Biophysical Journal Volume 97 August 2009 1095-1103 1095

On the Use of Ripley’s K-Function and Its Derivatives to Analyze
Domain Size

Maria A. Kiskowski," John F. Hancock,* and Anne K. Kenworthy$%*

TDepartment of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688; *Department of Integrative Biology and
Pharmacology, University of Texas Health Science Center at Houston, Texas 77030; and $Department of Molecular Physiology and Biophysics,
and YDepartment of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

ABSTRACT Ripley’s K-, H-, and L-functions are used increasingly to identify clustering of proteins in membrane microdomains.
In this approach, aggregation (or clustering) is identified if the average number of proteins within a distance rof another protein is
statistically greater than that expected for a random distribution. However, it is not entirely clear how the function may be used to
quantitatively determine the size of domains in which clustering occurs. Here, we evaluate the extent to which the domain radius
can be determined by different interpretations of Ripley’s K-statistic in a theoretical, idealized context. We also evaluate the
measures for noisy experimental data and use Monte Carlo simulations to separate the effects of different types of experimental
noise. We find that the radius of maximal aggregation approximates the domain radius, while identifying the domain boundary
with the minimum of the derivative of H(r) is highly accurate in idealized conditions. The accuracy of both measures is impacted
by the noise present in experimental data; for example, here, the presence of a large fraction of particles distributed as monomers
and interdomain interactions. These findings help to delineate the limitations and potential of Ripley’s K in real-life scenarios.

INTRODUCTION

The lipid raft hypothesis has led to intense interest in tech-
niques capable of distinguishing clustered distributions of
molecules in membranes (1). Growing evidence using such
approaches suggests that proteins enriched in microdomains
exist as small clusters present in a background of monomers
(2,3). Because of the inherent difficulty in distinguishing
such small clusters from a random distribution, mathematical
tools have become increasingly utilized to extract informa-
tion such as domain size and area fraction. One such tool
is the Ripley’s K-function, used currently to analyze the
distribution of immunolabeled proteins within membrane
sheets as detected by electron microscopy (2,4-9).

The distribution of labeled molecules in such an experi-
ment represents a spatial point pattern. The first moment
property of a spatial point pattern is the number of points
per area and the second moment property is the expected
number of points N within a distance r of another point.
Ripley’s K-function (10) is the second moment property
normalized by the density (or intensity), the number of points
per area A:

K0) = 23N, 00/2 m

i=1

where p; is the ith point and the sum is taken over n points.
The expected value of K(r) for a random Poisson distribution
is w7 and deviations from this expectation indicate scales of
clustering and dispersion.
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The K-function can be normalized as proposed by Besag
(11) so that its expected value is r (linear):

L(r) = V(K(r)/m). @)

The K-function can be further normalized so that the
expected value is 0, yielding the so-called H-function (12):

H(r) = L(r) —r. 3)

Ripley’s K-function is typically used to compare a given
point distribution with a random distribution; i.e., the point
distribution under investigation is tested against the null
hypothesis that the points are distributed randomly and inde-
pendently. For example, a positive value of H(r) indicates
clustering over that spatial scale whereas a negative value
indicates dispersion. Although it is common to use a signifi-
cantly positive value of H(r) to identify clustering
(4,8,12—18), some recent publications have further sought
to use the maximum of H(r) to provide a measure of domain
radius (5-7). The value of r that maximizes H(r) indicates the
radius of maximal aggregation: the radius of a disk in which a
centered test point on average contains the most points per
area. However, it is not clear that the radius of maximal
aggregation would coincide with the domain radius and the
difficulty of using Ripley’s K to identify the radius of point
aggregation has been emphasized by several authors
(7,19-21). We therefore tested the ability of this measure
to accurately report on domain radius in idealized conditions.
We find that for well-separated domains of a radius R, the
radius of maximal aggregation varies between R and 2R.
We show the domain radius may be more precisely identified
by finding the domain boundary where the point density
drops. These theoretical conclusions provide a useful
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FIGURE 1 Distribution of idealized domains and distribution of points.

(A) Disk-shaped domains of radius R are tiled on a square lattice in a trian-
gular pattern with periodic boundary conditions. The distance between the
centers of any two adjacent domains is S. The distance between neighboring
domain edges is S — 2R. (B) A random snapshot of a distribution of points
(black pixels) with density 0.05 nm > within domains and 0.001 nm~>
outside of domains. The horizontal bar indicates 10 nm. Domains have
radius R = 20 nm and are separated by S = 120 nm.

understanding of the limitations and potential of Ripley’s K
in a best case scenario. We also evaluate the measures for
noisy experimental data and use Monte Carlo simulations
to separate the effects of different types of experimental
noise.

METHODS
Modeling idealized disk-shaped domains

We considered a distribution of idealized domains of radius R separated by
a distance S (Fig. 1 A) where S is the distance between adjacent domain
centers. Domains were drawn on a square lattice where each lattice node
corresponds to a 1 nm x 1 nm area. In each Monte Carlo realization of
a point pattern, lattice nodes were randomly assigned “‘probes” at a density
of 0.05 probes nm 2, yielding a 5% occupation of the lattice nodes within
domains. When indicated, nodes outside domains were populated at a density
of 1 x 107 probes nm ™ to simulate a monomer fraction. Fig. 1 B shows
one random snapshot of a lattice with domain probes populated at a density
of 0.05 nm ™2 and nondomain probes populated at a density of 1 x 107°
probes nm 2. We only considered values of § > 4R so that adjacent
domains were separated by at least one domain diameter.

Modeling K-ras nanoclusters

In recent experiments (2,17), point patterns of the distribution of the protein
Ras on the plasma membrane have been obtained by immunoelectron
microscopy. Analyses of the point patterns in (2,17) indicated that Ras asso-
ciates with nanoclusters that have a constant size (~16 nm) and coexist with
randomly arrayed monomeric protein. The ratio of clustered to monomeric
protein was found to be constant over a multilog range of expression, sug-
gesting that the fraction of clustered molecules is maintained by an active
process (3,17). On average, it was found that each nanocluster contained
3.2 gold particles, and the monomer population was ~56%. Where indicated,
a Monte Carlo model was used to simulate these immunogold point patterns.
Domains with a radius of 16 nm were placed on a 500 x 500 square lattice
where each lattice node corresponded to 1 nm? area. The density of
immunogold particles was allowed to vary from 400 to 1200 particles per
1000 nm x 1000 nm. In the experimental model 44% of the particles
were arrayed in nanoclusters with a stoichiometry of 3.2 gold particles per
nanocluster. Thus, for a given number of immunogold particles N, the
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nearest whole number of 0.44 x N/3.2 domains were assigned to the lattice.
Nanoclusters were arrayed randomly over the model membrane, subject to
the constraints that they could not overlap and must be completely contained
within the lattice. The N particles were then randomly assigned to domain
nodes and nondomain nodes in a 0.44:0.56 ratio. Where indicated, we modi-
fied the point pattern in three ways. First, we allowed the domain size to vary
from 6 to 16 nm. In the case of no monomer fraction, all the nondomain
particles were deleted. In the case of no domain interaction, domains were
randomly assigned subject to the constraint that they were separated by
a distance 4R from each other and 2R from the domain boundary.

Computing Ripley’s H and H’ functions

Without regard to whether points are located within or outside domains,
Ripley’s K-statistic is computed for all points on the lattice. Periodic boundary
conditions are used to obviate edge effects. The periodic extension for the
idealized point patterns is seamless because domains are arranged in a trian-
gular pattern. While generating point patterns that simulate K-ras nanoclus-
ters, we require that domains are completely contained within the lattice so
that there are no broken or overlapping domains when the lattice pattern is
tiled. The derivative of the H-function is computed from the H-function at
each value of  nm by taking the average derivative of H over the interval
[r — 1 nm, r + 1 nm], which resulted in a sufficiently smooth function.

RESULTS

Comparing the radius of maximal aggregation
with the domain radius in distributions
of idealized, disk-shaped domains

To investigate the relationship between H(r) and the domain
radius, we evaluated H(r) for the case of an idealized point
pattern in which points are aggregated within well-separated,
disk-shaped domains of radius R and separation S (Fig. 1 A).
Domains were drawn on a square lattice. Lattice nodes were
randomly assigned “probes” at a density of 0.05 probes nm 2.
We only considered values of S > 4R so that adjacent
domains were separated by at least one domain diameter.
As expected, for this idealized case, H(r) was positive over
the interval [0, S/2] for the aggregated distribution, indicating
clustering over that interval (Fig. 2 A, solid black line). In
contrast, applying H(r) to a Poisson distribution yields
a constant value of H(r) of zero, consistent with the absence
of clustering (Fig. 2 A, dotted line).

In previous studies, the value yielding the maximum of
H(r) was used to provide a measure of domain radius
(5-7). Here, we will denote this as the radius of maximal
aggregation R* = [Hyax], Where the brackets indicate the
value of r that yields the maximum value (an inverse opera-
tion). For the example shown in Fig. 2 A, we found that
R* =25 + 1 nm was slightly larger than the actual value
of R = 20 nm. We considered the possibility that the differ-
ence between the actual domain radius and that predicted by
[Hmax], arises because K, H, and L are accumulative func-
tions, meaning that effects at larger distances are confounded
with those at smaller distances. The functions are accumula-
tive because for each value of r, Ripley’s K considers the
number of points within a radius r, so that the points within
smaller radii will always be included.
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FIGURE 2 Using Ripley’s H-function to identify

domain radius. (A) H(r) for a random (Poisson) distribution
(dotted line), points entirely clustered within 25 domains of
radius R = 20 nm separated by S = 100 nm (black solid
line), or points clustered in domains in the presence of
a monomer fraction (gray solid line). The arrow labeled
“Hmax” indicates where H(r) is maximized and the arrow
labeled “H'yqn” indicates where the slope of H(r) is first
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—1 for the entirely clustered distribution. To simulate a
monomer fraction, nodes outside domains were populated
at a density of 1 x 1073 probes nm 2 (B) H(r) calculated

for three distributions containing 25 domains with a constant domain radius of 20 nm but varied domain separation (100, 200, or 300 nm). Note that the magni-
tude and position of [Hyax] shifts systematically with the domain separation (solid black circles indicated by arrows). (C) The domain radius R* predicted by
[Hwmax] as a function of the domain separation. The domain radius and diameter are indicated by the dashed gray lines at 20 nm and 40 nm, respectively. Data
represent the mean *= SD for five independent point distributions containing 25 domains of radius R = 20 nm.

To further study how accumulative effects impact the rela-
tionship between R* and the actual domain radius, we calcu-
lated H(r) for idealized distributions in which the domain
radius was held constant but the interdomain separation
was varied (Fig. 2, B and C). Examples of plots of H(r) for
three different values of S are shown in Fig. 2 B. This
analysis revealed that as the interdomain separation was
increased, the radius of maximal aggregation shifted to
progressively larger radii. We repeated this calculation for
a range of values of S and calculated the radius of maximal
aggregation [Hyjax] for each case (Fig. 2 C). As shown in
Fig. 2 C, the domain radius R* predicted by [Hyax] mono-
tonically increases from the domain radius R to the domain
diameter 2R as the separation is increased from 4R to arbi-
trarily large values. We evaluated the radius of maximal
aggregation predicted as § — o by applying Ripley’s K
to a single domain without periodic boundary conditions,
and found that [Hyax] approaches 2R.

This dependence of [Hyax] on S can be understood by re-
calling that the H-function compares the observed density
within a test radius with the expected density in a Poisson
distribution. The critical point of H(r) (where H' = 0) is
located where aggregation effects within the domain are
perfectly canceled out by dispersion outside the domain.
When domains are the same size but the domain separation
is larger, aggregation of points is actually greater because
points are aggregated within a relatively smaller area. (This
is indicated by the fact that the maximum value of H(r)
increases with S). The extent of aggregation relative to the
total area between domains increases and a greater area is
required to offset that aggregation. Nevertheless, although
the radius of maximal aggregation does not exactly corre-
spond to the domain radius, even in this idealized scenario,
it is encouraging that [Hyjax] estimates the domain radius
within a factor of 2.

Using the derivative to subtract accumulative
effects

Given that the location of maximal aggregation given by
[Hvax] does not measure the domain radius precisely, we
asked if another measure may yield the domain radius.

With regard to this issue, Weigand and Moloney (21) have
noted that although the K-function may be used to detect
the spatial range of repulsive and attractive effects, functions
based on the derivative of the K-function should be used to
describe the extent of aggregation at a particular distance.
This is the case because the rate of change of a function
does not depend on the function’s magnitude, and thus is
not affected by accumulative effects (21). We therefore
tested the use of the derivative of H(r) to subtract accumula-
tive effects.

To test this, we calculated H'(r) versus r for the same three
simulations shown in Fig. 2 B. Although all the curves of
H'(r) intersect the x axis in different locations, each intersects
the line y = —1 at the same radius of r = 2R (Fig. 3 A). This
suggests that the point at which the derivative of H(r) is
equal to —1 can provide a measure of the domain radius
that is independent of accumulative effects. To test this
further, we calculated the value of » where H'(r) is —1 for
idealized domains with a constant domain radius for a range
of domain separations (Fig. 3 B). We found that a plot of the
value of r where H'(r) = —1 accurately predicts the domain
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FIGURE 3 Taking the derivative of H(r) removes accumulative effects.
(A) H'(r) calculated for idealized distributions containing 25 domains with
radius R of 20 nm for three different values of domain separation S: 100 nm
(open triangles), 200 nm (open squares), or 300 nm (open circles). (B) The
domain radius R* predicted by [H'yin] (squares) as a function of the domain
separation. The domain radius and diameter are indicated by the dashed gray
lines at 20 nm and 40 nm, respectively. In both panels, data represent the
mean * SD for five independent point distributions containing 25 domains
of radius R = 20 nm.
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FIGURE 4 Using Ripley’s L-function and its derivative to identify
domain radius. (A) L(r) and (B) L'(r) for a random (Poisson) distribution
(dotted line), points entirely clustered within domains (black solid line), or
points clustered in domains in the presence of a monomer fraction (gray
solid line). The arrow indicates where the slope of L(r) is first O for the
entirely clustered distribution. Data represent the mean + SD for five inde-
pendent point distributions containing 25 domains of radius R = 20 nm and

separation S = 60 nm. To simulate a monomer fraction, nodes outside

domains were populated at a density of 1 x 10~ probes nm~2.

radius even as the domain separation is varied (Fig. 3 B).
Thus, the minimum value of r that yields H'(r) = —1,
divided by 2, accurately yields the domain radius indepen-
dent of the domain separation for the case of idealized
domains. For the remainder of this study, we will denote
the domain radius indicated by the minimum of H'(r) as
R* = [H'vin], Where again the brackets indicate the value
of r that yields the minimum.

The finding that the domain radius is indicated where the
derivative of H(r) is —1 independent of accumulative effects
is intriguing given that radius of maximal aggregation
[Hwmax], occurs when the derivative of H(r) is 0. To better
understand why the domain radius is predicted in this way,
we considered the L-function, which has a precise geometric
interpretation: for a given radius r, L(r) is the radius within
which the number of points would be distributed if the distri-
bution was completely random. Thus, the expected value of
L(r) for the Poisson distribution is r (Fig. 4 A, dotted line).
L(r) of a distribution in which points are aggregated within
domains of radius R and separation § is greater than that of
the Poisson distribution over the interval [0, S/2], indicating
clustering over that interval (Fig. 4 A, solid black line).

Importantly, L(r) is an increasing function of r as long as
the number of points found within a radius r is increasing
with 7, and stops increasing when the density of points
outside a radius r is zero for all test points. In other words,
the derivative of L(r), L'(r), is always > 0. L'(r) will be posi-
tive as long as the number of points found within a radius r is
increasing with r, and zero when the density of points outside
a radius r is zero (Fig. 4 B, solid black line). For the case
where points are fully aggregated within domains of radius
R, the distance between any two points within the same
domain will be less than or equal to the diameter 2R, and
the density of points outside domains will be zero until the
next domain is reached. Because the distance between
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domain boundaries is S — 2R (Fig. 1), L(r) has a zero slope
over the interval [2R, S — 2R] (Fig. 4 B). Thus, the domain
diameter is indicated when L'(r) is first zero (Fig. 4 B,
arrow). When L(r) has a derivative of 0, the derivative of
H(r) is —1 because H(r) and L(r) only differ by the term —r.

Effect of a monomer fraction in the case
of idealized domains

The geometric arguments above apply to idealized distribu-
tions in which points are distributed entirely within domains
and no monomer fraction is present. However, an important
feature of Ripley’s K is its application to distributions in
which there may be a number of points randomly distributed
outside domains. We therefore next tested how the presence
of a monomer fraction impacts the ability of H(r) and L'(r) to
predict domain radius. For this analysis, we considered the
effect of adding monomers to nodes outside domains at
a density of 1 x 107> probes/nm”. The relative abundance
of monomers outside domains to probes within domains is
shown in Fig. 1 B. For these point patterns in which the
density of probes outside domains was now nonzero, we
found that the position of the maximum of H(r) was unaf-
fected (Fig. 2 A), but that L'(r) did not go to zero (Fig. 4 B,
solid gray line). However, the value of r that minimizes L'(r)
still yields the domain radius (Fig. 4 B). Thus, both measures
seem to be relatively insensitive to the presence of a mono-
mer fraction under these conditions. We note that our point
patterns assume randomly placed monomers distributed at
a constant density outside domains. In irregular distributions
in which the monomer density fluctuates nonrandomly
outside domains, using this method to identify the domain
radius would be biased by this second level of aggregation/
ordering.

Comparing the predictions of the maximum of H(r)
and the minimum of H'(n

Our analysis of idealized domains indicates that the
maximum of H(r) and minimum of H’'(r) have different
dependencies on domain separation. In particular, the
maximum of H(r) yields the radius of maximal aggregation,
which depends on the domain separation, whereas the
minimum of H'(r) yields the domain radius independent of
the domain separation. We therefore considered the possi-
bility that the ratio of [Hyax] and [H'vin] could provide
information regarding the domain separation. To test this,
we calculated the ratio [Hyax)/[H pin] versus the domain
separation for domain separations ranging from 4R (80 nm)
to 20R (400 nm) (Fig. 5). Under these conditions, the ratio
[Hyax)/[H viin] increased monotonically from ~1 to ~2.
To determine if this ratio was dependent on the domain
radius, we carried out a similar calculation for three different
domain radii (20, 30, and 40 nm). The ratio [Hyax]/
[Hupyn] versus domain separation was the same for three
different domain radii when the domain separation was
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FIGURE 5 Ratio [Hyax)/[H'min] increases monotonically with the
domain separation. The ratio [Hyaxl/[H vin] versus the separation S is
the same for three different domain radii if the domain separation is normal-
ized by the domain radius R. The domain radii are 20 nm, 30 nm, and 40 nm
for the three plots shown, indistinguishable within error. Data represent the
mean =+ SD for five independent point distributions containing 25 domains
of radius R = 20 nm.

normalized by the domain radius (Fig. 5). This suggests that
the parameter [Hyax]/[Hupmin] can be used to measure
domain separation, an additional defining feature of a given
particle distribution.

Application to experimentally measured domains:
K-ras nanoclusters

The above results apply to idealized distributions in which
points are distributed randomly within idealized domains.
However, an important application of Ripley’s K is the anal-
ysis of experimentally determined distributions in which
there may be significant sources of noise. For example, Rip-
ley’s K-analysis has been used recently to analyze experi-
mental measurements of the distribution of the protein Ras
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on the plasma membrane by immunoelectron microscopy
(2,17). Previous analyses using [Hyax] as a reporter of
domain radius indicated that Ras associates with nanoclus-
ters that have a constant size (~16 nm) and coexist with
randomly arrayed monomeric protein. The ratio of clustered
to monomeric protein was found to be constant over a multi-
log range of expression, suggesting that the fraction of clus-
tered molecules is maintained by an active process (3,17). On
average, each nanocluster contained 3.2 gold particles, and
the monomer population was ~56%.

To evaluate the use of H(r) and H'(r) in estimating the
radius of experimentally determined Ras nanoclusters, we
estimated the nanocluster radius for an immunogold point
pattern of K-ras proteins on intact plasma membrane sheets
from data published previously (17). The experimentally
determined point pattern used is shown in Fig. 6 A. In this
measurement, the labeled K-ras density was 625 gold
particles per um?. Using [Hyax], the K-ras nanocluster
radius was estimated as 16 nm, whereas the K-ras nanocluster
radius was estimated as 14 nm from [H'yn]. Thus, the two
measures yield similar, but not identical estimates of the
K-ras nanocluster radius for this experimentally measured
particle distribution.

Next, we asked if the values of domain radius reported by
[Huvax] and [H'yyn] varied as a function of the density of
K-ras particles under conditions similar to those observed
experimentally assuming that the domain radius did not
vary. To evaluate this, we used a Monte Carlo model that
generates immunogold point patterns analogous to labeling
K-ras proteins on plasma membrane sheets (see Methods).
These patterns contain two types of noise not present in
our idealized model (Fig. 1). First, there is a constant mono-
mer fraction (56% of K-ras proteins are distributed randomly
outside nanoclusters regardless of the overall particle
density). Second, the separations between domains are
random (domains may not overlap but they may approach
arbitrarily close).

We generated 500 immunogold point patterns incorpo-
rating these two sources of noise for each of nine different
pattern densities chosen to correspond to the range of particle
densities that were measured experimentally. All domains in
the patterns have a fixed radius of 16 nm, which is thus the

FIGURE 6 Nanocluster radius for Monte Carlo simula-
tions of K-ras nanoclusters as a function of pattern density.
(A) Example of an experimentally derived point pattern
with an immunogold density of 625 um 2. Data are repre-
sentative of those collected for K-ras in Plowman et al.
(17). Scale bar = 100 nm. (B and C) Radii calculated for
500 simulated point patterns mimicking K-ras nanoclus-
ters. The dashed line shows the actual domain radius
(16 nm) whereas the solid line shows the mean and SD
of Ripley’s calculations for (B) the radius calculated using
the max value of H(r), or (C) the radius calculated using the
min value of H'(r). Histograms (insets) show the distribu-
tion of individual simulation predictions when the gold
pattern density is 400 particles/um?.
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correct radius to report. For each pattern we calculated
[Hyax] (Fig. 6 B) and [H'yn] (Fig. 6 C). Both measures
predict the domain radius within the mean standard deviation
(SD); however, as shown in the histogram of individual
predictions (insets), individual results vary widely and
predictions for a single point pattern can be several orders
of magnitude larger than the domain radius. Nevertheless,
both methods perform relatively well on average in esti-
mating domain radius of nanoclustered patterns, so that
increased reliability may be gained as multiple point patterns
are evaluated.

Unexpectedly, both [Hyiax] and [H'vin] showed little
dependence on particle density. The absence of a strong
dependence of [Hyax] on pattern density was particularly
surprising considering the results obtained from our initial
simulations (Fig. 2 C), which predicted that [Hyax] should
increase as the average separation between clusters in-
creases. Instead, the ratio of the radii predicted by [Hyax]
and [H'yn] did not vary systematically with the particle
density, but was essentially constant, with a mean value of
1.25 and a SD of 0.05. According to Fig. 5, the estimated
domain separation should correspond to 5.5R = 0.5, or
88 =+ 8 nm, for this value of [Hyax]/[H vin]. However, it
is clear from direct inspection of the point patterns that the
domain separations systematically vary with the point
density, decreasing from ~85 nm to 50 nm as the particle
density increases from 400 to 1200 particles per wm?>.
Thus, the results of our Monte Carlo simulations indicate
that domain separation cannot be predicted using the ratio
of [Hyviax] to [H'yvin] because the ratio does not vary with
the domain separation in this noisier scenario.

Systematic evaluation of the two noise sources
in experimentally derived data

To understand why the behavior of [Hyax] seemed to be
independent of accumulative effects for the case of simulated
K-ras nanoclusters, we next systematically evaluated the
individual contributions of the two sources of noise to these
data, the presence of a monomer fraction and random domain
positions. Although our previous analysis suggested that the
monomer fraction should not be a major source of noise
(Figs. 2 A and 4 B), we wanted to verify this for biologically
relevant distributions. In addition, when domain separations
vary randomly, some domain separations may be smaller
than 4R. When this occurs, the distance between domains
(from edge to edge) may be less than the domain diameter
and points at the edge of a domain are just as close to points
in another domain as they are to points within their own
domain. We define this as domain interaction.

We evaluated the performance of Ripley’s K with or
without these two sources of noise independently in Fig. 7.
For this analysis, we generated point distributions in the
same way as in the simulations in Fig. 6, B and C, except
that in this case we systematically varied the domain radius
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FIGURE 7 Analysis of the contribution of monomer fraction and domain
interaction to estimates of K-ras domain radius obtained from [Hyax] or
[H'yun]- Simulated point patterns were generated as in Fig. 6 except that
the domain radius was systematically varied from 6 nm to 16 or 20 while
holding the particle density constant at 612 particles per 1000 nm x
1000 nm. The domain radius was calculated using the max value of H(r)
(A panels) or using the minimum values of H'(r) (B panels). Monte Carlo
point patterns were generated with both noise sources (Ai and Bi), with
domain interaction but no monomer fraction (Aii and Bii), with a monomer
fraction but without domain interaction (Aiii and Biii) and without either
a monomer fraction or domain interaction (Aiv and Biv). The dotted line
shows the actual domain radius, whereas the solid line with error bars shows
the mean radius and SD of 500 point patterns.
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while holding the particle density constant at 625 particles
per 1000 nm x 1000 nm. The number of particles per
domain and ratio of clusters/monomers was identical to those
used in Fig. 6. These simulations thus contain a monomer
fraction and have varied domain separations, similar to the
known sources of noise in the experimentally based (17)
distributions analyzed in Fig. 6. For each case studied, we
calculated both [Hyax] and [H'pn] and compared these to
the actual domain size (Fig. 7, dotted lines).

We first calculated the predicted radii in the presence of
both sources of noise (Fig. 7, Ai and Bi). The predicted
domain radius was consistent with the actual domain radius
within error for both [Hyax] and [H'yun]. However, the
noise did not allow a precise prediction of the domain radius
because the SD was very large. Thus in the presence of both
a monomer fraction and varied domain separation, the two
measures perform equally well and are not distinguishable.

We next evaluated the contribution of domain interaction
to the noise in the domain radius prediction. To examine this,
the monomer fraction was removed from the Monte Carlo-
generated point patterns by deleting all points outside
domains. We found that when only domain interactions are
present, the predictions of both [Hyax] and [H'yin] were
still very noisy (Fig. 7, Aii and Bii). In fact, the predictions
from [H'yyn] were even noisier (i.e., the error was larger)
under these conditions than in the presence of both domain
interaction and a monomer fraction (compare Fig. 7, Bi
and Bii). This indicates that domain interaction is a significant
source of noise for both measures. Geometrically, this can be
understood as occurring because domains that approach
within a distance of 4R are interpreted by both measures as
a single domain.

We next tested how the monomer fraction contributes to
the variation in the measurements of domain radius by
removing interacting domains (Fig. 7, Aiii and Biii). To re-
move domain interaction, we required that the domain sepa-
ration be at least 4R (rather than 2R when domains just
cannot overlap). Because the domains must be spaced further
apart to eliminate domain interaction, it is more difficult to
generate point patterns that satisfy these constraints at high point
densities. We thus only evaluated domain sizes from 6 nm to 16
nm. The results of this analysis show that both measures are
fairly robust to the effects of the monomer fraction because
much of the error in their predictions is removed (Fig. 7, Aiii
and Biii). For some values of the domain radius, the confidence
interval of [Hyax] Was narrower than that of [H'yyn], indicating
that [Hyax] 1S a more reliable measure in these cases.

Finally, we removed both domain interactions and the
monomer fraction from the simulated K-ras data (Fig. 7,
Aiv and Biv). Without either type of noise present, the results
were largely consistent with that of our idealized scenario:
[H'vin] yielded the correct domain radius, whereas the
radius predicted by [Hyax] was somewhat larger (Fig. 7,
Aiv and Biv). Note that the [H'ymn] prediction typically
underestimates the domain radius, but never overestimates
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it. This is due to the density of only 3.2 particles per domain,
as in some point realizations there may be no points at the
very edge of the domain.

These findings suggest that the reason that Fig. 6, B and C,
look similar, and there is no strong dependence of [Hy;ax] on
density for experimentally based domains, is because they
are skewed from their ideal value by domain-domain interac-
tion, and to a lesser extent, the monomer fraction. When this
noise is subtracted by taking away the monomer fraction and
domain-domain interaction, the results are consistent with
our theoretical results.

The effect of varying the monomer fraction

An interesting feature of the distribution of K-ras observed in
Prior et al. (2) and Plowman et al. (17) is that the ratio of
clustered to monomeric protein was found to be constant
over a multilog range of expression. Above, we considered
the effect of the monomeric protein on the ability of
[Huvax] and [H'yn] to predict the domain radius when the
ratio of monomers to domain probes is 56:44, as observed
in this experiment. In a general context however, the ratio
of monomers to domain probes may vary with the density
of probes and, moreover, it is unlikely that this ratio will
be known a priori. To further investigate the effect of a mono-
mer fraction on the Ripley’s K-statistic, we studied the effect
of increasing the monomer fraction while the number of
probes within domains was held constant. In particular, we
looked at the radii predicted by [Hyax] and [H'yn] as the
monomer fraction was increased systematically from 20%
to 80%. Statistically significant aggregation (with 99% confi-
dence) was identified if the extent of aggregation measured
by the maximum value of H(r) is greater than the maximum
value of H(r) measured for 100 random point distributions of
the same point density.

By this criterion, we found that at very high monomer
fractions, it became increasingly difficult for the statistic to
identify aggregation. As the monomer fraction was increased
in our simulations, statistically significant aggregation was
identified in fewer and fewer point patterns (the fraction is
indicated above each data point in Fig. 8§, A and B). For
monomer fractions of 0.8 and 0.9, the percentage of patterns
with statistically significant aggregation was 50% and 16%,
respectively. We therefore used Ripley’s K-statistic to
predict a domain radius only in point patterns where statisti-
cally significant aggregation was observed. Thus, the mean
and SD of the radii predicted by [Hyiax] and [H'yyn] shown
in Fig. 8, A and B, are restricted to the subset of point patterns
in which aggregation was observed.

For the patterns where aggregation was detected, we
found that although the SD of the radius predicted by
[Hmax] and [H'win] increased with the monomer fraction,
the mean predicted radius was not altered significantly by
the noise of monomers until the monomer fraction exceeded
80%. This is consistent with our previous result (Fig. 7) that
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FIGURE 8 Ripley’s-K predictions as the monomer frac-
tion is varied. Ripley’s calculations of domain radii for 500
simulated point patterns with a particle density of 400 parti-
cles/umz, 3.2 particles per domain, domain radius of
16 nm, and varied ratio of monomers to domain particles.
(A) Radius calculated using the max value of H(r). (B)
Radius calculated using the min value of H'(r). The dashed
line shows the actual domain radius (16 nm) whereas the
solid line shows the calculated radius. The number associ-
ated with each data point indicates the fraction of patterns
in which aggregation was identified.
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the monomer fraction contributed only partially to the exper-
imental noise of the statistics.

DISCUSSION

In this study, we evaluated the use of Ripley’s K to quanti-
tatively measure domain size under both idealized and exper-
imental conditions. We first analyzed Ripley’s K in idealized
conditions to delimit the theoretical potential of Ripley’s K
under best-case scenarios. For the first time, to our knowl-
edge, we describe the relationship between the radius of
maximal aggregation [Hyax] and the domain radius, and
found that [Hyax] increases systematically and regularly
with the domain separation. Thus, the ratio of [Hyax] and
the actual domain radius is a predictor of the domain separa-
tion. On the basis of our theoretical results, we propose what
we believe is a new measure, the radius that minimizes the
derivative of H, for finding the domain radius in a separa-
tion-independent manner. The minimum of the derivative
of H(r) geometrically corresponds to the domain boundary
because the density of particles outside domains is less
than that of the domain interior.

We next applied Ripley’s K-analysis to experimentally
derived data for K-ras nanoclusters to study the effects of
noise such as a monomer fraction and interdomain interac-
tions on quantitative analysis of domain size. Our noise anal-
ysis indicates that the predictive values of Ripley’s K
measures are affected profoundly by domain interaction
that occurs whenever domains are within one domain width
of each other. This is a significant finding because domains
are likely to randomly approach at distances that will result
in domain interaction even at low domain densities. For
example, significant domain interaction occurred in our test
case even though the average domain separation was four-
fold greater than the minimum domain separation at which
interaction occurs (e.g., for domain interaction when the
domain radius is 6 nm). Because [Hyax] is somewhat
more robust to the effect of domain interaction, [Hyiax]
may be the preferred measure for experimental data sets,
keeping in mind that [Hyax] tends to slightly overestimate
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the domain radius in cases of low domain density. At very
low domain density, [H'yn] would provide a more accurate
measure. For both measures, several patterns should be
analyzed because individual results may vary widely
whereas the mean remains more or less trustworthy.

Our findings illustrate the utility of examining simple
limiting cases and carrying out systematic noise analyses
to discern the underlying limits of analytical tools like Rip-
ley’s K. Predicting or extrapolating theoretical results in
the presence of noise is complicated by the fact that sources
of noise are exceptionally case-dependent; each environ-
mental scenario will have a unique combination of noise
effects. Previous work has taken advantage of simulations
that mimic actual experimental data (17). Here, Monte Carlo
models enabled us to switch sources of noise off and on and
look at their effects independently. We therefore propose
conducting Monte Carlo simulations for each experimental
situation under study to evaluate the performance of the
statistic used in that context.

The work was supported by National Institutes of Health grant RO1
GMO073846 to A.K.K. and grant RO1 GM66717 to J.F.H.
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