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Abstract
Proteins of the Hedgehog, Wnt and Epidermal Growth Factor Receptor (EGFR) ligand families are
secreted signals that induce concentration-dependent responses in surrounding cells. Although these
proteins must diffuse through the aqueous extracellular environment, recent work has shown that
hydrophobic lipid modifications are essential for their functions. All three classes of ligands are
palmitoylated in the secretory pathway by related enzymes, and Hedgehog also carries a C-terminal
cholesterol modification as a result of its autocatalytic cleavage. Palmitoylation is required for
Wingless secretion and contributes to the signaling activity of Hedgehog and Wnt3a, but is not
required for secretion or receptor activation by the EGFR ligand Spitz. While lipid modifications
enhance the long-range activity of Sonic hedgehog, they restrict the range and increase the local
concentration of Spitz. We discuss the diverse functions and the possible extent of palmitoylation of
secreted ligands.
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Secreted ligands of the Hedgehog (Hh) and Wnt (Wg) families are important regulators of
many developmental processes and can act over long distances1. Hh proteins have been shown
to undergo autoproteolytic cleavage accompanied by covalent attachment of a cholesterol
molecule to the C-terminal residue of the secreted signaling domain2. This finding was
followed by studies showing that Hh and Wnt proteins from both Drosophila and mouse are
palmitoylated by the related acyltransferases Rasp (also known as Sightless, Skinny Hedgehog
and Central Missing) and Porcupine (Porc) respectively, members of the membrane-bound O-
acyltransferase (MBOAT) family3. Addition of palmitate, a 16-carbon saturated fatty acid, is
required for Hh and Wnt function in vivo4–10. Most recently, we reported that Rasp also
palmitoylates the Epidermal Growth Factor Receptor (EGFR) ligand Spitz (Spi) and is essential
for Spi function11. The palmitoylation site in Hh and Spi is the N-terminal cysteine residue
following the signal peptide11, 12; however, Wg is palmitoylated on an internal cysteine
residue8. Lipid modifications of intracellular proteins often promote their attachment to the
plasma membrane13, a function not easily reconciled with diffusion to produce a long-range
morphogen gradient. In this review, we will compare and contrast the effects of lipid
modification on the Hedgehog, Wnt and EGFR ligands (Fig. 1).

Palmitoylation is required for Wg secretion
Palmitoylation appears to be required for the secretion of the Drosophila Wnt protein Wingless
(Wg). In the absence of either porc or the palmitoylation site, Wg protein accumulates in the
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cells that synthesize it14–16. Treatment of S2 cells with 2-bromopalmitate, an inhibitor of
palmitoylation, also blocks Wg secretion9. The effect of palmitoylation on secretion may be
due to its ability to target Wg to lipid raft membrane microdomains that form in the Golgi and
are preferentially transported to the plasma membrane9. Palmitoylation of Ras on the
cytoplasmic face of the Golgi likewise promotes its transport to the plasma membrane17.
Alternatively, decreased secretion of unpalmitoylated Wg may result from protein misfolding
and retention in the endoplasmic reticulum (ER), where Porc is localized16. The large number
of cysteines in Wg makes misfolding a common response to missense mutations, and lack of
palmitoylation would result in a free cysteine14. Wg N-glycosylation is also dependent on Porc;
since Wg is glycosylated post-translationally rather than co-translationally, palmitoylation may
be required to anchor it close to the oligosaccharyl transferase complex at the membrane18.

Other palmitoylated proteins do not require this modification for their secretion. Mutation of
the palmitoylation site of mouse Wnt3a does not prevent its secretion but does reduce its
activity, suggesting a second function for Wnt palmitoylation8. Palmitoylation seems to reduce
the secretion of Hh and Spi; both proteins are more efficiently recovered from S2 cell culture
medium when unpalmitoylated, with this effect being especially dramatic for Spi4, 11.
Consistent with the different effects of palmitoylation on Rasp and Porc substrates, Rasp
appears to be localized to the Golgi (Fig. 2) rather than the ER. Unpalmitoylated Spi can reach
the Golgi and undergo cleavage there by the protease Rhomboid, suggesting that it is correctly
folded11, 19.

The different effects of palmitoylation on Wg, Hh and Spi could also be due to the nature of
the palmitate linkage. Wg modification occurs through a thioester linkage that is sensitive to
cleavage by hydroxylamine or acyl-protein thioesterase-18, 9. Thioester bonds are labile, and
proteins modified in this way can undergo cycles of palmitoylation and depalmitoylation20.
Reversible palmitoylation targets Ras to the cytoplasmic face of the Golgi apparatus, since
depalmitoylation releases it from the plasma membrane17; a similar mechanism might control
the localization of Wg within the secretory pathway. In contrast, Hh is palmitoylated on its N-
terminal amino acid, and the initial thioester linkage appears to rearrange to form a stable amide
bond12. Spi is also modified on its N-terminal cysteine, and like Hh, shows limited
incorporation of radioactive palmitate in cell culture, suggesting that only newly synthesized
protein can be labeled11. The irreversible modification of Hh and probably Spi may suggest a
function in the extracellular environment.

Palmitoylation is required for receptor activation by Hh and Wnt proteins
Palmitoylation has been shown to enhance the signaling activity of some ligands. In assays in
which equal amounts of protein are added to cultured cells, unpalmitoylated Wnt3a, Shh and
Hh are less active in promoting pathway activation than the palmitoylated forms4, 8, 10, 12.
However, Hh binding to its receptor Patched (Ptc) is not significantly affected by
palmitoylation12. It has not been determined whether palmitoylation affects the binding of Wnt
proteins to Frizzled receptors. An effect on Hh signaling activity can also be seen in vivo, as
a transmembrane Hh-CD2 fusion protein fails to activate target genes in neighboring cells when
expressed in rasp mutant wing discs4. It is possible that the reduction in activity reflects a loss
of access to the membrane domains in which Ptc is located; cholesterol and palmitate
modifications have been reported to affect the partitioning of Hh between the apical and
basolateral membranes, although the direction of the effect is disputed21, 22. However, a
constitutively active chimeric protein in which Hh is directly fused to Ptc23 also shows reduced
activity in the absence of rasp (Fig. 3), suggesting that even when bound to Ptc, unpalmitoylated
Hh cannot signal productively. Interestingly, other hydrophobic modifications of the N-
terminus of Shh can substitute for this effect of palmitoylation24. Finally, mutation of the
palmitoylated cysteine to serine confers dominant negative activity on Hh, at least in some
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contexts22, 25, 26, suggesting that it may competitively inhibit Ptc binding by wildtype Hh. In
contrast, palmitoylation does not affect the ability of Spi to bind and activate the EGFR in vitro,
and mutation of its palmitoylation site does not result in dominant negative function in
vivo11.

Palmitoylation has divergent effects on transport
Lipid modification can also regulate ligand transport, but it seems to have different effects on
different molecules. Paradoxically, hydrophobic modifications appear to increase Hh
solubility; loss of either the palmitate or cholesterol modification on mouse Shh reduces its
range of action in vivo10, 27. Interestingly, Shh has been found to form a multimeric complex
that is distributed over a long range and signals more efficiently than monomeric Shh10, 28.
Both lipid modifications are required for Shh incorporation into this complex10, 29 and probably
also for Hh incorporation into a similar complex10, 21. Recent results in Drosophila suggest
the possibility that this complex is a lipoprotein particle. Apolipophorins copurify with Hh as
well as with Wg, and are required for long-range activity of Hh, although their effect on Wg
activity appears weak30. Incorporation of Hh into such a complex may be mediated by
Dispatched, a transmembrane protein required for the secretion of cholesterol-modified
Hh31, 32. Transport of the complex in vivo requires heparan sulphate proteoglycans (HSPG)
33, which may be linked to Hh by Shifted, a secreted Wnt Inhibitory Factor homologue34, 35.

Palmitoylation appears to have the opposite effect on the transport of Spi. Spi normally acts
as a short-range ligand, for example in the pairwise recruitment of photoreceptors to an
ommatidium36. Misexpression of a truncated form of Spi that does not require cleavage by
Rhomboid usually activates target gene expression only in immediately adjacent cells11, 37.
However, misexpressed unpalmitoylated Spi can activate weak target gene expression over a
long range11. Visualization of tagged Spi molecules suggests that palmitoylation tethers Spi
to the plasma membrane of producing cells, preventing its release into the extracellular
space11. This would result in a high local concentration of Spi, allowing it to reach the threshold
necessary for target gene activation. In contrast, unpalmitoylated Spi would diffuse away and
become diluted out, forming a shallower gradient sufficient for target gene activation only
under conditions in which Spi is overexpressed11. It is unclear whether Spi can directly bind
its receptor while anchored to the membrane by palmitoylation, since Spi is synthesized as a
transmembrane protein precursor that is inactive until it is cleaved by the protease
Rhomboid19. Intriguingly, Spi isolated from S2 cell culture medium has been shown to initiate
at methionine 4511, suggesting that local proteolytic cleavage might generate a soluble, active
form of Spi.

Can these apparently different effects of lipid modification be reconciled? One possibility is
suggested by a recent paper that uses mathematical modeling to simulate Shh signaling in the
neural tube38. The authors obtain the counter-intuitive result that reducing the diffusivity of
Shh, an effect that could be produced by lipid modification and/or HSPG binding, extends its
effective range of signaling38. The basis for this effect is that untethered Shh diffuses away
rapidly and becomes diluted out, failing to reach the threshold required for target gene
expression at a distance from the source. Lipid modifications have been shown to reduce the
secretion of Hh from cultured cells, supporting the idea that they promote membrane
tethering22, 39. This model could explain why loss of cholesterol or palmitate modification of
Shh specifically prevents long-range signaling in the mouse limb bud10, 27. Initial reports
suggested that removal of cholesterol from Drosophila Hh increased its range of action in the
wing disc32. However, this may have been due to its expression in the squamous peripodial
cell layer overlying the disc proper, as a reduced range has been seen when Hh lacking
cholesterol is restricted to columnar disc epithelial cells22. Interestingly, the range of
distribution of GFP-tagged Hh proteins in the wing disc and the range at which they activate
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low-threshold target genes is increased when they lack the cholesterol or palmitate
modifications, although the range at which they can activate high-threshold target genes is
decreased21, 22, 40. However, the loss of palmitate causes a much greater functional impairment
than loss of cholesterol, suggesting an additional effect on Hh activity as discussed above. It
remains to be determined whether incorporation into lipoprotein particles indeed enhances Hh
transport, or increases the functional range of Hh by restricting its diffusion.

Lipid modification is only one among a number of mechanisms that have evolved to restrict
the range of diffusible ligands. Hh is sequestered and endocytosed by its receptor Ptc; induction
of high-level ptc expression by Hh signaling provides a negative feedback mechanism to limit
Hh diffusion41, 42. The Wg receptor Dfrizzled2 seems to have the opposite effect, stabilizing
Wg to expand its range of function43; however, a receptor-independent endocytic pathway
restricts Wg spreading44. Endocytosis and recycling by producing cells also contributes to high
Wg levels near the source45. Some ligands are sequestered by secreted proteins rather than
receptors; for example, Spi signaling induces expression of the feedback inhibitor Argos, which
binds to Spi and prevents it from binding its receptor46, 47. In vertebrates, Shh induces the
antagonistic Hedgehog-interacting protein (Hip)48 and a variety of secreted antagonists
modulate Wnt function49. In contrast to these mechanisms, restricting the range of a ligand by
lipid modification increases the local concentration of the active form, enhancing signaling.
Loss of Argos is insufficient to compensate for the loss of palmitoylation of Spi11 and reducing
Ptc dosage does not rescue loss of Shh palmitoylation10, suggesting that palmitoylation is
necessary to prevent ligand dilution even in the absence of feedback inhibitors.

Are other ligands palmitoylated?
The discovery that Hh, Wnt and Spi proteins are palmitoylated was recent and unexpected, and
this modification appears to have a diversity of functions. It is thus tempting to speculate that
other secreted ligands may be palmitoylated as well. The basis for acyltransferase specificity
is not clear, as the two known Rasp substrates, Hh and Spi, share little sequence homology
beyond some basic residues in the vicinity of the palmitoylated cysteine. It is therefore possible
that Rasp and Porc have additional substrates. Based on phenotypic analysis, Rasp appears
likely to modify the related EGFR ligands Gurken and Keren, but not the long-range
Neuregulin-related ligand Vein11. rasp maternally and zygotically mutant embryos show
normal mesoderm spreading and tracheal branching, suggesting that rasp is not required for
the function of the Fibroblast Growth Factor (FGF) homologues Pyramus, Thisbe and
Branchless 50, 51(J. Steinhauer and J.E.T., unpublished data). We have also found that rasp is
not essential for the function of the BMP family ligand Decapentaplegic (Dpp), as Dpp is able
to activate its target genes when misexpressed in rasp mutant wing discs (Fig. 4). However,
other ligands remain to be tested. Rasp and Porcupine belong to the MBOAT family of proteins,
which also includes enzymes that acylate lipid substrates3. Several uncharacterized
acyltransferases of the MBOAT family are present in the Drosophila and vertebrate genomes.
Future investigations will reveal whether they also modify ligands important for development.
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Figure 1. Different effects of lipid modifications on Spi, Hh and Wg
Ligand-producing cells are shown in the upper row and ligand-receiving cells in the lower row.
Porc in the ER palmitoylates Wg on an internal cysteine (A), while Rasp in the Golgi
palmitoylates Spi and Hh on their N-terminal residues (B, C). Palmitoylation of Wg enhances
its glycosylation, lipid raft targeting and secretion (A). Palmitoylation of Spi increases its
association with the plasma membrane of producing cells and raises its local concentration to
the threshold necessary to activate the EGFR (B). Palmitate and cholesterol modifications on
Hh promote its incorporation into multimers that may contain Apolipophorin (ApoL) and
enhance its long-range activity. Palmitoylation is also required for Hh to signal productively
when bound to Ptc (C).
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Figure 2. Rasp is present in the Golgi in Drosophila S2R+ cells
(A–C) show a cell transfected with actin-GAL4, UAS-rasp-HA11 and the Golgi marker UAS-
dGRASP65-GFP (kindly provided by Henry Chang). Anti-HA staining (A, magenta in C)
colocalizes with GFP (B, green in C).
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Figure 3. A Hh-Ptc fusion protein shows reduced activity in rasp mutant wing discs
(A) shows a schematic of the wing pouch. The solid line indicates the anterior-posterior (AP)
compartment boundary where endogenous dpp is expressed, and the dotted line indicates
vestigial (vg)-GAL4 expression at the dorsal-ventral (DV) boundary. (B–D) show third instar
wing discs carrying vg-GAL4 and dpp-lacZ and stained with X-Gal. (B–C) raspT392/
raspT802; (D) wildtype. (B) expresses UAS-hh and (C–D) express UAS-hh-ptc23. All discs
were stained in parallel for the same length of time. The Hh-Ptc fusion activates dpp expression
to a slightly greater extent than Hh in the absence of rasp, but its activity is lower than in
wildtype discs. Note that endogenous dpp expression at the AP boundary is lost in rasp mutant
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discs due to the lack of palmitoylation of endogenous Hh4–7. The expression pattern of vg-
GAL4 is not altered in rasp mutant wing discs (11 and see Fig. 4).
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Figure 4. Dpp is active in the absence of rasp
All panels show third instar wing discs. (A–C) wildtype; (D–F) raspT392/raspT802; (G–I)
raspT392/raspT802; vg-GAL4/UAS-dpp. The discs were stained to show expression of the Dpp
target genes optomotor-blind (Omb; magenta in A, C, D, F, G, I) and spalt (Sal; green in B,
C, E, F, H, I). dpp is not expressed in rasp mutant discs due to defective Hh signaling (6 and
see Fig. 3); however, when misexpressed at the dorsal-ventral boundary of the wing disc it is
able to activate sal and omb expression. Transfections and X-gal and antibody stainings were
carried out as described11.

Miura and Treisman Page 12

Cell Cycle. Author manuscript; available in PMC 2009 August 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


