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Abstract
NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes
an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles φ and
ψ (G. Cornilescu et al. J. Biomol. NMR. 13, 289–302, 1999). Extension of the original 20-protein
database to 200 proteins increased the fraction of residues for which backbone angles could be
predicted from 65 to 74%, while reducing the error rate from 3 to 2.5 percent. Addition of a two-
layer neural network filter to the database fragment selection process forms the basis for a new
program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error
rate. Excluding the 2.5% of residues for which TALOS makes predictions that strongly differ from
those observed in the crystalline state, the accuracy of predicted φ and ψ angles, equals ±13°. Large
discrepancies between predictions and crystal structures are primarily limited to loop regions, and
for the few cases where multiple X-ray structures are available such residues are often found in
different states in the different structures. The TALOS+ output includes predictions for individual
residues with missing chemical shifts, and the neural network component of the program also predicts
secondary structure with good accuracy.
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Introduction
Chemical shifts are well recognized as important reporters on protein structure. Strong
correlations between local structure and chemical shifts have been established by quantum
chemistry methods, including both density functional theory (DFT) and Hartree Fock
calculations (Xu and Case 2001; Czinki and Csaszar 2007; Moon and Case 2007; Vila et al.
2007; Villegas et al. 2007; Vila et al. 2008), and by alternate computational (Haigh and Mallion
1979; Williamson and Asakura 1993; Case 1995) or fully empirical methods (Wagner et al.
1983; Saito 1986; Spera and Bax 1991; Wishart et al. 1991; Williamson and Asakura 1993;
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Williamson et al. 1995; Asakura et al. 1997; Ando et al. 1998; Cornilescu et al. 1999; Castellani
et al. 2003; Neal et al. 2003; Neal et al. 2006; Shen and Bax 2007). The need for streamlining
the protein structure determination process has been well recognized (Billeter et al. 2008), and
it is clear that recent chemical shift based approaches offer an attractive route to expedite this
process, at least for smaller proteins (Cavalli et al. 2007; Shen et al. 2008; Wishart et al.
2008; Shen et al. 2009). At the same time, conventional structure determination efforts
frequently take advantage of the empirical relation between chemical shifts and the backbone
torsion angles φ and ψ, most commonly predicted by the program TALOS (Cornilescu et al.
1999), as a complement to conventional NOE distance restraints or to internuclear distances
obtained by solid-state NMR.

In its original implementation, the TALOS (Torsion Angle Likeliness Obtained from Shift and
Sequence Similarity) program was based on a small, 20-protein database for which complete
or nearly complete heteronuclear resonance assignments and high resolution X-ray coordinates
were available. In validation trials, the original program reported consistent predictions of φ
and ψ for on average 65% of the residues. Subsequent expansion of the database to 78 proteins,
implemented in post-2003 releases of the program, yield consistent predictions of φ and ψ for
on average 72% of the protein residues, with an error rate decreased to below 3% (unpublished
results). Although at a first glance these statistics appear quite encouraging, the vast majority
of the predictions pertain to residues located in elements of well-defined secondary structure,
where conventional NMR restraints often already define local structure quite well. The 28%
of residues for which TALOS obtains ambiguous results are mostly located in regions of
irregular structure, including loops and turns. We here report an extension of the original
program, named TALOS+, which extends the fraction of consistent predictions to 88%, i.e.,
which cuts in half the fraction of residues unpredictable by TALOS, while at the same time
slightly lowering the error rate to below 2.5 percent.

TALOS+ is largely based on the same concept as the original TALOS program, and now
exploits a larger database of 200 proteins originally taken from the BMRB (Markley et al.
2008) for use in the chemical shift prediction program SPARTA (Shen and Bax 2007), but
more importantly it includes a neural network component whose output is used as an additional
term in the conventional TALOS database search. The neural network component of the
program relies on a well established computational framework that optimizes the relation
between a large number or input variables, such as amino acid types and chemical shifts, and
any given output parameter. The latter, in our application, can be the secondary structure of
any given amino acid or the area of the Ramachandran map where the residue resides.
Importantly, after training on a database for which the input and output parameters are known,
the neural network not only identifies the most likely answer when applied to datasets where
the output is unknown, but it also reports a reliable estimate of the likelihood that any of the
possible output values is applicable. Neural network algorithms are widely used in information
processing, and have found numerous applications in NMR data analysis too. These include
work on facilitating resonance assignment (Hare and Prestegard 1994; Huang et al. 1997; Pons
and Delsuc 1999), identification of secondary structure in the presence and absence of NMR
chemical shift data (Andreassen et al. 1990; Choy et al. 1997; Hung and Samudrala 2003), and
approaches that permit prediction of chemical shifts based on known protein structure (Meiler
2003; Moon and Case 2007). Here, the inverse of this latter application is used to identify the
approximate region of the Ramachandran map where a given residue resides, based on the
chemical shifts and residue type of the residue in question, as well as those of its immediate
neighbors in the protein sequence.

In order to expand the program’s ability to predict backbone torsion angles, TALOS+ now also
considers the frequently encountered cases where residue assignments are lacking. Although
the fraction of such residues for which consistent predictions can be made tends to be
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significantly lower, the reliability of such predictions remains high. For convenience, and in
order to prevent assignment of backbone torsion angles to regions that are dynamically
disordered, TALOS+ also reports an estimated backbone order parameter derived from the
chemical shifts in a way recently described by (Berjanskii and Wishart 2008).

Methods
Preparation of the NMR database

The original TALOS protein structure database of 20 proteins (Cornilescu et al. 1999) in recent
years has been upgraded to include 78 proteins, and this database is used in post-2003 release
versions of the program. The current work utilizes the further expanded database of 200
proteins, originally developed for the SPARTA chemical shift prediction program (Shen and
Bax 2007). This database, extracted from the BMRB, contains proteins with nearly complete
backbone NMR chemical shifts (δ15N, δ13C′, δ13Cα, δ13Cβ, δ1Hα and δ1HN) as well as PDB
coordinates from high-resolution X-ray structures. Details regarding the preparation of the
database, including calibration of reference frequencies, etc, have been described previously
(Shen and Bax 2007). For the current application, if the database entry contains two or less
assigned chemical shifts for any given residue, these chemical shift entries are removed. For
residues with incomplete sets of chemical shifts (less than six for non-Gly residues, less than
five for Gly), a standard TALOS database search (Cornilescu et al. 1999) was performed to
find the average (secondary) chemical shifts for the atoms of the center residues of the best 10
matched triplets. These predicted secondary chemical shifts were then assigned to the atom(s)
with missing experimental chemical shifts of this residue. Therefore, after this adjustment the
database contains residues with either complete 15N, 13C′, 13Cα, 13Cβ, 1Hα and 1HN chemical
shifts, or no chemical shift values at all.

In order to study relations between NMR chemical shifts and backbone torsion angles, a three-
state backbone “φ/ψ distribution” code is assigned to each residue: [1 0 0] (Alpha or “A”;
−160<φ<0 and −70< ψ<60), [0 0 1] (Left-handed helix, here referred to as positive-φ or “P”;
0<φ<160 and −60< ψ<95), and [0 1 0] (Beta or “B”, comprising all others, including some
residues with positive φ angles outside the P region). These regions are depicted in Figure 1A.
For each residue in the database, a field was added to indicate the DSSP secondary structure
(Kabsch and Sander 1983), determined from the X-ray coordinates, and further regrouped into
three states: H (Helix; DSSP classification of H or G), E (Extended strand; E or B) and L (Loop;
comprising DSSP classifications I, S, T and C).

Neural network architecture and training
TALOS+ uses a two-level feed-forward multilayer artificial neural network (ANN) to predict
the location in φ/ψ space, or the secondary structure, based on a residue’s NMR chemical shifts
and amino acid type, and those of its adjacent residues.

For the first level neural network (Figure 2), the input signals to the first layer consist of tri-
peptide parameter sets derived from the above described database. Each tripeptide set has 78
nodes, representing six secondary chemical shift values and twenty amino acid type similarity
scores for each residue. In the hidden layer of the network, where each node receives the
weighted sum of the input layer nodes as a signal, 20 such nodes (or hidden neurons) are used.
The output of a hidden layer node is obtained through a nodal transformation function; here a
standard sigmoid function is used (see eq 1).

For the purpose of predicting the torsion angle distribution from NMR chemical shifts, the
above described three-state φ/ψ torsion angle distribution of the center residue of each tri-
peptide in the database is used as the target of the first level network: [1 0 0] for alpha (A), [0
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1 0] for beta (B), and [0 0 1] for positive-φ (P). Each output value has one node with a linear
activation function (f2(x) = x, eq 1). This procedure is schematically shown in Supplementary
Information Figure S1. The empirical relationship between the 3-state φ/ψ torsion angle
distribution and NMR chemical shift data received by the first level network is given by

(1)

with f1(x) = 1/(1+e−x), and f2(x) = x. X1×78 is the input data vector consisting of 78 elements;
W(1) and b(1) are the weight matrix and bias, respectively, for the connection between the nodes
in the input and the hidden layer; W(2) and b(2) are the weight matrix and bias, for the connection
between the nodes in the hidden and output layer; P1×3 is the training target or the output vector.

The second level of neural network, as implemented here, is used to smoothen the prediction
by accounting for commonly observed patterns in proteins, and follows its use in the well-
known sequence-based secondary structure prediction programs PHD (Rost and Sander
1993) and PsiPred (Jones 1999). The two-level artificial neural network shown in Figure 1
uses the input information from three sequential residues for the first level, and the input from
five sequential residues for the second level, and will be referred to as a 3–5 ANN model. A
more detailed discussion of the slightly different ANN models used in this study is presented
below.

For all ANN models used, the input layer for the second level uses the parameter set of the
three-state φ/ψ torsion angle distribution predicted by the first level of the network for each
available tri-peptide in the database, i.e., each set has 15 nodes when the input of five sequential
residues is used. The hidden layer contains 6 nodes, and the three-state φ/ψ torsion angle
distribution of the center residue of the corresponding pentapeptide in the database is used in
the output layer and as the target of the neural network. The empirical formula of the neural
network is similar to eq 1:

[2]

where X1×15 is the input vector containing the 15 nodes; the definitions of weights, biases, and
activation functions are the same as those in eq 1. Eqs 1 and 2 of this two-level network, with
the optimized weights and biases obtained from the training dataset, are then used to predict
the 3-state φ/ψ torsion angle distribution for residues in any protein of unknown structure. The
eq 2 network output vector, P1×3, represents the probabilities for the query residue to be within
each of the three states: alpha, beta and positive-φ.

The final “predicted state” of a given residue is assigned to the state with the largest probability.
For later analysis of the prediction performance of the network, the confidence of a given
prediction is defined as the difference between the probabilities of the two most favored
predicted states.

Several slight modifications of the above two-level neural network have been used also, to
allow application for cases where missing chemical shift data do not permit use of the above
3–5 ANN model.

1. 3–3 ANN model. Similar to 3–5 ANN model, but the data used in the input layer of
the second level neural network are from tripeptides instead of pentapeptides, i.e.,
3×3 nodes are used in the input layer, allowing predictions nearer to the protein termini
and nearer to segments where two or more sequential residues lack chemical shifts.
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2. 3–3 ANN(i−1) model. Similar to the 3–3 ANN model, except that the input layer of
the first-level neural network uses tri-peptide parameter sets lacking the six chemical
shifts of the first residue, i−1, i.e., each input layer set has 72 nodes.

3. 3–3 ANN(i) model. Similar to the 3–3 ANN(i−1) model, but lacking chemical shifts
for the center residue of the triplet.

4. 3–3 ANN(i+1) model. Similar to the 3–3 ANN(i−1) model, but lacking chemical shifts
for the last residue of the triplet.

In order to study the relation between the three-state secondary structure (helix or H, extended
strand, or E, and loop, L) and NMR chemical shifts, the same two-level neural network
architectures are used, in which the three-state secondary structure classification of the center
residue of the corresponding penta- or tri-peptide in the database is used in the output layer
and as the target for both levels of the neural network.

Neural network training
The weights and bias terms were determined by training of the network, using the chemical
shift and sequence information of the 200-protein database, described above. To prevent over-
training, a three-fold training and validation procedure was performed for each above
mentioned neural network model by dividing the input training dataset into three input subsets
followed by separate training of the corresponding neural networks. For each of these three
network optimizations, one input subset was excluded from the training dataset but then used
to evaluate the performance of the neural network during the training. This subset, referred as
the validation dataset, was not used to calculate the weight changes in this network. Training
of the network was terminated when the performance of the network on the validation dataset,
represented by the mean squared errors (MSE) between the predicted values and targets, began
to degrade

Neural network testing and validation
In addition to the above three-fold training and validation, a second validation procedure was
performed for a set of 13 additional proteins, which have (1) (nearly) complete chemical shifts,
(2) a good quality reference structure, (3) a wide range of folds and (4) no homologous protein
(≥30% sequence identity) in the 200-protein database. The neural network prediction used for
these 13 proteins was obtained by averaging over the outputs from the three networks separately
trained above.

To inspect the network prediction performance of a given state for a protein or dataset, an
accuracy score Q is defined (Rost and Sander 1993):

(3)

which describes for state i the ratio of residues correctly predicted to be in state i

( ) relative to those experimentally observed to be in state i ( ). The overall
network prediction performance for all three states in a protein or dataset can be measured by
a Q3 score:

Shen et al. Page 5

J Biomol NMR. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

Similarly, the prediction reliability is evaluated by a true-positive ratio:

(5)

which describes for state i the ratio of residues correctly predicted to be in state i

( ) relative to those predicted to be in state i ( ). In our TALOS+ application
of neural network prediction, the weight assigned to such a prediction depends on the
confidence reported by the neural network. We therefore also define the values of eqs 3–5 for
results reported at a confidence level >c%, and refer to these as Qc(i), Q3

c(i), and TPc(i).

TALOS+ database search approach for predicting backbone φ/ψ angles
The predicted φ/ψ torsion angle classification, obtained by using the above neural network
approach, was used as an additional input when carrying out the regular TALOS backbone
torsion angle predictions (Cornilescu et al. 1999). This neural network supplemented software
package is named TALOS+.

For a given query tri-peptide [i−1, i, i+1], the original TALOS program searches its database
for the ten tri-peptides [j−1, j, j+1]k (k=1,…,10) best-matched in terms of backbone chemical
shift and residue type. When at least 9 out of the 10 [φj/ψj]k cluster in the same region of the
Ramachandran map, the original TALOS program made a φ/ψ prediction for residue i from
the average values of the cluster. TALOS+ uses a modified similarity score, accounting for the
output of the neural network φ/ψ distribution predictions:

(6)

where the terms accounting for the difference in residue type, ΔRestype, and the difference in
secondary chemical shift (ΔδXi+n − ΔδXj+n) of nucleus X, including their weighting coefficients
kn

0 and kn
X, are identical to those of the standard TALOS similarity score (eq. 1, Cornilescu

et al. 1999), X = 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C′. The new terms  account for the
difference of the φ/ψ states predicted for query residue i and observed for database residue j:

(7)

where Pi (sj) is the predicted probability for query residue i to be in state sj (the observed state
of the corresponding residue of the database tri-peptide). The weighting factors for each of the

 terms are given by kn
s = 0.2, 1, 0.2 for n=−1,0,1. A confidence threshold value
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T = 0.8 is used in the default parameterization of the program; when the neural network
prediction has a confidence below this value, a less steep weighting factor is used compared
to residues whose φ/ψ state is predicted at high confidence, aimed at eliminating residues with
φ/ψ states that the neural network deems highly unlikely.

With the addition of the neural network component in eq 7, which tends to narrow the
distribution of φ/ψ angles in the top-10 selected triplets considerably, the default setting for
accepting a TALOS+ prediction as consistent, or “good” has been changed to cases where the
center residues of all 10 selected fragments cluster in the same state, A, B, or P, which requires
a confidence level greater than 0.6 by its ANN φ/ψ prediction; otherwise, such a prediction is
designated as “ambiguous”. The TALOS+ database search and prediction procedure is shown
schematically in Figure 3. Although not indicated in this figure, the neural network component
of the program runs by default in the 3–5 ANN mode, but automatically switches to the 3–3
ANN model when chemical shifts are not available for five sequential residues. Moreover,
when the first, center, or last residue in the triplet under consideration lacks chemical shifts,
the neural network uses the 3–3 ANN(i−1), 3–3 ANN(i), or 3–3 ANN(i+1) model, respectively.
These features are implemented in the TALOS+ program in a fully automated manner and
therefore do not require user intervention. Predictions for these cases with partially missing
chemical shifts extend the fraction of residues for which φ/ψ angles can be predicted at only a
small cost in accuracy (vide infra). Additional recommendations regarding the use and
interpretation of TALOS+ are available as Supporting Information. The TALOS+ database
search procedure is performed by a program largely written in C++, which is several orders of
magnitude faster than the original tcl script driving the TALOS search, and thereby far offsets
the slowdown caused by the larger database employed by TALOS+. On a PC with a single 2.4
GHz CPU, the TALOS+ database search procedure takes ca 15 seconds for a 100-residue
protein.

Results and discussion
φ/ψ distribution from neural network prediction

The neural network analysis used by TALOS+ is trained to predict at the highest possible
accuracy the φ/ψ angle state (Alpha, Beta, or Positive-φ) on the basis of the backbone NMR
chemical shifts and residue type of the residue itself and its neighbors in the sequence. The
200-protein database used for training the neural network comprised a total of 23,257 residues,
and the subset of 19,894 residues with three or more chemical shifts assigned have been used
for training of the neural network models. The φ/ψ angle distribution of the full set of database
residues is shown in Figure 1A; the number of residues in state Alpha, Beta, and Positive-φ is
11701, 10596 and 960, respectively.

When ignoring the confidence level of the neural network prediction, correct assignment (TP
(i); eq 5) of the Alpha, Beta, and Positive-φ regions is found for 96.6 and 96.3% of the database
residues for the 3–5 ANN and 3–3 ANN models, respectively (Table S1). These numbers drop
to about 94% when one of the residues in the triplet is lacking chemical shifts (Table S1).
Importantly, when limiting the evaluation to residues whose φ/ψ region can be predicted at a
confidence ≥80%, the success rate TP80(i) is much higher, 98.7%, almost independently of the
neural network type used (Table S1). However, as expected, the fraction of residues for which
a confidence level ≥80% is obtained drops when fewer data are available, from 89% when the
3–5 ANN model can be used, to 81% when the chemical shifts for the residue in question are
missing (but shifts for the adjacent residues are available; model 3–3 ANN(i)). When the
confidence level threshold is raised to 0.9, the error rate in the neural network output drops to
well below 1% (Figure 1B–D). An average TP80(i) score of 99.0% for 13 test proteins which
are not part of the 200-protein database used during neural network training (Table S3) is very
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similar to what is seen for the database itself and confirms that no over-training of the neural
network has taken place.

TALOS+ backbone φ/ψ torsion angle prediction
The TALOS+ user interface is very similar to that of the original TALOS program, (Figure 4).
New features include a marking on the Ramachandran map of the ANN-predicted probability
to find any given residue in the Alpha, Beta, or Positive-φ region, and two graphs displaying
the RCI-derived (Berjanskii and Wishart 2005;Berjanskii and Wishart 2008) order parameter,
S2, and the ANN-predicted secondary structure. For the latter, the length of the bars corresponds
to probability of a residue to be helix or β-strand. In the sequence display, unambiguous
predictions are marked in green, ambiguous results in yellow, and residues predicted to be
dynamically disordered are colored in blue. As with the original TALOS program, separate
output files containing the details of each prediction are also generated.

Backbone torsion angles were predicted by both the original TALOS and the new TALOS+
programs for all of the 200 database proteins, using the cross-validation “leave-one-out”
manner, i.e., for predicting the backbone angles of any given protein that protein was removed
from the database prior to the search. Results are summarized in Table 1. The original TALOS
method, on average, makes “unambiguous” predictions for about 74% of the residues when
applied to our larger database, with 2.48% of the predicted φ/ψ torsion angles having large
errors relative to those observed in the reference X-ray structures. As seen in Table 1, the root-
mean-square differences (rmsd) between the predicted and crystallographically observed
backbone angles are slightly larger for the angles reported by TALOS+ than by TALOS.
However, this small increase results primarily from the fact that TALOS+ includes far more
predictions outside regions of regular secondary structure. When restricting the rmsd
evaluation to the residues predicted by TALOS, the rmsd obtained by TALOS+ is actually
slightly lower (Table 1). With TALOS+, the number of “unambiguous” predictions jumps to
88.5%, while the error rate decreases slightly to 2.46%. More details regarding how well
TALOS and TALOS+ compare for different residue types, and for the different proteins in the
database is provided in Supplementary Information Figures S2 and S3.

The performance of TALOS+ predictions was further validated for 13 proteins with various
folds and absent from the TALOS database (Table 2). These include the small proteins GB3
(Ulmer et al. 2003), DinI (Ramirez et al. 2000), BAF (Cai et al. 1998), and TolR (Parsons et
al. 2008), determined at high resolution by NMR with the aid of RDCs, and nine proteins whose
NMR assignments and X-ray structures have recently become available (Table 2). The statistics
for the TALOS+ predictions on these new proteins are very similar to those observed for the
200 protein database, with 90% of the residues predicted as “unambiguous”, and an error rate
below 2.0%.

It is perhaps interesting to note that our reported error rate of the TALOS+ predictions in all
likelihood significantly overestimates the true error rate: Many of the “erroneous” predictions
occur outside of regions of secondary structure, where the X-ray and solution structures may
actually differ from one another. An interesting example in this respect is the protein FluA, for
which multiple X-ray structures are available. Comparing the TALOS+ predictions to these
structures shows three to seven “errors”, depending on which reference structure is used (Figure
S4; Table S4). However, not a single one of these “erroneous” predictions differs consistently
with all three X-ray structures, suggesting that the TALOS+ result simply reflects the difference
between the solution state of the protein and the various states of these residues observed by
X-ray crystallography.
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Secondary structure prediction by TALOS+
NMR chemical shifts have been widely used to identify the secondary structure elements in
proteins (Wishart et al. 1992; Huang et al. 1997; Wang and Jardetzky 2002; Hung and
Samudrala 2003). Here, we also evaluate the prediction performance of our neural network for
secondary structure prediction, using the same input data as used above for grouping the
backbone torsion angles in three regions, and we include the predicted secondary structure as
an additional feature of the TALOS+ program.

By training a 3–3 ANN model, evaluation of TALOS+ secondary structure prediction over the
200 protein database, using the cross validation “leave one out” method, yields Q ratios (eq 4)
of 94.3%, 88.3% and 82.4% for helix, extended, and loop residues, respectively. The overall
Q3 of 88.9% compares favorably with the 82–89% Q3 range reported by the other NMR-based
secondary structure prediction programs, perhaps because TALOS+ uses a larger set of
backbone chemical shifts per residue than most of the other programs.

Evaluation of the secondary structure prediction efficiency on the set of 13 proteins whose data
are not part of the database yields very similar results, again proving that over-training of our
neural network was successfully avoided. Details of the secondary structure prediction
efficiency of TALOS+ and the popular CSI (Wishart et al. 1992), PSSI (Wang and Jardetzky
2002), and PsiCSI (Hung and Samudrala 2003) programs are presented in Table S3.

Concluding Remarks
TALOS+ offers a significant extension of our ability to predict protein backbone torsion angles
from chemical shifts. Compared to the original TALOS program, the fraction of residues whose
backbone angles cannot be predicted unambiguously is reduced by more than 50%. The
additional residues whose torsion angles now can be predicted reliably are located outside of
regions of secondary structure, where typically such restraints are most needed. Considering
that backbone chemical shifts are obtained early on during the NMR study of a protein, these
results can guide the further data analysis and may prove particularly important for the study
of larger proteins, where typically the number of NOE restraints per residue tends to drop
significantly. In this respect it is interesting to note that addition of the unambiguous TALOS
+ torsion angle predictions for the protein malate synthase G, the largest single chain protein
whose structure has been determined by NMR, falls closer to the X-ray structure (2.6 vs 3.3 Å
Cα rmsd) when the new TALOS+ restraints are included instead of the TALOS restraints used
originally (Tugarinov et al. 2005; Grishaev et al. 2008).

The improvement in performance of TALOS+ over TALOS is primarily the result of its
incorporation of the neural network output into the selection of database fragments that most
closely match the residues in the query protein. It is conceivable that with further training and
refinement, in combination with an even larger database, small additional improvements may
be attainable. On the other hand, a significant fraction of the residues whose backbone torsion
angles cannot be predicted unambiguously by TALOS+ exhibit high amplitude backbone
motions, as evidenced by their RCI-derived order parameters, and often are found at the termini
of the protein or in longer loop regions. For such regions, it is unlikely that further
improvements to TALOS+ will provide significant enhancements.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Prediction of the three-state φ/ψ distribution using a neural network with a 3–3 ANN model.
(A) φ/ψ distribution of the residues in the 200-protein TALOS database. Boxed areas marking
the 3-state φ/ψ regions for Alpha and Positive-φ, with the remainder designated Beta, also
shown (see Methods). Note that the Beta region also includes some residues with positive φ
angles outside of the left-handed helical region. (B,C,D) φ/ψ distributions of residues with ≥0.9
confidence for their 3-state φ/ψ neural network prediction for (B) “Alpha”, (C) “Beta” and (D)
“Positive-φ” predictions. Correct predictions are shown in green, and false predictions in red.
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Figure 2.
Architecture of the two-level feed-forward artificial neural network used to predict the region
of the Ramachandran map in which a given residue resides. The ANN calculates the probability
for any center residue of a tripeptide fragment to reside in one of the three-state φ/ψ torsion
angle regions. The ANN uses as input for the first level feed-forward prediction the known
parameters characterizing each of the three residues of the tripeptide and is trained on the 200-
protein database to predict the known output φ/ψ state. Besides the six chemical shifts, input
parameters for each residue of the tripeptide are represented by a 20-dimensional vector,
consisting of the coefficients of its row in the BLOSUM62 matrix, widely used in calculating
sequence alignment (see http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=sef.figgrp.194). The
total of 78 input parameters (aqua) per tripeptide are used to predict the probability for
occupation of each of the three φ/ψ states by the center residue of each tripeptide (yellow),
used as input for the second level. 20 hidden nodes (grey) are used for the first level of the
ANN (Supplementary Figure 1). The ANN output of the first level for 5 sequential residues is
used to fine-tune prediction of the φ/ψ state (red), using a hidden level consisting of six nodes
(grey). For more details, see main text.
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Figure 3.
Flow diagram for the TALOS+ program.
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Figure 4.
TALOS+ graphic user interface, displaying results for residue L8 of query protein ubiquitin.
The left panel shows a scatter plot of the φ/ψ angles of the 10 closest database matches,
superimposed on a Ramachandran map of the favored conformations of a Leu residue. The
ANN Alpha, Beta and Positive-φ scores for L8 are also marked on the plot, in this case 1.00,
0.00, and 0.00, respectively. The top right panel displays the sequence of the protein with
residues for which no prediction is obtained marked in light grey, consistent predictions in
green, ambiguous predictions in yellow, and dynamic residues (with RCI-S2 <0.5) in blue. The
RCI-S2 value is shown as a function of residue number in the bottom right panel, together with
the predicted secondary structure (red, helix; aqua, β-sheet). The height of the bars reflects the
probability assigned by the neural network secondary structure prediction.
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