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Abstract

Background: Amplification of 1q21 is the most frequent genetic alteration in hepatocellular carcinoma (HCC), which was
detected in 58–78% of primary HCC cases by comparative genomic hybridization (CGH). Using chromosome microdissection/
hybrid selection approach we recently isolated a candidate oncogene CHD1L from 1q21 region. Our previous study has
demonstrated that CHD1L had strong oncogenic ability, which could be effectively suppressed by siRNA against CHD1L. The
molecular mechanism of CHD1L in tumorigenesis has been associated with its role in promoting cell proliferation.

Methodology/Principal Findings: To further investigate the in vivo oncogenic role of CHD1L, CHD1L ubiquitous-expression
transgenic mouse model was generated. Spontaneous tumor formations were found in 10/41 (24.4%) transgenic mice,
including 4 HCCs, but not in their 39 wild-type littermates. In addition, alcohol intoxication was used to induce hepatocyte
pathological lesions and results found that overexpression of CHD1L in hepatocytes could promote tumor susceptibility in
CHD1L-transgenic mice. To address the mechanism of CHD1L in promoting cell proliferation, DNA content between CHD1L-
transgenic and wildtype mouse embryo fibroblasts (MEFs) was compared by flow cytometry. Flow cytometry results found
that CHD1L could facilitate DNA synthesis and G1/S transition through the up-regulation of Cyclin A, Cyclin D1, Cyclin E,
CDK2, and CDK4, and down-regulation of Rb, p27Kip1, and p53.

Conclusion/Significance: Taken together, our data strongly support that CHD1L is a novel oncogene and plays an important
role in HCC pathogenesis
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

solid tumors in the world affecting one million individuals annually

[1]. The prognosis of HCC is very poor and the overall 5-year

survival rate is less than 5%, mainly because of the late diagnosis

[2]. Although different etiologic factors such as hepatitis B virus

and hepatitis C virus infection, aflatoxin exposure, and alcoholic

cirrhosis have been associated with the development of HCC, the

genetic events involved in the pathogenesis of HCC are still

unclear [3]. One of the most frequently detected genetic

alterations in HCC is the amplification of the long arm of

chromosome 1, which has been detected in 58–78% HCC patients

by comparative genomic hybridization [4–7]. A minimal amplified

region at 1q has been narrowed down to 1q21 [7,8], suggesting the

existence of an oncogene at 1q21 which plays an important role in

HCC pathogenesis.

Recently, we used microdissected DNA from 1q21 to select region-

specific transcripts from an HCC case with 1q21 amplification, and

one candidate oncogene, named chromodomain helicase DNA

binding protein 1-like gene (CHD1L, also called ALC1), was isolated

[9]. CHD1L belongs to the SNF2-like family, containing a conserved

SNF2_N domain, a helicase superfamily domain (HELICc) and a

Macro domain. In our previous study, we found that CHD1L has

strong oncogenic ability including increasing cell proliferation, colony

formation in soft agar, and tumor formation in nude mice, and

inhibiting tumor cell apoptosis [9]. To further investigate the in vivo

oncogenic role of CHD1L, CHD1L ubiquitous-expression transgenic

mouse model was generated and characterized in this study.

Spontaneous tumors were found in 10 transgenic mice over 22

months of period. In addition, ethanol intoxication was found to

promote the susceptibility of liver tumor formation in CHD1L-

transgenic mice. The molecular mechanism of CHD1L in HCC

development was also studied using mouse embryo fibroblasts (MEF).

Results

Generation of CHD1L transgenic mice
To further characterize the in vivo function of CHD1L, CHD1L

ubiquitous-expression transgenic mouse model was generated.
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CHD1L was cloned into plasmid pCAGGS (Fig. 1A) and

linearized constructs were injected into 773 F1 eggs and 40 pups

were obtained. Among them, 4 independent founders including 3

males (lines 3, 26 and 38) and 1 female (line 21), were identified by

PCR screening (Fig. 1B). Expression of CHD1L was confirmed

by Northern blot analysis using a human specific CHD1L probe

(Figure 1B). Two founders (lines 21 and 38) were capable of

transmitting the transgene to their offspring and thus chosen for

further functional studies (Table 1, Fig. 1D). Two different

BamHI fragments (6 kb in line 21 and 8 kb in line 38) containing

transgene CHD1L were detected by Southern blot analysis,

implying that CHD1L was integrated into different genomic sites

in lines 21 and 38 (Fig. 1D).

Characterization of CHD1L-transgenic mice
DNA sequence comparison showed that the homology

between human and mouse CHD1L is about 81.2%. The

endogenous expression of mouse CHD1L was studied by RT-

PCR using mouse-specific primers and the result showed that

high level expression of CHD1L was detected in brain, heart,

lung, kidney and stomach. Low expression of endogenous mouse

CHD1L was observed in liver and spleen (Fig. 2A). The

Figure 1. Generation of CHD1L-transgenic mouse model. (A) Construction of human CHD1L gene in pCAGGS for the generation of CHD1L-
transgenic mouse. (B) Four CHD1L-transgenic mouse (#3, 21, 26, and 38) founders were identified by PCR screening. Genomic DNA from cloned
CHD1L was used as positive controls. (C) CHD1L expression in transgenic mouse (#38) was confirmed by Northern blot analysis. (D) Two founders
(lines 21 and 38) were able to transmit the transgene to their offspring (P1). Genomic DNA was digested with BamHI and DNA fragment containing
transgene CHD1L was detected by Southern blot analysis. The size of BamHI-DNA fragment was 6 kb in line 21 and 8 kb in line 38, implying their
integrated sites in host genomic DNA are different .
doi:10.1371/journal.pone.0006727.g001

CHD1L-Transgenic Mice
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expression of transgene CHD1L in CHD1L-transgenic and

wildtype mice was tested by RT-CPR using human-specific

primers. The results showed that expression of CHD1L was

detected in all tested tissues (brain, heart, liver, lung, and

kidney) in transgenic mice but not in wildtype mice (Fig. 2B).

The expression of CHD1L in the liver of transgenic mice was

firstly detected at embryonic stage 13.5dpc (Fig. 2C). The

expression of CHD1L increased at 16dpc till 1 week after birth,

and then decreased slightly at 3 to 20 weeks postnatal (Fig. 2C).

CHD1L-transgenic mice were indistinguishable from wild-type

siblings by size and weight.

Ethanol intoxication promotes liver tumor susceptibility
in transgenic mice

To investigate whether ethanol intoxication is able to promote

the susceptibility of liver tumor in CHD1L-transgenic mice, wild

type and CHD1L-transgenic mice (6 mice for each group) were

exposed to ethanol intoxication for a period of 12 weeks. Liver

Table 1. Summarization of CHD1L-transgenic founders and their offspring for tumorigenicity studies.

Founder Sex Offspring Tested Germline Transmission Rate Ethanol Intoxicationa Tumor Formationb

#3 male 52 2 (2.8%)

#21 female 27 15 (55.6%) 27 (15)

#26 male 32 2 (6.25%)

#38 male 65 32 (49.23%) 12 (6) 53 (26)

aTotal number of offspring and CHD1L-transgenic offspring (in blanket) were used for ethanol intoxication study.
bTotal number of offspring and CHD1L-transgenic offspring (in blanket) were used for spontaneous tumor formation study.
doi:10.1371/journal.pone.0006727.t001

Figure 2. Characterization of CHD1L-transgenic mice. (A) Endogenous mouse CHD1L expression was tested by RT-PCR using mouse-specific
primers. Weak expression of CHD1L was detected in liver and spleen. GAPDH was used as internal control. (B) Expression of transgene CHD1L in
multiple tissues of transgenic and wildtype mice was studied by RT-PCR using human-specific primers in adult mice. GAPDH was used as internal
control. (C) Expression of CHD1L in liver at different ages was tested by RT-PCR. 18S rRNA was used as loading control.
doi:10.1371/journal.pone.0006727.g002

CHD1L-Transgenic Mice
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pathology and the presence of a glossy appearance on the surface

of the liver between the two groups of animals were compared. In

CHD1L-transgenic mice, a visible liver solid tumor and an

adipoma were observed in two different mice (Fig. 3A). Histology

study confirmed that the liver tumor was HCC (Fig. 3B). Severe

dysplasia lesion was observed in three other CHD1L-transgenic

mice (Fig. 3C). No visible tumor and dysplasia lesion was detected

in wildtype mice (Fig. 3D).

Following ethanol intoxication, the frequency of cell prolifera-

tion between CHD1L-transgenic and wildtype mice was compared

by PCNA staining. The result revealed that the cell proliferation

frequency was significantly higher in transgenic mice (5.5%) than

that of wildtype littermates (1.6%, p,0.05, Fig. 3E). In addition,

the expression of AFP can only be detected in CHD1L-transgenic

mice but not in their wildtype littermates (Fig. 3F). Taken

together, these observations suggest that overexpression of

CHD1L in hepatocytes promotes the susceptibility of tumor

formation in mouse.

Spontaneous tumor formation in CHD1L-transgenic mice
Only first-generation offspring from founder lines #21 and #38

(41 CHD1L-transgenic mice and 39 wildtype mice) were used as

study cohort. Spontaneous tumor formation was observed in 10/

41 (24.4%) transgenic mice, but not in their 39 wild-type

littermates over a monitoring period of 22 months. The places

of tumor formed and their pathological diagnosis were summa-

rized in Table 2. Liver tumors were observed in 4 mice and

histological study revealed that they were all HCC (Fig. 4). In

mouse 2, two liver tumors in similar size were found in different

lobes (Fig. 4B, indicated by arrows). Two other spontaneous

HCC tumors formed in CHD1L-transgenic mice were also shown

in Figure 4 (4C and 4D). In mouse 5, two spontaneous tumors

Figure 3. Ethanol intoxication promotes the susceptibility of liver tumor in CHD1L-transgenic mice. (A) A visible liver tumor (left) and
adipoma (right) were found in CHD1L-transgenic mice following the ethanol exposure. (B) Histological study confirms the liver tumor is HCC.
(C) Representative example of severe dysplasia lesion observed in a CHD1L- transgenic mouse following the ethanol exposure. (D) Representative
example of normal liver tissue observed in a wildtype mouse following the ethanol exposure. (E) PCNA staining results showed that the frequency of
cell proliferation (PCNA positive staining cells, indicated by arrows) was significantly higher in CHD1L-transgenic mice than that in wildtype
littermates. (F) Representative example of AFP positive staining detected in a CHD1L- transgenic mouse and AFP negative staining in a wildtype
mouse, respectively, after the ethanol exposure.
doi:10.1371/journal.pone.0006727.g003

CHD1L-Transgenic Mice
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were found, one in the neck and the other in the uterus.

Histological study revealed that they were salivary acinic cell

adenocarcinoma (Fig. 5A) and uterine adenofibroma, respective-

ly. In 10 CHD1L-transgenic mice suffered with tumor, different

tumor types were found including HCC, salivary acinic cell

adenocarcinoma, (Figs. 5A and 5B), rhabdomyosarcoma

(Fig. 5C), gall bladder adenocarcinoma, and colon adenocarci-

noma (Fig. 5D).

Overexpression of CHD1L promotes cell cycle in
transgenic MEF

Mouse embryonic fibroblasts (MEF) derived from CHD1L-

transgenic mice and their wildtype littermates were established

using embryos at 13.5dpc. Pool of two wildtype MEFs and two

CHD1L-transgenic MEFs were tested and their CHD1L expres-

sion level was determined by RT-PCR (Fig. 6A). DNA content

analysis with MEF cells by flow cytometry found that CHD1L

could facilitate DNA synthesis and G1/S transition (Fig. 6B). To

address the possible pathway involved, expressions of several cell

cycle-related genes, including Rb, Cyclin A, Cyclin D1, Cyclin E,

CDK2, CDK4, p27kip1, and p53 were compared between

wildtype and CHD1L-transgenic MEFs. The results showed that

expressions of Cyclin A, Cyclin D1, CDK2, and CDK4 were

notably up-regulated and a slight increase in CyclinE expression

level, while Rb, p27kip1 and p53 were down-regulated in CHD1L-

transgenic MEFs compared with wildtype MEFs (Fig. 6C).

Discussion

Amplification of 1q21 is one of the most frequently detected

genetic changes in HCC. Activation of oncogene plays critical role

in cancer development and one common mechanism of oncogene

activation is overexpression caused by DNA amplification. Our

previous study showed that amplification of 1q21 is an early event

in HCC development, implying that the putative oncogene within

this region may play important role in the initiation of HCC

pathogenesis [10]. Recently, one candidate oncogene, CHD1L,

was isolated from 1q21 and our previous study has demonstrated

its oncogenic ability. In this report, we described the generation

and characterization of a CHD1L-transgenic mouse model.

CHD1L transgenic mouse model established in this study

provides a very useful tool for investigating CHD1L function and

role in cancer development. Two founders (#21 and #38) were

capable of transmissing the transgene CHD1L to their offspring

and Southern blot analysis found that their integrating sites are

different. Therefore, these two lines were selected for further study.

Spontaneous tumor formation was found only in old CHD1L-

transgenic mice (over 20 months old), implying that the initiation

and progression of HCC carcinogenesis caused by abnormal

CHD1L expression is a long process. Several different types of

tumors were found in CHD1L-transgenic mice including HCC,

salivary, colon, uterine, and gall bladder adenocarcinoma, and

rhabdomyosarcoma. Amplification of 1q has been also frequently

detected in other solid tumors, including colon cancer [11], uterine

cancer [12], and rhabdomyosarcoma [13]. These data suggest that

CHD1L may play an important role in cancer development in

many solid tumors.

To shorten the latency of tumor onset, alcohol intoxication was

employed to induce hepatocyte pathological lesions. Alcohol is one

the major risk factor for hepatocellular carcinoma, especially in

western countries. Alcohol intoxication is a simple but efficient way

to induce liver lesions in cancer-prone marine [14]. Interestingly,

after 12 weeks alcohol treatment, 5/6 of CHD1L-transgenic mice

had liver lesions, including HCC, adipoma, and severe dysplasia.

However, no obvious precancerous lesion was detected in wildtype

controls. In addition, overexpression of CHD1L could increase

hepatocyte proliferation and induce AFP expression in transgenic

liver post alcohol treatment. These results suggest that overexpres-

sion of CHD1L in liver increases the tumor susceptibility.

Promotion of cell proliferation is a major molecular mechanism

of oncogene in cancer development. In this study, we demon-

strated that CHD1L could facilitate DNA synthesis and promoted

G1/S phase transition in CHD1L-transgenic MEFs. This result is

consistent with our previous finding, in which overexpression of

CHD1L in QGY-7703 (HCC cell line) cells could also promote

G1/S phase transition [9]. To further explore the molecular

mechanism of CHD1L in cell cycle promotion, expressions of

several G1/S phase transition checkpoint related proteins were

compared between CHD1L-transgenic and wildtype MEFs. The

results showed that CHD1L could up-regulate Cyclin A, Cyclin

D1, CDK2 and CDK4, and down-regulate Rb, p27Kip1 and p53.

p27Kip1 serves as a key mediator in G1/S transition through Cdk

inhibition and regulating the activity of cyclin D-Cdk4/6 complex

which are essential for S phase entry [15,16]. The reduced

expression of p27Kip1 facilitates the activation of cyclin D-Cdk4/6

complex, resulting in the cyclin D-Cdk4/6-medicated Rb

phosphorylation and destruction of Rb-E2F binding. The

releasing E2F activates the transcription of genes necessary for S

phase entry and progression [17]. Overexpression of CHD1L

might serve as mitogenic signal to induce expression of cyclin D-

Cdk4/6 and inhibit the expression of p27Kip1. In addition, the p53

protein is a transcription factor that upregulates the expression of

p21Waf1/Cip1, which in turn functions as a Cdk2 inhibitor to

control S phase entry via the inactivation of cyclinE-Cdk2

complex. The notable upregulation of Cdk2 in CHD1L-transgenic

MEFs suggested that the dysregulation of the p53–cyclinE-Cdk2

pathway might be also involved in CHD1L-induced G1/S

transition. Taken together, the observations in the present study

strongly support that CHD1L is a novel oncogene responsible for

the 1q21 amplification event in HCC and plays an important role

in the development of HCC via promoting cell cycle.

Table 2. Summarization of spontaneous tumor formation in
CHD1L-transgenic mice.

Mousea Subcategory Organ Pathological Diagnosis

M1 (L21) tumor 1 liver HCC

tumor 2 abdomen wall adipoma

tumor 3 abdomen wall adipoma

M2 (L38) tumor 1 liver HCC

tumor 2 liver HCC

M3 (L38) tumor 1 liver HCC

M4 (L38) tumor 1 liver HCC

M5 (L21) tumor 1 neck salivary acinic cell adenocarcinoma

tumor 2 uterus uterine adenofibroma

M6 (L38) tumor 1 face salivary acinic cell adenocarcinoma

M7 (L38) tumor 1 gall bladder adenocarcinoma

M8 (L38) tumor 1 colon adenocarcinoma

M9 (L38) tumor 1 posterior limb rhabdomyosarcoma

M10 (L21) tumor 1 abdomen wall adipoma

aMouse number was listed as M1 to M10. Offspring from founder #21 or #38
was shown in blanket.

doi:10.1371/journal.pone.0006727.t002

CHD1L-Transgenic Mice
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Materials and Methods

Generation of CHD1L-transgenic mice
For construction of CHD1L-transgenic mice, a 2.8-kb EcoRI–

EcoRI fragment containing the open reading frame of human

CHD1L gene (Gene Bank accession no. AF537213), which was

amplified by PCR from normal human liver cell line LO-2

complementary DNA, was cloned into plasmid pCAGGS. Expres-

sion of CHD1L was driven by a human CMV-IE enhancer linked to

the chicken b-actin promoter, followed by its first exom and intron

(Fig. 1A). The human CHD1L has its own stop codon followed by a

rabbit b-globin poly(A) sequence. The mRNA transcript of the

transgene consists of the first exon of chicken b-actin, which is

transcribed but not translated, followed by the CHD1L transgene.

The generation of CHD1L-transgenic mice was performed using the

standard method [18]. Briefly, the linearized constructs were

injected into one-cell-stage F1 eggs (DBA6C57BL/6), which were

transplanted into pseudo-pregnant females (average 12 eggs per

oviduct).

All resulting pups were screened for the presence of the

transgene by PCR using genomic DNA obtained from tail snips

with a pair of human-specific primers (Forward: 59-AGC-

GCCTGGCTTCTTACTGC; Reverse: 59-GCTTATCCAG-

CAGGTGAAGCTTC). The CHD1L-transgenic founders were

crossed with wildtype F1 (DBA/C57bl6) and their first-generation

offsprings (47 CHD1L-transgenic mice and 45 wildtype mice) were

used as study cohort (Table 1). Mouse endogenous CHD1L

expression was tested by RT-PCR using a pair of mouse-specific

primers (Forward: 59-GGAGGAGGAAGCCTAGAACC; Re-

verse: 59-CGCTGCTTCCTGTCTTTTCT). Animal experimen-

tation was done according to the institutional guidelines

(Association for Assessment and Accreditation of Laboratory

Animal Care International) for animal care. All the animal

experiments were approved by the Committee on the Use of Live

Figure 4. Detection of spontaneous liver tumors in CHD1L-transgenic mice. (A) Representative example of a visible liver tumor in one
CHD1L-transgenic mouse (left), which was diagnosed as HCC by histological study (right). (B) Two liver tumors were found in one CHD1L-transgenic
mouse (left, indicated by arrows) and histological study confirmed they are HCCs. (C and D) Representative examples of other two HCCs observed in
CHD1L-transgenic mice.
doi:10.1371/journal.pone.0006727.g004

CHD1L-Transgenic Mice
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Figure 5. Detection of spontaneous tumors in other organs in CHD1L-transgenic mice. Besides HCC, several other different tumors were
found in CHD1L-transgenic mice including salivary acinic cell adenocarcinoma (A and B), rhabdomyosarcoma (C), and colon adenocarcinoma (D).
doi:10.1371/journal.pone.0006727.g005

Figure 6. Overexpression of CHD1L promotes cell proliferation in CHD1L-transgenic MEF. (A) Detection of CHD1L expression in MEFs from
CHD1L-transgenic (Tg) and wild type (Wt) mice by RT-PCR. GAPDH was used as internal control. (B) Examples of DNA content in CHD1L-transgenic and
wild type MEFs detected by flow cytometry. (C) Western blot analyses indicated that Cyclin D1, Cyclin A and CDK2, 4 were up-regulated, whiles p53, Rb
and p27Kip1 were down-regulated in CHD1L-transgenic MEFs compared with their wild type MEFs (pool of two MEFs). b-actin was used as loading control.
doi:10.1371/journal.pone.0006727.g006

CHD1L-Transgenic Mice
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Animals in Teaching and Research (CULATR), The University of

Hong Kong.

Southern and Northern blot analyses
For Southern blot analysis, 10 mg of genomic DNA was digested

with BamHI, fractionated on 1% agarose gel, transferred to a nylon

membrane, and hybridized overnight at 42uC with 32P-labeled

probe for human CHD1L gene. For Northern blot analysis, 20 mg

of total cellular RNA was size fractionated, transferred to a nylon

membrane, and hybridized with 32P-labeled human CHD1L gene.

Ethanol intoxication
CHD1L-transgenic mice and their wild type littermates (6 mice

for each group) at age of 20-weeks old were fed ad libitum a mixture

containing increasing concentrations of ethanol (10% for 2 days;

15% for 3 days and thereafter 20%) in 20% sucrose during the

entire treatment period (12 weeks). This mixture was the only

source of drinking fluid for the animal for the entire duration of

the experiment. Animals were then kept without ethanol for 4

weeks before sacrificed.

Histological and pathological study
Animals with visible tumors were sacrificed when signs of

distress appeared. Tumors were immediately removed and fixed in

10% formalin for 24 hr. After dehydration, the tumor tissues were

paraffin embedded. Serial sections (5 mm in thickness) were

prepared, stained with Mayer’s hematoxylin-eosin (H&E), and

examined under microscope by two independent pathologists.

Immunohistochemistry (IHC) was performed using standard

streptavidin-biotin-peroxidase complex method with anti PCNA

and AFP (Santa Cruz Biotechnology, Santa Cruz, CA) antibodies.

Generation of mouse embryo fibroblast (MEF)
Pregnant female mouse at 13.5 dpc was sacrificed and embryos

were collected. The embryos were minced thoroughly with sterile

scissors and then digested in 0.2% typsin (Sigma, St. Louis, MO) at

37uC for 10 min. The cell suspension was cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% FBS

at 37uC.

Detection of DNA content by flow cytometry
DNA content in CHD1L-transgenic MEF and wildtype MEF

was compared by flow cytometry. Cells were fixed in 70% ethanol

for at least 1 hr and stained with staining solution (100 mg/ml

RNase, 0.02% Triton X-100, 10 mg/ml propidium iodide) for

1 hr. Samples were analyzed using FACSCalibur flow cytometer

and CellQuest software (BD Biosciences, San Jose, CA).

Western blotting analysis
For Western blotting, 20 mg of protein extract was separated by

SDS–polyacrylamide gel electrophoresis and transferred to a

PVDF Hybond-P membrane (Amersham Pharmacia Biotechnol-

ogy, Piscataway, NJ). Western blot analyses were performed by a

standard method with antibodies to Rb, Cyclin D1, Cyclin A,

Cyclin E, CDK2, CDK4, p27kip1, p53 and b-Actin (Cell Signaling

Technology, Beverley, MA).

Statistical analysis
The difference of PCNA positive cells in CHD1L-transgenic

liver and wildtype counterparts was compared with Student’s T-

test. The difference of DNA content between CHD1L-transgenic

and wildtype MEFs was compared with Student’s T-test. P values

of ,0.05 were considered to be significant.
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