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Abstract
Motivation—Sequences produced by automated Sanger sequencing machines frequently contain
fragments of the cloning vector on their ends. Software tools currently available for identifying and
removing the vector sequence require knowledge of the vector sequence, specific splice sites and
any adapter sequences used in the experiment—information often omitted from public databases.
Furthermore, the clipping coordinates themselves are missing or incorrectly reported. As an example,
within the ~1.24 billion shotgun sequences deposited in the NCBI Trace Archive, as many as ~735
million (~60%) lack vector clipping information. Correct clipping information is essential to
scientists attempting to validate, improve and even finish the increasingly large number of genomes
released at a ‘draft’ quality level.

Results—We present here Figaro, a novel software tool for identifying and removing the vector
from raw sequence data without prior knowledge of the vector sequence. The vector sequence is
automatically inferred by analyzing the frequency of occurrence of short oligo-nucleotides using
Poisson statistics. We show that Figaro achieves 99.98% sensitivity when tested on ~1.5 million
shotgun reads from Drosophila pseudoobscura. We further explore the impact of accurate vector
trimming on the quality of whole-genome assemblies by re-assembling two bacterial genomes from
shotgun sequences deposited in the Trace Archive. Designed as a module in large computational
pipelines, Figaro is fast, lightweight and flexible.

Availability—Figaro is released under an open-source license through the AMOS package
(http://amos.sourceforge.net/Figaro).

1 INTRODUCTION
Even as new sequencing technologies become increasingly available (Margulies et al., 2005),
Sanger sequencing remains the most widely used technique for decoding the DNA of organisms
(Sanger et al., 1977). High-throughput Sanger sequencing begins by cloning a DNA fragment
into a vector (usually a plasmid) that is then transfected into Escherichia coli in order to amplify
the original DNA fragment. Short adapter sequences are often attached to the ends of the
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fragment to improve the efficiency of the cloning process (Andersson et al., 1996). The
sequencing reaction is usually performed using universal sequencing primers that anneal within
the vector in the vicinity of the fragment insertion site (splice site). As a result of this process
(highlighted in Fig. 1), each sequence contains a small section of the vector, as well as the
adapters used during cloning, in addition to the original DNA fragment. For the purpose of this
article, we will refer to any such artifacts as vector sequence. These sequences must be flagged
prior to further analysis of the data, in a process called vector trimming or vector clipping.

Several software tools are available for vector removal: Lucy (Chou and Holmes, 2001),
Crossmatch (www.phrap.org/phredphrapconsed.html) and VecScreen
(www.ncbi.nlm.nih.gov/VecScreen). These programs compare each read to the sequence of
the cloning vector, then flag sections of the read that have strong similarity to the vector
(Crossmatch replaces vector sequence with Xs, Lucy provides a list of clipping coordinates in
the fasta header and VecScreen provides a BLAST-like output). The alignments are performed
with relaxed parameters in order to account for the higher error rates at the beginning of reads
(see Fig. 2). Furthermore this approach requires three sets of information: (i) the sequence of
the cloning vector; (ii) the splice site used for sequencing; and (iii) the sequence of the cloning
adapters (if used—information that is often lost when the sequences are deposited in public
databases). Note that the NCBI Trace Archive provides a mechanism for recording the location
within the read where the vector ends (vector clip point), however this information is often
missing or incorrect.

As an example, at the beginning of September, 2007, approximately 60% (735 million out of
1.24 billion) of all shotgun reads from the NCBI Trace Archive had either no vector clip
information, or a vector clip point of 0 or 1, indicating the vector clipping information was not
provided (clip_vector_left=0) or was arbitrarily set to the beginning of the read
(clip_vector_left=1). Even when a vector coordinate is provided it is often incorrect, as
described below.

We examined the shotgun reads used to assemble the Xanthomonas oryzae pv. oryzae PX099A
genome, a dataset for which both vector and quality clipping coordinates had been submitted
to the Trace Archive by the sequencing center. We considered all reads whose vector clip
coordinate occurred at least 8 bp inside the high-quality region, then tallied the final 8 bp (8mer)
of the supposed vector sequence. These 8mers should represent the end of the vector sequence;
therefore, they should be virtually identical across all reads with the exception of differences
caused by sequencing errors. We examined 7997 reads originating from a single sequencing
library (library id 1041054961988). Furthermore, we separately examined reads sequenced
with the ‘Forward’ and ‘Reverse’ trace direction in order to avoid any variability due to
differences between the vector sequences flanking the splice site. The results, summarized in
Table 1, highlight a much higher variability in the set of 8mers than can be explained by
sequencing error alone, suggesting the vector clip points are incorrectly assigned.

In this article we present an algorithm for detecting and removing the vector sequence from
the 5′ end of reads without prior knowledge of the vector sequences used. This algorithm can,
therefore, be used to correctly identify the vector clipping points for sequences obtained from
public databases. The code was implemented as a single streamlined module, named Figaro,
which can be easily integrated into a high-throughput computational pipeline. The code is
distributed under an open-source license through the AMOS package
(http://amos.sourceforge.net).

Below we provide a detailed description of the trimming algorithm, and highlight its
performance on three datasets: ~1.5 million Drosophila pseudoobscura reads; and in the de
novo assembly of two bacterial genomes.
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2 METHODS
For a set of shotgun reads, Figaro infers the vector sequence from the frequency of occurrence
of kmers (DNA segments of length k). Under the assumption that the vector DNA flanking the
inserted sequences is the same for all the sequences in a dataset, the most frequent kmers in
the data likely represent vector DNA. This assumption is generally true for shotgun sequencing
data, with the following exceptions: (i) different sequencing libraries may use different vectors;
(ii) the vector sequences upstream and downstream from the splice site are often different
(hence ‘Forward’ and ‘Reverse’ reads are prefixed by different vector DNA); and (iii) when
cloning adapters are used, two different strings, corresponding to distinct adapter sequence,
may prefix the reads even from a single library and orientation. To improve accuracy, the reads
are partitioned by library and sequencing direction, if such information is available.

Figaro operates in two phases: (i) identification of frequent kmers likely to represent vector
DNA (called vectormers throughout the text); and (ii) estimation of the vector clip point for
every read, on the basis of the vectormers identified in step (i). These two components of the
algorithm are described in detail below.

2.1 Detection of vectormers
The vector sequence can be recognized by identifying kmers that are more frequent at the
beginning of reads than anywhere else. Intuitively, the beginning of reads represents the DNA
from the vector which is shared by the majority of reads in a dataset. The remaining section of
each read should be randomly sampled from the genome, leading to few commonalities
between distinct reads in the dataset.

A kmer frequency table is created which records the number of occurrences of each word of
length k within adjacent windows of length L over the first E bases of all reads (a kmer is
assigned to the window in which it starts, thus allowing us to count kmers that cross window
boundaries). We truncate all reads to a same length E in order to avoid artifacts due to the
increased error rates at the ends of reads. Given a maximum vector cut length, M, we declare
the safe zone of the reads to be the region from base M to E (Fig. 3). For each kmer Ki, if si is
the number of occurrences of Ki in the safe zone across all reads, then we define its arrival rate
αi to be:

Given αi, we model the number of occurrences of Ki as a Poisson process. Letting X be the
frequency of Ki in a window of length t, X follows a Poisson distribution with parameter
λ=tαi. Considering fj, the frequency of occurrence of Ki within the jth window of length L (Fig.
4), we can estimate the likelihood of observing at least fj occurrences of Ki in L base pairs given
αi. Mathematically,

where λ=Lαi. A kmer is declared to be a vectormer if P(X ≥ fj)<0.001 for a window within the
first M base pairs of a read. By definition, we expect that 0.001*M/L of all kmers are incorrectly
classified as vectormers. For example, assuming the average length of a read is 800 bp, four
false vectormers are expected within any read for M = 100 and L = 20.

White et al. Page 3

Bioinformatics. Author manuscript; available in PMC 2009 August 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In large datasets we observed that our algorithm produced many false positives due to statistical
noise and common sequencing errors. To correct for this phenomenon, we retain only the most
abundant vectormers, specifically, for a user-selected threshold T, we retain the T × 100 most
frequent vectormers. This simple heuristic significantly reduces overtrimming.

The implementation of Figaro uses k = 8 and L = 20. By default M = 100 and E = 500, but
these parameters may be modified by the user. A reasonable setting for the threshold T is
automatically computed by Figaro depending on the number of reads in the dataset, however
this value can also be controlled by the user.

2.2 Vector clip estimation
Once vectormers are computed, the algorithm first attempts to determine which vectormers
are most likely to represent the ends of the vector sequences. We call these vectormers
endmers. Assume a vectormer K has frequency of occurrence Q. If it is the true end of the
vector, all kmers directly to the right of this vectormer (kmers whose prefix is the (k − 1) suffix
of K) should have a frequency of roughly ¼ × Q (Fig. 5). The 1/4 parameter assumes equal
distribution of the A, C, T and G nucleotides in the genome. To account for the non-uniform
distribution of nucleotides, we first estimate the G/C content of the organism being sequenced
and adjust this threshold accordingly. Suppose the calculated G/C content is δ and the A/T
content is ε = 1 − δ. We declare a vectormer to be an endmer if the adjacent kmers ending in
G and C both have frequency <Q × (δ/2+0.1), and if the kmers ending in A and T both have
frequency <Q × (ε/2+0.1). Furthermore, to prevent many spurious endmer declarations when
a large number of vectormers are allowed, we only consider the 100 most frequent vectormers
as possible endmer candidates. Note that within these 100 vectormers, we only expect to find
a small number of endmers (ideally four, however, sequencing errors might lead to a few more).

Once endmers are computed, we trim every sequence using the following algorithm. The first
M base pairs of each sequence are examined right to left, using a 17 bp (10 adjacent 8mers)
moving window. We consider we have encountered the end of the vector, and set the clip point
accordingly, once we encounter a window containing seven or more vectormers that ends in
an endmer. To improve vector detection in the presence of sequencing errors, all kmers within
one substitution of an endmer are also labeled as endmers.

Frequent sequencing errors can cause our algorithm to miss the end of the vector sequence (no
window contains an endmer). To account for this situation, we simply select the rightmost
window containing seven or more vectormers. Within this window, we identify a rightmost
kmer whose distance from the end of the vector is known, then adjust the clip point accordingly.
Note, that a side effect of our vectormer detection algorithm is that we can construct a de Bruijn
graph (Pevzner et al., 2001) from the set of vectormers. Specifically, every vectormer
represents a node in this graph, and two nodes are connected if the corresponding vectormers
share a k − 1 substring (e.g. TAAAAAAA and AAAAAAAG are neighbors in this graph).
Within this graph we mark the location of the endmers, and label each node with its distance
(number of edges that need to be traversed) from the nearest endmer, i.e. its distance from the
end of the vector. This information is used, as described above, to correctly identify the end of
the vector even if an endmer cannot be detected. In the rare case where we cannot identify any
vectormer whose distance to the end of the vector is known we simply use the position of the
rightmost window with seven or more vectormers as the vector clip point. Note that the specific
parameters of this process were set heuristically to values that performed well in our
experiments. It is possible that in some cases they may need to be tuned for specific
characteristics of the data being analyzed. We clearly mark these parameters at the beginning
of the Figaro source code to allow their easy modification, as we have not yet identified a
suitable automated procedure for estimating these parameters.
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3 RESULTS
3.1 Vector trimming sensitivity and specificity

To create a test in which we know exactly where the true vector ends, we have generated a set
of artificial sequences based on shotgun reads from the Chlamydophila caviae GPIC genome
project (Read et al., 2003) containing variable length vector sequence on their ends. We
trimmed off the first 300 bases from each of the 19 633 reads, and attached a vector sequence
of random length ranging from 10 to 50 bp generated from the SmaI cloning site of the pUC18
vector (GenBank accession L09136). No vector sequence was attached to about 20% of the
reads. Finally, we introduced a varying amount of error within the vector sequence to assess
the performance of Figaro in the presence of sequencing errors. We ran Figaro on datasets with
error rates ranging from 0% to 5%, and then compared the sensitivity and specificity of the
results taking into account overtrimming and undertrimming. The same parameters were used
for all trials: T = 30,M = 60 and E = 500. For each value of the parameter m, we denote a true
positive (TPm) whenever the identified trimpoint is within m bases of the true trimpoint.
Similarly over-trimming or undertrimming by more than m bases is denoted as a false positive
(FPm) and false negative (FNm), respectively. Sensitivity and specificity are defined as follows:

Table 2 displays the sensitivity and specificity of Figaro for all trials. In the absence of errors,
Figaro finds the vector sequence with 100% sensitivity, and rarely overtrims. The sensitivity
and specificity remain high, even after introducing errors as high as 5% (higher than commonly
encountered in practice). The fact that Figaro overtrims even in the error-less test warrants
further discussion. We examined the reads that were overtrimmed by Figaro and found that
the majority of these contained little or no vector (90% of these reads contained <15 bp of
vector and 56% contained no vector). In such situations our algorithm is unable to identify a
clear vector boundary and resorts to an aggressive trimming strategy designed to avoid
undertrimming. In very few cases we found that overtrimming was due to significant homology
between a section of the read and the end of the cloning vector. Note that such situations also
cause overtrimming when using established, similarity-based, trimming software. Furthermore
Figaro is intentionally aggressive as a small amount of overtrimming is preferable to
undertrimming.

In order to evaluate our approach on real data, we used as a test set reads from the Drosophila
pseudoobscura genome sequencing project (Richards et al., 2005). We chose these particular
data because the sequencing adapters used in the project are known (Andersson et al., 1996).
Searching for the two adapter sequences (16 bp each) using nucmer (Delcher et al., 2002; Kurtz
et al., 2004), we collected 1 506 679 reads that matched at least 8 bp of an adapter with at least
90% identity. The 3′ end of the vector was required to match within the first 50 bp of the read,
and was labeled as the true vector trimpoint. We ran Figaro with T = 30 and M = 50 (maximum
vector cut length of 50 bp).

Figaro found the exact end of the vector sequences with 99.98% sensitivity and 99.15%
specificity (Table 3). Without prior knowledge of the vector sequence, Figaro was able to detect
and remove virtually all vector with negligible overtrimming. About 0.4% of the reads were
overtrimmed by more than 3 bp and 0.01% of the reads were undertrimmed by more than 3
bp. Furthermore, the running time for this test was just short of 11 min, indicating that Figaro
is efficient even for large eukaryotic projects.
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We also tested Figaro on a highly repetitive genome [maize, Zea mays (Rabinowicz and
Bennetzen, 2006)]. The results on 9738 sequences from this genome were similar to those
obtained for Drosophila—we achieved 100% SN1 and 99.6% SP1— indicating our method is
robust in the presence of repeats.

3.2 Improving assemblies with Figaro
To illustrate how Figaro can help to improve high-throughput genomic studies, we used the
Celera Assembler (Myers et al., 2000; Venter et al., 2001) to assemble the genomes of
Chlamydophila caviae GPIC (Read et al., 2003) and Coxiella burnetii RSA493 (Seshadri et
al., 2003), and compared these assemblies to available finished sequence. These genomes were
chosen because they have been recently finished, and full quality and vector trimming
information is available in the NCBI Trace Archive.

We constructed ‘Official’ assemblies using the provided vector and quality trimming points
explicitly; and ‘Base quality’ assemblies using only the quality trimming information.
Additional assemblies were created using the output of Figaro combined with the official
quality trimming information. Figaro was run separately for each sequencing library with T =
30, M = 200 and E = 500.

Table 4 reveals that not only were the Figaro assemblies far superior to the ‘Base quality’
assemblies, but they improved upon the ‘Official’ assemblies. The Figaro assemblies of
Chlamydophila caviae and Coxiella brunetii produced contigs with a higher N50 size covering
more of the reference sequence than their ‘Official’ counterparts. Furthermore, our trimming
did not result in any additional mis-assemblies. The C. brunetii ‘Base quality’ assembly is a
particularly good example of the need for accurate vector trimming. By using Figaro the
resulting assembly increased the N50 contig size nearly seven fold over the ‘Base quality’
assembly and by nearly 30% over the ‘Official’ assembly.

4 DISCUSSION
Figaro is only intended as a tool for identifying and removing vector from the 5′ end of reads.
Often, entire reads consist of vector sequence (e.g. no fragment was inserted in the vector),
while in short libraries vector sequence may also occur at the 3′ end of reads. In such situations,
our algorithm cannot detect the 3′ vector sequence due to the large variation in the amount of
vector included in each sequence (at the 5′ end the vector ends roughly at the same location in
every read), thus Figaro must be augmented with traditional vector trimming software. Further-
more, since Figaro does not trim based on quality values, our software should be used in
conjunction with a quality trimming program such as Lucy (Chou and Holmes, 2001). The
software distribution includes several scripts that automate this process for common types of
sequence data. We also provide tools for actually trimming or masking the vector sequence in
the dataset.

Note that many sequencing projects use more than one library, and therefore, more than one
vector. When the number of libraries is large, Figaro may incur difficulties due to the statistical
nature of its algorithm. To avoid such problems, the scripts provided in the Figaro package
automatically run our code on each library separately when library information is provided
(e.g NCBI Trace Archive XML file).

In addition, the algorithms implemented in Figaro implicitly assume the randomness of a
typical shotgun process. Therefore, Figaro cannot be used for targeted sequencing experiments
where a same gene is sequenced across multiple samples. Also, in EST sequencing projects,
the use of Figaro may result in the incorrect removal of the polyA tail.
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The various parameters controlling the execution of our code are automatically set to
reasonable default values. These values can also be controlled by the users if the default values
are inappropriate for the data being processed. For example, the parameter E, marking the end
of the ‘good quality’ section of a read, is usually set to 500, however its value should be
increased or decreased depending on the average read length being analyzed. Similarly, our
code performs best if the parameter M (the window within which Figaro searches for the vector
sequence) is set to a value close to the expected length of the vector. This parameter should,
therefore, be adjusted if additional information is available regarding the distance of the
sequencing primers from the cloning site. Note, however, that M should be set conservatively
(greater than the expected length of the vector) in order to avoid undertrimming.

Raw shotgun sequences are placed in the NCBI Trace Archive at an ever increasing rate, rapidly
outpacing the availability of current assemblies for many genomes. Constructing independent
assemblies from these data is complicated by the often incomplete or incorrect vector trimming
information reported in the public databases. The program described in this article, Figaro,
provides scientists with the means to automatically detect and remove the vector sequence from
shotgun reads without prior knowledge about the sequencing protocol, thereby enabling the
large-scale re-assembly of public data. Furthermore, even if the vector sequence is known,
Figaro provides an efficient and effective alternative to commonly used vector removal
programs.
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Fig. 1.
DNA from a sample (black) is cloned into a small circular piece of DNA called a vector (light
gray). Short adapters (white) are used to improve efficiency of cloning the sample DNA. The
molecule is then transfected into E. coli, amplified, and then sequenced from both ends starting
from priming sites inside the vector.
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Fig. 2.
Raw output from sequencing machines contains poor quality sequence on the ends as well as
vector and adapter sequence, in addition to the DNA being sequenced.
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Fig. 3.
Within the safe zone of all reads, we consider the number of occurrences of each kmer Ki, and
calculate its average arrival rate. The beginning of the read is separated into bins of length L
and the frequency of each kmer within each bin is recorded.
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Fig. 4.
Frequency distribution for kmer Ki across first M bases of all reads. High frequency counts at
the beginning of reads indicate that Ki is a likely vectormer.
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Fig. 5.
A conceptual example of identifying endmers (i.e. a vectormer that is likely to be the end of
the vector sequence.) Note that the kmer GTCAAGCT has a frequency of Q (black dot).
Frequencies of adjacent kmers ending in A, C, G and T (represented in different shades of gray)
are significantly lower than Q.
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Table 1

Frequency of 8mers extracted upstream from the annotated vector clip point in shotgun reads from Xanthomonas
oryzae pv. oryzae PX099A

Trace direction Forward Reverse

Number of reads 3687 4310
Four most frequent
  8mers and frequency

GCGCAGCG 40 GCGCAGCG 46

GCCGCAGC 29 GTGCTGGA 42
GATCCATT 29 GGCGATCG 37
GTGCTGGA 26 TGGCCGAT 35

Number of distinct
  8mers

1679 (45.5%) 1858 (43.1%)

We only considered reads from the library where the 5′ vector clip point was at least 8 bp to the right of the 5′ quality clip point. The reads were further
binned by sequencing direction. The four most frequent 8mers are shown together with their frequency. The high level of variability indicates errors in
the reported clipping coordinates.
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Table 4

Assembly results using Figaro on two microbial genom

Assembly
Run

Number
of contigs

Contig
N50 (bp)

% coverage Number
of errors
in contigs

Chlamydophila caviae GPIC
Base quality 252 946693.0 0
Official 209 11 73195.0 1
T = 30 203 13 04496.1 1
Coxiella brunetii RSA493
Base quality 1535 123277.9 0
Official 719 671394.8 0
T = 30 643 811895.6 0

The ‘Official’ assemblies used the quality and vector trims provided with the read sets. The ‘Base quality’ assemblies only used the quality trims provided.
Assemblies were performed after trimming with Figaro using T = 30, M = 200 and E = 500. Assemblies created using Figaro improve upon their ‘Official’
counterparts by increasing overall contig size without introducing more errors or losing coverage. The ‘coverage’ column denotes the percent of finished
sequence covered by assembled contigs; note assembly errors are not accounted for, i.e. partial contig matches are counted toward the coverage. The
ContigN50 column denotes that half the bases in the assembly are contained in contigs of the given length or greater.
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