a strong case that the 
heme splitting substance in the mucosa was microsomal 
heme oxygenase[24]. This is based on the fact that heme 
oxygenase almost exclusively generates the expected 
bilirubin Ⅸ-α isomer and that heme oxygenase activity 
is highest in the location where heme iron absorption is 
highest, the duodenum[17,23,37]. In addition, iron deficiency 
results in an increase in both heme iron absorption and 
mucosal heme oxygenase activity, whereas xanthine 
oxidase activity decreases dramatically.

Based on morphological studies, it appears that heme 
is degraded inside internalised vesicles within 2-3 h of  
heme uptake by receptor mediated endocytosis[45,46]. Acid 
ferrocyanide staining, which exclusively detects non-
heme iron, indicates that iron is released from heme 
inside the vesicle, before transport to the labile iron 
pool by unknown mechanisms (see ‘A Possible Role for 
DMT1?’ below). The iron is then thought to undergo 
identical transport through the enterocyte and into the 
circulation as for internalised non-heme iron.

A study tracking the absorption of  59Fe-hemoglobin 
in closed duodenal loops has suggested that heme 
degradation is the rate limiting step in heme iron 
absorption, as opposed to hemoglobin degradation, 
heme uptake or iron transfer to the circulation[67]. This 
is based on increasing doses of  hemoglobin resulting 
in the accumulation of  59Fe-heme, but not 59Fe, within 
the mucosa. However, since this study utilized whole-
mucosal homogenates to assess relative heme and 
non-heme iron content there may not be sufficient 
sensitivity to detect the possible accumulation of  non-
heme iron inside endocytotic vesicles which would 
result in decreased heme oxygenase activity by end-
product inhibition[61]. Nonetheless, the hypothesis that 
heme oxygenase is limiting for heme iron absorption 
is consistent with the decrease in absorption that is 
observed with inhibitors of  heme oxygenase activity[68].

HEME OXYGENASE
Heme oxygenase is a microsomal enzyme (corresponding 
to the endoplasmic reticulum in vivo) that catalyses the 
mixed function oxidation of  heme using cytochrome 
P-450, NADPH and molecular oxygen producing CO, 
iron and biliverdin Ⅸ-α which is rapidly reduced to 
bilirubin Ⅸ-α[69-71]. There are two well characterised 
isoforms of  heme oxygenase, referred to as HO-1 
and HO-2[72,73], and these isoforms are products of  
different genes[74,75]. A third isoform has been described 
as HO-3[76], but this appears to be a brain-specific 
pseudogene derived from HO-2[77].

HO-1 expression is induced by numerous factors 
including oxidative stress, inflammation, cytokines, nitric 
oxide, prostaglandins, an elevated level of  substrate, 
iron deficiency, metals including Cd, Co, Cr, Cu, Fe, 
Hg, Ni, Pd, Pt, Sn and Zn, hyperoxia, and exposure 
to UV light (for review see[78]). HO-1 is also induced 
by hyperthermia, leading to the use of  the alternate 
name heat shock protein 32[79]. Considering these 
combined factors, induction of  HO-1 expression 
appears to be related to preventing cell damage under 
many circumstances by reducing levels of  the pro-
oxidant heme and generating the antioxidant bilirubin[80]. 
This assessment is confirmed by genetic knockout of  
HO-1 in mice[81], and humans with impaired HO-1 
expression[82-84], which present with reduced defence 
against external stresses.

In contrast, HO-2 expression is not inducible[79,85]. 
HO-2 is primarily found in the brain[86] and testis[85] and 
appears to function as a sensor for O2, CO, and NO[87-90]. 
In the intestine these functions are relevant in the 
interstitial cells of  Cajal, where HO-2 regulates levels of  
CO, which in turn affects potassium currents and resting 
membrane potential of  intestinal smooth muscle, and 
thus intestinal motility (for review see[78]).

In relation to the catabolism of  dietary heme, most 
work regarding heme oxygenase was performed before 
the different isoforms were known. As such, the specific 
isoform involved with heme iron absorption has not 
been established with certainty. However, it has long 
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been assumed that HO-1 is the key player[91] based on 
corroboration of  physiological evidence; specifically, 
HO-1 and heme iron absorption both upregulate in iron 
deficiency[92]. Further, HO-1 activity[24] and heme iron 
absorption[17,23,37] are both highest in the duodenum, 
which is also the site of  highest expression of  the 
putative heme receptor and PCFT/HCP1[37,51,52].

However, HO-1 is generally considered to be a 
membrane bound protein associated with microsomes[69] 
with a cytoplasmic catalytic site[93]. Thus under normal 
circumstances HO-1 would have no topological 
association with the vesicles that are thought to contain 
internalised heme, namely endosomes and/or lysosomes. 
As such, the possibility that HO-2 plays a role in 
heme iron absorption should be strongly considered, 
since both HO-1 and HO-2 generate the appropriate 
isoform of  bilirubin[72]. Further, the participation of  a 
non-inducible enzyme could explain why the ability to 
upregulate heme iron absorption is limited compared to 
non-heme iron[14,15,21-25], and heme splitting is speculated 
to be rate limiting[67].

In a recent study our laboratory examined the sub-
cellular location of  HO-1 and HO-2 in enterocytes 
in relation to endocytotic markers during the course 
of  heme iron absorption[94]. We observed that HO-1 
was distributed evenly throughout the cytoplasm of  
enterocytes and did not co-localise with endocytotic 
markers. In contrast, HO-2 presented as a dense band 
in the apical cytoplasm that co-localised extensively with 
endosomes. This strongly suggests that HO-2 could be 
exposed to all heme taken up by the enterocytes, either 
by way of  receptor mediated endocytosis or by transport 
directly into the cytoplasm. Clearly, the role of  HO-2 in 
heme iron absorption needs to be investigated further 
using more direct methods, particularly using knockout 
models for HO-1 and HO-2.

A POSSIBLE ROLE FOR DMT1?
The uptake of  non-heme iron by the enterocytes 
occurs through the function of  DMT1[95,96]. DMT1 is 
also capable of  transporting other divalent cations[96-98] 
and is responsible for cellular iron acquisition during 
the transferrin receptor cycle[47-50]. DMT1 functions as 
a Fe(Ⅱ)/proton symporter[96] and is highly expressed 
in the duodenum during iron deficiency[99]. This is 
consistent with the duodenum being the principal site 
of  iron absorption[100] and the least alkaline section of  
the small intestine due to the close proximity to acidic 
gastric secretions. Ultimately, Fe(Ⅲ) is also transported 
by DMT1 after reduction to Fe(Ⅱ) by DcytB[101], 
although the physiological significance of  this pathway is 
the subject of  continued debate[102,103].

The physiological relevance of  DMT1 in iron 
metabolism, including iron absorption, is confirmed 
in the Belgrade (b) rat and mk mouse which both 
exhibit a microcytic, hypochromic anaemia due to a 
G185R mutation to DMT1, resulting in a dramatic 
decrease in DMT1 function[47,104-106]. Considering b/b 
rats, the primary symptoms are mostly attributable to 

decreased iron uptake by reticulocytes[107,108] and earlier 
erythroid precursors[109]. Further research has shown that 
endosomal iron transport during the transferrin receptor 
cycle is significantly reduced in b/b rats[108,110-112], and 
these findings are entirely consistent with the functional 
role[47,105] and sub-cellular location[48,50] of  DMT1 in 
relation to the transferrin receptor cycle.

In addition to the striking effects on reticulocyte 
development, b/b rats also exhibit a s ignif icant 
decrease in the quantity of  megakaryocytes in their 
bone marrow[113], and their overall hematological status 
is similar to that observed in a rare preleukaemic 
syndrome[114]. The subsequent high clearance rates 
of  prematurely senescent erythrocytes in turn causes 
splenomegaly. Aside from hematological factors, b/b 
rats exhibit a universal reduction in iron uptake by body 
tissues[115], including the brain[116]. The extent to which 
this affects overall health and development, independent 
of  hematological parameters, is not currently known.

The final important aspect of  defective iron 
metabolism by Belgrade rats is their decreased dietary 
non-heme iron absorption at the stage of  uptake into the 
enterocytes[115,117]. This is consistent with the location[99] 
and function[95] of  DMT1 on the microvillus membrane 
of  enterocytes. Decreased iron absorption can be viewed 
as the ‘second hit’ for iron deficiency anaemia in b/b 
rats. However, the residual activity of  mutated DMT1 
means that appropriate dietary iron supplementation and 
iron dextran injections can improve general health and 
survival rates without returning hematological status to 
normal[118].

Over the past few years our laboratory has been 
using the Belgrade rat to examine whether DMT1 is 
the transporter required to utilise the iron released 
from heme during receptor mediated endocytosis. This 
hypothesis suggests that the function of  DMT1 is 
directly comparable to its role in the transferrin receptor 
cycle[47-50] and that b/b rats would exhibit decreased heme 
iron absorption compared with +/b and control rats due 
to a reduced ability to transport iron out of  internalised 
vesicles.

THE BELGRADE RAT AND HEME IRON 
ABSORPTION
In preliminary experiments, b/b rats exhibited a 
statistically significant decrease in hemin chloride, 
hemoglobin, and fer rous iron absorption when 
compared with + /b and Wistar (Wi) rats, as assessed 
by whole body retention of  an oral gavage of  radio-
labelled iron. This strongly suggested that there was a 
requirement for DMT1 in heme iron absorption (see 
Expt 1 in Figure 2A). However, it was unclear whether 
this effect was due to a reduction of  DMT1 function 
across the membranes of  endocytotic vesicles, or was 
secondary to pathological effects of  the iron deficiency 
and anaemia experienced by b/b rats. A general defect in 
the mucosal biology of  b/b rats may have consequences 
for other proteins and biosynthetic processes including 
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reduced expression of  the heme receptor and/or heme 
transporters, reduced capacity to internalise a heme/
receptor complex and reduced heme oxygenase activity 
-all of  which would affect heme iron absorption.

It was observed that in addition to reduced heme 
iron absorption both b/b and + /b rats also exhibited 
significantly lower activity of  sucrase and lactase[119] 
when compared with Wistar rats (see Expt 1 in  
Figure 2B, C). Previous studies examining the Belgrade 
strain have only observed phenotypic differences in 
b/b rats, whereas + /b rats appear identical to control 
laboratory rat strains such as Wistar and Sprague-Dawley 
for all measured parameters[115,117,120,121]. This raised the 
strong possibility that there are as yet uncharacterized 
strain differences between Belgrade and other laboratory 

rat strains that are unrelated to reticulocyte iron uptake 
and non-heme iron absorption.

Experiments assessing heme iron absorption and 
the expression of  sucrase and lactase were repeated 
shortly after with similar results; b/b rats again exhibited 
significantly decreased heme iron absorption compared 
to Wi, but so did +/b rats contrasting with the previous 
experiment. Further, both b/b and + /b rats had 
significantly decreased sucrase and lactase activities 
compared to Wi controls, making it difficult to correlate 
DMT1 function with heme iron absorption (see Expt 
2 in Figure 2A-C). At this time it was decided to use 
a more appropriate control than Wi rats in order to 
account for any strain differences, thus we established 
a breeding program that would generate b/b, +/b and 
+/+ Belgrade rats. We concurrently began genotyping 
all experimental rats by sequencing reverse transcribed 
DMT1 mRNA; in all cases the measured genotype 
matched the observed phenotype.

The exper iment inc luding +/+  rats y ie lded 
unexpected and conflicting results. b/b rats demonstrated 
a dramatic recovery of  both heme iron absorption and 
sucrase and lactase activity, such that they were directly 
equivalent to + /b and +/+ rats, and approximately 
comparable to Wi controls from previous experiments 
(see Expt 3 in Figure 2A-2C). Subsequent experiments 
were able to replicate this recovery (data not shown). The 
dramatic phenotypic change in the Belgrade rat strain 
could not be attributable to any gross developmental 
characteristics including body mass, spleen mass and 
mucosa mass, nor any change in the measures of  iron 
deficiency and anaemia. Additionally, we were unable to 
find evidence for the contraction of  a chronic infection, 
significant changes in other external factors or any 
variation in our well-controlled measurement of  heme 
iron absorption and enzyme activity. 

Thus the colony of  Belgrade rats available to us has 
been unable to provide any conclusive evidence for a 
role of  DMT1 in heme iron absorption. Similarly, we 
were not able to observe any relocation of  DMT1 to 
endosomes or lysosomes during the course of  heme 
iron absorption using confocal microscopy[94]. However, 
bearing in mind that there are still large deficiencies 
in the understanding of  heme iron absorption, we 
feel that a potential role for DMT1 should still be 
seriously considered in the future. This will require more 
reliable animal models than the Belgrade rat, possibly 
including the mk mouse or the Slc11a2int/int mouse which 
exhibits selective knockout of  intestinal DMT1[95]. 
Further, it would be highly desirable to use more 
sensitive techniques than confocal microscopy (such 
as immunoelectron microscopy) to determine whether 
DMT1 is internalised to endosomes or lysosomes during 
heme iron absorption.

CONCLUSION
Since the discovery of  DMT1 in 1997 iron metabolism 
has experienced a renaissance, and the subsequent 
discovery of  ferroportin and the humoral regulator 
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Figure 2  Results from Belgrade rats for heme iron absorption (A), sucrase 
activity (B) and lactase activity (C) over a series of experiments. Figures in 
brackets indicate n values, and data is mean ± SE. Groups marked with ‘a’ or 
‘b’ are significantly different from the control group (1-way ANOVA aP < 0.05 and 
bP < 0.005, respectively). In early experiments 1 and 2, b/b and + /b rats had 
significantly lower heme iron absorption than Wi controls, initially suggesting 
a possible role for DMT1. However, sucrase and lactase activity was also 
lower in b/b and +/b rats indicating a more general defect in the mucosa of the 
Belgrade strain. In experiment 3, + /+  rats were used as an improved control 
to account for strain differences between Wi and Belgrade strains, but in this 
(and subsequent) experiments there was an apparent recovery in both heme 
iron absorption as well as sucrase and lactase activities. We could find no 
explanation for this dramatic phenotypic change, making it difficult to correlate 
DMT1 function with heme iron absorption.
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hepcidin have provided a very solid and complete theory 
for the mechanisms of  non-heme iron absorption. The 
absorption of  heme iron has yet to undergo a similar 
revolution, and considerably more work needs to be 
done in the future for a complete understanding of  the 
absorption of  this critical micronutrient. Primarily, the 
physiological relevance of  recently discovered heme 
transporters will need to be confirmed in vivo, along with 
continued searching for additional heme transporters 
and receptors. Concurrent efforts to explicitly identify 
the enzyme responsible for heme catabolism, as well as 
the sub-cellular location of  this enzyme’s catalytic site, 
will help ascertain whether heme is taken up by receptor 
mediated endocytosis or is transported directly into the 
cytoplasm of  enterocytes. Finally, the potential role of  
iron transporters such as DMT1 in heme iron absorption 
will need to be investigated further; particularly if  
receptor mediated endocytosis proves to be an important 
heme uptake pathway.
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