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It was established decades ago that
excitation–contraction (EC) coupling relies
on the depolarization-dependent release
of stored calcium for skeletal muscle
contraction and since that time considerable
effort by many groups have detailed
the molecular mechanism of calcium
release underlying EC coupling (Edman
& Grieve, 1964; Caputo & Gimenez,
1967; Luttgau & Oetliker, 1968). More
recently, growing evidence suggests that
alternative calcium signalling pathways exist
in skeletal muscles that rely on calcium
entry (Hopf et al. 1996; Kurebayashi &
Ogawa, 2001). In this symposium, R. T.
Dirksen provided an important over-
view of calcium entry in skeletal muscle
(Dirksen, 2009). Two forms of Ca2+

entry have been characterized in skeletal
muscle fibres: excitation-coupled calcium
entry (ECCE) and store-operated calcium
entry (SOCE) (Williams & Rosenberg,
2002; Cherednichenko et al. 2004). ECCE
is activated in muscle cells following
prolonged membrane depolarization that
is independent of the calcium stores.
ECCE requires functioning L-type calcium
channel (LTCC) and ryanodine receptor
(RYR1) channels, but the molecular identity
of the pore remains undefined although
it is likely to involve the LTCC (Hurne
et al. 2005; Bannister et al. 2008, 2009).
ECCE is altered in malignant hyperthermia
(MH) and may contribute to the disordered
calcium signalling found in muscle fibres of
MH patients (Cherednichenko et al. 2008).
SOCE on the other hand requires depletion
of the internal stores and has been best
characterized in non-excitable cells (Putney,
1986, 2007). SOCE in skeletal muscle was
described some time ago in myotubes (Hopf
et al. 1996), but it was not until the discovery
of two important molecules, stromal inter-
action molecule 1 (STIM1) and Orai1 in
non-excitable cells, that the importance of

SOCE was recognized in muscle (Stiber et al.
2008a). SOCE is likely to be important
for sustaining calcium stores to prevent
muscle weakness and contribute calcium
needed to modulate muscle-specific gene
expression. Key questions raised during
this symposium include the identity of the
molecular components of these pathways,
the interrelationship of ECCE, SOCE and
EC coupling, and finally, the relevance of
these pathways to muscle performance and
disease.

STIM1 is a single-pass, transmembrane
phosphoprotein that was initially cloned
from stromal cells involved in pre-B cell
differentiation, and has been implicated
as a tumour suppressor for rhabdoid
tumours and rhabdomyosarcoma cell lines
(Oritani & Kincade, 1996; Manji et al.
2000). STIM1 contains several domains
that include an EF-hand domain, a
sterile-α-motif (SAM) domain at the
N-terminus, and two coiled-coil regions
and a proline-rich region at the C-terminus
(Putney, 2007). The EF-hand domain of
STIM1 has a high affinity for calcium
(200–600 μM range) and is located in
the lumen of the endoplasmic reticulum
(ER), where it is thought to sense changes
in calcium store content (Stathopulos
et al. 2006). The coiled-coil domains are
located in the cytosolic C-terminus and
are important in the oligomerization and
punctae formation described for STIM1
and consequent activation of store-operated
calcium (SOC) channels (Liou et al. 2007).
Orai1 was identified simultaneously by high
throughput screening and is the mutated
gene responsible for a familial form of severe
combined immunodeficiency (SCID). The
Orai channel family consists of three family
members that form a highly selective
calcium channel by tetramerization. STIM1
and Orai1 are both expressed in skeletal
muscle, and mice lacking STIM1 and Orai1
display reduced muscle mass. An important
aspect of future work will need to focus
on why these mice with defective SOCE
manifest reduced muscle mass and early
lethality.

Three basic models for SOCE have
developed in recent years: two of
these involve conformational coupling
between the Transient Receptor Potential
channels (TRPC) and either the inositol
trisphosphate receptor (IP3R) and/or RYR1

and a third that involves physical inter-
action of STIM1 and Orai1 (Kiselyov
et al. 2000; Lee et al. 2006). Dr Dirksen
presented data developed in his lab that
tested each of these models as the
mechanism for SOCE. He determined that
TRPC3 channels do not contribute to
SOCE in myotubes (Lyfenko & Dirksen,
2008). Here, TRPC3 channel fragments
that interrupt the TRPC3/RYR1 inter-
action did not prevent SOCE. Whether
additional TRPC channels function as
SOC channels in muscle remains to be
determined, particularly since TRPC1 is
expressed in muscle as well (Stiber et al.
2008b). Data were also presented that
indicated SOCE in myotubes did not require
calcium release from the RYR1 channels as
RYR1−/− myotubes displayed intact SOCE.
It is clear from this work that SOCE
is not mediated through TRPC3/RYR1
conformational coupling, but it remains to
be determined if STIM1 in cooperation with
TRPC channels provides calcium entry in
muscle (Liao et al. 2007).

The importance of STIM1 in mediating
SOCE in muscle fibres is clear from studies
of STIM1 knockout mice where loss of
STIM1 in muscle leads to a profound
reduction in SOCE. Muscles from mice
lacking a functional STIM1 manifest skeletal
muscle weakness and neonatal lethality
(Stiber et al. 2008a). We observed both
reduced force from tetanic contractions and
loss of force when the muscle was stimulated
under fatiguing conditions. Several possible
mechanisms may account for the reduced
force generation and weakness observed in
STIM1-deficient mice (Allen et al. 2008).
For example, muscles from STIM1-deficient
mice display reduced expression of contrac-
tile proteins and the calcium pump
SERCA1. It is possible that a reduction in
the number of sarcomeres may account for
the reduced force generation. Likewise the
reduced SERCA1 expression may lead to
an inability to generate force as seen in
muscles of patients with Brody’s disease
and mice lacking SERCA1a (Pan et al.
2003). On the other hand, proliferation
of abnormal mitochondria in muscles
lacking STIM1 may limit the available
energy supply needed to maintain contra-
ctile force. Finally, given the ubiquitous
expression of STIM1 it is possible that
the muscle weakness seen in STIM1-null
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animals results from defective SOCE in cells
other than muscle, e.g. cells of the vessel wall
(Abdullaev et al. 2008). Therefore strategies
designed to delete the STIM1 gene in
skeletal muscle will probably help determine
how much of the pathology observed in
these mice results from the loss of muscle
SOCE.

What are the SOC channels governing
calcium entry in muscle? The best evidence
to date suggests that Orai1 is the muscle SOC
channel in part because patients carrying
a loss of function mutation in the Orai1
gene exhibit a skeletal myopathy (Feske
et al. 2006). While the precise location of
Orai1 within skeletal muscle membranes
remains to be defined (e.g. T-tubules or
sarcolemma), Orai1 can be detected in
skeletal muscle with Orai1-specific anti-
bodies (Gwack et al. 2008). The presence
of Orai1 in the muscle membranes is
supported by imaging studies measuring
SOCE from isolated flexor digitorum brevis
(FDB) fibres of wild-type mice. Here,
skinned muscle fibres with sealed T-tubules
were imaged with a novel technique (SEER)
and revealed the rapid onset of SOCE
following store depletion (Launikonis &
Rı́os, 2007). Four Orai1 subunits assemble
into tetramers of the channel making a
dominant negative approach useful for loss
of function studies. In fact, expression
of the Orai E108Q mutant channel in
cultured myotubes and isolated FDB fibres
by the Dirksen group effectively blocked
SOCE in muscle (Lyfenko & Dirksen, 2008).
Given the obvious impairment of SOCE
in muscle fibres expressing Orai1 E108Q
mutants, it will be important to determine
if mice carrying the Orai1 E108Q mutant
channel only in skeletal muscle develop
muscle growth defects that phenocopy
those defects observed in STIM1- and
Orai-null mice (Stiber et al. 2008a; Vig et al.
2008).

Accumulating evidence suggests that
calcium entry does influence calcium trans-
ients in skeletal muscle through distinct
mechanisms involving either membrane
depolarization (ECCE) or internal calcium
store depletion (SOCE). Recent findings
implicate these calcium entry pathways in
distinct skeletal muscle diseases. Further
work will be needed to identify all of the
molecular components of these complexes.
But it is likely that a better under-
standing of these pathways will provide
novel therapeutic targets for muscle atrophy
and disease.
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