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Small babies from a population with higher infant mortality often have better survival than small babies from
a lower-risk population. This phenomenon can in principle be explained entirely by the presence of unmeasured
confounding factors that increase mortality and decrease birth weight. Using a previously developed model for birth
weight-specific mortality, the authors demonstrate specifically how strong unmeasured confounders can cause
mortality curves stratified by known risk factors to intersect. In this model, the addition of a simple exposure (one
that reduces birth weight and independently increases mortality) will produce the familiar reversal of risk among
small babies. Furthermore, the model explicitly shows how the mix of high- and low-risk babies within a given
stratum of birth weight produces lower mortality for high-risk babies at low birth weights. If unmeasured confound-
ers are, in fact, responsible for the intersection of weight-specific mortality curves, then they must also (by virtue of
being confounders) contribute to the strength of the observed gradient of mortality by birth weight. It follows that the
true gradient of mortality with birth weight would be weaker than what is observed, if indeed there is any true
gradient at all.

birth weight; confounding factors (epidemiology); infant mortality; smoking

Abbreviation: SD, standard deviation.

Editor’s note: An invited commentary on this article is
published on page 798.

Birth weight is a powerful predictor of infant mortality,
although whether birth weight itself is causally related to
survival is subject to debate (1–8). The strong gradient of
mortality at lower weights, seen even among babies born at
term (1), could suggest a causal role of birth weight. On the
other hand, the observation that small babies from a popula-
tion with lower weights usually have better survival than
small babies from a heavier population is not what one
would predict if birth weight were a simple cause of mortal-
ity. Sometimes called the ‘‘pediatric’’ or ‘‘low birth weight
paradox,’’ this phenomenon has been widely discussed (2, 3,
5, 9–16). A well-known example is the comparison of babies
of smokers and nonsmokers. Infants of smokers weigh less
on average than babies of nonsmokers and have higher
infant mortality. However, at low birth weights, babies of
smokers have lower mortality than infants of nonsmokers.

Smoking has many effects on pregnancy, beyond that of
decreasing birth weight and increasing perinatal mortality.
It is not known how much (if any) of the smoking effect on
mortality operates through birth weight (11, 12). If a hypo-
thetical intervention could specifically erase only the effect
of smoking on birth weight, any resulting improvement in
mortality would be evidence of a causal effect of birth
weight on mortality.

The phenomenon of intersecting mortality curves is per-
plexing only if we assume that, after removing known con-
founders, the whole gradient of mortality with decreasing
birth weight is causal. Unmeasured confounding can, as
previously argued (3, 15, 16), explain why mortality curves
intersect. Strong unmeasured confounders can, at least in
theory, also fully explain the gradient of mortality with birth
weight (1). In this paper, we show that the strong unmea-
sured confounders that we have previously proposed can
produce intersecting mortality curves. Our calculations ex-
plicitly demonstrate how confounding produces a mix of
high- and low-risk babies that changes with birth weight
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and how this mix also produces changes in relative mortality
across the spectrum of birth weight.

MATERIALS AND METHODS

Assumptions

We use a previously described model (1) based on the
following assumptions:

1. Each baby has a ‘‘target’’ birth weight (i.e., the weight
the baby would ideally have if no factor intervenes to
modify it).

2. Target birth weights have a Gaussian distribution.

3. Target birth weights are unrelated to mortality; that is,
the baseline mortality is constant across birth weights
(assuming a given gestational age).

4. There are 2 rare dichotomous confounding factors (X1

and X2). These factors increase the odds of mortality in
a multiplicative fashion (odds ratio) and modify birth
weight in an additive fashion (X1 reduces birth weight,
and X2 increases birth weight).

We then add a simple dichotomous exposure (F) that
decreases birth weight and increases mortality. We show
that stratifying by F results in intersecting mortality curves,
with babies exposed to F having lower mortality at low birth
weights (thus demonstrating a simple underlying mecha-
nism for intersecting mortality curves). We replicate a few
empirical observations using this model. We fit all the mod-
els using a standardized normal distribution (mean ¼ 0,
standard deviation (SD) ¼ 1), but we present all results
using absolute birth weights.

Data sources

Our empirical examples are based on US linked birth and
death certificates between 1995 and 2002, compiled by the
National Center for Health Statistics (http://www.nber.org/
data/lbid.html). We excluded nonresidents (0.1%); twins, trip-
lets, and so on (3.0%); and missing birth weight (<0.1%). We
further excluded births from California (13.5%), which lack
data on smoking and clinical gestation.

Calculations

For births at term (37 weeks and higher), we used gesta-
tional age based on the date of the last menstrual period, and
we estimated the parameters of the empirical ‘‘predomi-
nant’’ birth weight distributions within specified intervals
of gestational age using the method proposed by Wilcox
(http://eb.niehs.nih.gov/bwt/index.htm). Preterm births de-
fined by the date of the last menstrual period yield heavily
right-tailed birth weight distributions, presumably reflecting
errors in gestational age. Defining preterm with the clinical
estimates of gestation attenuates this problem. For the ex-
amples involving 33 and 35 weeks of gestation, we used the
birth weight means and standard deviations proposed by
Kramer et al. (17), obtained from a large population-based
sample in which gestational age was generally assessed by

early ultrasound. Their results are stratified by sex, and so
we pooled the sex-specific estimates. We additionally ex-
cluded babies with a birth weight of >3,250 g at 33 weeks
(4.9%) and of >4,250 g at 35 weeks (0.5%).

All birth weights were grouped into 250-g categories, and
we fit only those points with at least 4 neonatal deaths (death
from birth to 28 days) at the midpoint of the interval (thus
introducing some imprecision). We do not have a formal
algorithm to optimize the choice of model parameters in
fitting the model to the empirical data, nor to assess the
goodness of fit. As an alternative, we report how many
model-predicted points fell outside the 95% confidence in-
terval of the empirical rate. We calculated confidence inter-
vals based on the approximation that, under a binomial
distribution, a sample proportion follows a normal distribu-
tion when N is large.

RESULTS

Basic model

We assume a population of babies born at 40 weeks. The
‘‘target’’ birth weight has no impact on neonatal mortality,
constant at 4 per 10,000 births (Figure 1A). We assume 2
rare factors, X1 and X2, which affect birth weight and mor-
tality. We use the parameters reported in the paper by Basso
et al. (1), after translating the relative risk into the odds ratio.
We assume the mean target birth weight at 40 weeks to be
3,500 g, with a standard deviation of 460 g. X1 decreases birth
weight by 782 g (SD ¼ �1.7) and increases mortality to
about 640 per 10,000 (i.e., with an odds ratio of 171). X2

increases birth weight by 782 g (SD ¼ 1.7) and increases
mortality to about 64 per 10,000 births (odds ratio ¼ 16).
These factors are extremely rare at term (0.5% for X1 and
0.3% for X2). The 2 populations are shown, with their re-
spective mortality—still entirely independent of birth
weight—in Figure 1B. (The figure does not show the unusual
situation in which both X1 and X2 are present, although all
calculations account for these babies.) When the weight-
specific mortality curve is plotted across these categories, it
produces the familiar pattern of a strong gradient between
birth weight and mortality (Figure 1C), which is, however,
purely the result of confounding. Mortality increases at pro-
gressively lower birth weights because an increasing propor-
tion of babies have X1.

Intersecting mortality curves

We now add an exposure (F), which decreases birth
weight by 230 g (SD ¼ 0.5) and increases mortality with
an odds ratio of 1.5 (Figure 2A). Otherwise, there are no
differences in the population exposed to F. (The frequency
of F is unspecified, as all calculations are conditional on
F, and the conclusions are independent of its frequency).
X1 and X2 have the same parameters as before (Figure 2B).
The weight-specific mortality curves for babies with and
without F now intersect (Figure 2C).

Under our simple assumptions, babies can be small be-
cause 1) their target birth weight is small, 2) F made them
smaller, 3) X1 made them smaller, or 4) F and X1 together
made them smaller. A small target weight (scenario 1) does
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not confer any additional risk. In contrast, scenarios 2, 3,
and 4 are all associated with higher mortality but at quite
different levels. The odds ratio with F alone (scenario 2)
is 1.5, while the odds ratio with X1 is 171 or 256.5 (scenario
3 or 4). Conditional on F, 4 possible combinations of factors
are defined by the presence or absence of X1 and X2 within
each birth weight stratum.

Consider the mix of these combinations in 1 small stra-
tum of birth weight (Figure 3). Among babies with an ob-
served birth weight of between 2,200 and 2,299 g, those
unexposed to F have a 10.6% chance of having X1, while
babies at this same weight who are exposed to F have only
a 4.8% chance of having X1. In the simple universe repre-
sented by our model, small babies with F have a lower
probability of having X1 than do the small babies without F.
Even though babies with F have higher mortality at all
weights, the different proportions of X1 in those with and
without F at this birth weight create the appearance of an
advantage among small babies with F.

More generally, the intersection of mortality curves under
our model results from the varying mix of factors that affect
birth weight and mortality—a mix that is weighted differ-
ently at each birth weight. This phenomenon is illustrated in
detail in Table 1, which shows the frequency of X1 and X2,
given the birth weight and F in 3 birth weight strata (details
about these calculations are provided in the Appendix).
Within each example, all babies have the same observed
birth weight. The first 2 columns of data show the target
birth weight (in 100-g intervals) prior to the action of F, X1,

and X2. The target birth weight is achieved by babies with
none of the factors and by the tiny fraction of babies with
both X1 and X2—for whom the 2 birth weight shifts cancel
out but who nonetheless have extremely high mortality. The
last column in Table 1 shows the death rate (per 10,000
births) for each category and the overall mortality, given F,
in the specified birth weight stratum.

In this example, babies with F have lower mortality than
do babies without F between about 1,500 and 2,950 g. At

Figure 1. Recapitulation of model’s assumption. In A, a population has a mean birth weight of 3,500 g (standard deviation ¼ 460) and mortality of
4 per 10,000 births. In B, 2 conditions, X1 and X2, affect 0.5% and 0.3%, respectively, of babies. Mortality is increased with odds ratios of 171 and
16, respectively, in babies with X1 and X2. (Note the different proportion scale in the y-axis of the birth weight distribution.) In C, the resulting
mortality curve is shown.
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higher birth weights, the pattern reverses, and babies with-
out F have lower mortality. The relative difference in mor-
tality increases further at higher birth weights, because
babies with F are much more likely to have X2 than those
without F.

In the above scenario, we have assumed that X1 and X2

have the same effects on babies regardless of whether they
are exposed to F. If this is the case, the use of relative birth
weight (or z score-adjusted birth weight), as suggested by
Wilcox and Russell (18), will remove the intersection of
mortality curves by, in effect, removing the connection be-
tween F and birth weight. In terms of directed acyclic
graphs (3), this means that birth weight is no longer a col-
lider, and the weight-specific contrast in mortality can be
displayed without the distortion that comes with adjustment
for a collider.

Reality may be more complex if, for example, babies with
X1 do not survive to term if they also have F, or in the
presence of an interaction between F and X1 on birth weight
or on mortality.

Empirical examples

We now show how this model behaves in reproducing
empirical weight-specific mortality curves stratified by
a given factor. The parameters used to fit the empirical
examples are reported in Table 2. We present examples with
smoking and selected categories of gestational age.

Smoking. Given that babies of smokers are lighter than
babies of nonsmokers, it is possible that, at any given birth
weight, they will have a higher gestational age. To minimize
this potential problem, we derived the empirical parameters
for smoking from US babies born between 39 and 41 weeks
in 1995–2002. (Estimates for smokers would have been too
unstable with a narrower interval). The calculated standard
deviations of the predominant distributions were virtually
identical (453 g and 452 g) for smokers and nonsmokers,
while the mean birth weight was 193 g smaller for smokers.
We used 452 g as the common standard deviation and as-
signed babies of smokers to have higher baseline mortality
(with an odds ratio of 1.4 compared with nonsmokers). To

Figure 2. A population of babies exposed to factor F (broken line) is added to the previous scenario. In A, the population with factor F has a mean
birth weight of 3,270 g (standard deviation ¼ 460) and mortality 1.5 times that of babies without F. In B, X1 and X2 affect 0.5% and 0.3%,
respectively, of babies in each population. The birth weight of babies with F is shifted to the left in these populations, as in the main distribution.
The effect of X1 and X2 on the mortality of babies with F is increased with odds ratios of 171 and 16, respectively. (Note the different proportion scale
in the y-axis of the birth weight distribution.) In C, the intersecting mortality curves in babies with and without F are shown.
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obtain a reasonable fit, we allowed the effect of X1 on birth
weight to be smaller in smokers than in nonsmokers (Table 2),
since the shape of the mortality curve is strongly influ-
enced by this parameter. Overall, we obtain a reasonable
approximation of the empirical curves by assuming equal
frequencies and equal mortality effects (in relative terms) for
X1 and X2 in smokers and nonsmokers (Figure 4). (Fitted and
empirical rates are reported in Appendix Table 2).

Selected categories of gestational age. Intersecting
weight-specific mortality curves also occur when different
gestational ages are compared. In Figure 5A, the empirical
mortality curves are shown for births at 33, 35, and 37
weeks. At some low birth weights, babies born at 33 weeks
have lower mortality than do babies born at 35 or 37 weeks.
This may occur through the mechanism illustrated above. To
fit the curves, we allowed X1 and X2 to have a different
prevalence at each gestational week, as well as different
effects on birth weight and mortality (Table 2). We repro-
duced the general pattern of the mortality curves reasonably
well (Figure 5B) by assigning higher proportions of X1 and
X2 at earlier gestations. The fit is worst for the heaviest
categories of weight at 33 weeks, most likely because of
the contamination of the observed data by babies born at
later gestations. Table 3 shows how, on the basis of the
modeled curves, the different proportions of X1 and X2 at
1,500–1,599 g can lead babies born at 33 weeks to have
lower mortality than their more mature counterparts do.
(Calculations in the table are exact, unlike those in the fig-
ures, where mortality was estimated at the midpoint for each
250-g category).

DISCUSSION

Our model of birth weight-specific mortality yields
curves very close to the empirically observed ones by mak-
ing only a few simple—if radical—assumptions. The model
assumes that birth weight is itself not causal and that the
observed gradient of mortality with birth weight is due to
unmeasured but exceedingly strong confounding factors
with strong effects on birth weight and mortality. Although
these assumptions may seem extreme, effects of this mag-
nitude are, in fact, required to produce the empirical curves
in the absence of a causal effect of birth weight (1). When
assuming that birth weight has no causal effect, we can
explain the optimum birth weight (the weight associated
with the lowest mortality) as that at which the mix of con-
founders allows for the lowest mortality (1, 4).

There may be circumstances in which a baby’s size di-
rectly causes mortality (e.g., macrosomia as a cause of birth
injury or extreme thinness as a factor in neonatal starvation).
Nonetheless, it is also apparent that reductions in birth
weight can be irrelevant to mortality (as seen in babies born
at high altitude) (5). In the case of smoking, the crossing of
the mortality curves can be parsimoniously explained by
assuming that birth weight has no direct or indirect effects
on mortality. Because babies of smokers are smaller, they
will be more mature than babies of nonsmokers at any given
birth weight. We restricted our example to the interval of
39–41 weeks of gestation, which should ensure a relatively

Figure 3. Figure 2C is enlarged to show the proportions of X1 and X2

in babies with and without factor F (refer to the text) in the stratum
2,200–2,300 g (enclosed in the box). The solid curve represents
the birth weight distribution of babies without factor F; the broken
curve represents the distribution of babies with factor F. Data are from
Table 1.
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Table 1. Frequencies of X1 and X2, Given Birth Weight and F, at 3 Birth Weightsa

Factors

Target Birth
Weight Intervalb

X1, X2 Frequency,
Given Fc

Mortalityd per
10,000 Births

From To
% in Babies
With No F

% in Babies
With F

Observed birth weight, 2,200–2,300 g

No F

No X1, no X2 2,200 2,300 89.3878 4.00

X1 only 2,982 3,082 10.6102 640.45

X2 only 1,418 1,518 0.0006 63.62

X1 and X2 2,200 2,300 0.0014 5,226.36

Overall 71.60

F

No X1, no X2 2,430 2,530 95.1535 6.00

X1 only 3,212 3,312 4.8435 930.87

X2 only 1,648 1,748 0.0016 95.12

X1 and X2 2,430 2,530 0.0014 6,215.36

Overall 50.89

Observed birth weight, 2,900–3,000 g

No F

No X1, no X2 2,900 3,000 99.0950 4.00

X1 only 3,682 3,782 0.8941 640.45

X2 only 2,118 2,218 0.0093 63.62

X1 and X2 2,900 3,000 0.0015 5,226.36

Overall 9.77

F

No X1, no X2 3,130 3,230 99.5913 6.00

X1 only 3,912 4,012 0.3854 930.87

X2 only 2,348 2,448 0.0219 95.12

X1 and X2 3,130 3,230 0.0015 6,215.36

Overall 9.68

Observed birth weight, 4,200–4,300 g

No F

No X1, no X2 4,200 4,300 98.8756 4.00

X1 only 4,982 5,082 0.0074 640.45

X2 only 3,418 3,518 1.1154 63.62

X1 and X2 4,200 4,300 0.0015 5,226.36

Overall 4.79

F

No X1, no X2 4,430 4,530 97.4323 6.00

X1 only 5,212 5,312 0.0031 930.87

X2 only 3,648 3,748 2.5631 95.12

X1 and X2 4,430 4,530 0.0015 6,215.36

Overall 8.40

a Babies are assumed to have been born at 40 weeks’ gestation and to have normally distributed target birth weight

(mean ¼ 3,500 g, standard deviation ¼ 460).
b The 2 columns, ‘‘From’’ and ‘‘To’’ under ‘‘Target Birth Weight Interval,’’ indicate the lower and upper limits of the

birth weight that babies would have had in the absence of F, X1, or X2. All babies within each example have the same

observed birth weight. Babies with none of the factors achieved their target birth weight (and have the lowest

mortality), as well as babies with both X1 and X2, who, however, have elevated mortality.
c These 2 columns report, for babies not exposed to F and babies exposed to F, respectively, the frequency of

babies without either X1 or X2, with only 1 factor, or with both.
d This column reports the mortality rates (per 10,000 births) for each of the 8 categories. The row labeled ‘‘Overall’’

indicates the mortality for the birth weight interval, stratified by F.
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uniform level of developmental maturity in the 2 groups.
Although this amounts to stratifying on a collider, we ex-
pect X1 and smoking to remain approximately independent
among babies born at 39–41 weeks, because the association
between smoking and preterm birth was modest in this data
set (odds ratio ¼ 1.25).

The empirical mortality curves at preterm weeks were re-
produced fairly accurately, despite the limitations imposed by
errors in gestational age, and the calculations showed how
small babies at 33 weeks may have lower mortality than more
mature babies with the same birth weight.

It is also interesting that, at preterm weeks, X2 appears to
act independently of actual birth weight, with the upturn of
the mortality curve happening at lower birth weights than
among babies at term. The comparisons further suggest that
both X1 and X2 are more prevalent at early gestational ages
and may thus cause preterm birth, as well as growth restric-
tion and mortality.

As previously discussed (1), the gradient of mortality with
birth weight might be explained entirely by rare, potent, and
as yet unidentified causes of death that independently affect
birth weight. The entities ‘‘X1’’ and ‘‘X2’’ may not be single
factors but combinations of very rare factors and, perhaps,

very different combinations at different gestations. Some
components of X1 (and X2) may already be clinically recog-
nized but—because of their rarity—not acknowledged as an
important source of the birth weight–mortality relation.

The model parameters for reproducing the empirical ex-
amples were chosen somewhat arbitrarily within the con-
straints of the model assumptions. We attempted to fit the
curves with the same frequency of X1 and X2 for smoking to
show that, in theory, these factors could be equally prevalent
despite the differences in the weight-specific mortality. (We
could have fit the model with a slightly weaker interaction
by allowing babies of smokers to have a lower prevalence of
X1 at 39–41 weeks). Even though we allowed for an inter-
action between X1 and smoking on birth weight, we did not
need an interaction involving mortality, and the effect of
birth weight was the same (i.e., none) in smokers and non-
smokers. These demonstrations are intended to provide
a proof of principle rather than to argue that this model fully
explains reality. Still, it is notable how well the model re-
produces the empirical curves, especially given such simple
assumptions and crude fitting procedure.

The phenomenon of intersecting curves is consistent with
the presence of at least 1 unmeasured confounder that

Table 2. Data Characteristics and Model Parameters for the 2 Empirical Examples Presented in Figures 4 and 5

Comparison
Selected
Gestationa

Birth Weight Parameters X1 Parameters X2 Parameters Points Outside
95% Confidence

Interval
(Total Points)b

Mean
(SD), g

Baseline
Death Rate/

10,000c
%

Shift SD
(No. of g)d

Odds Ratio
(Death Rate/

10,000)e
%

Shift SD
(No. of g)

Odds Ratio
(Death Rate/

10,000)f

Example 1

Smokers 39–41 weeks
based on date
of last menstrual
period

3,320 (453) 5.64 0.54 �1.37 (620) 180 (922) 0.30 1.70 (768) 12.0 (67.8) 1 (16)

Nonsmokersg 39–41 weeks
based on date
of last menstrual
period

3,513 (452) 4.00 0.54 �1.80 (813) 180 (665) 0.30 1.70 (768) 12.0 (47.3) 3 (16)

Example 2

33 weeksh Clinical estimate 2,072 (392) 41.00 2.20 �1.30 (510) 150 (3,818) 3.80 1.00 (392) 23.0 (865) 2 (11)

35 weeksi Clinical estimate 2,563 (427) 29.00 1.30 �1.42 (606) 109 (2,407) 0.60 1.00 (427) 12.0 (337) 0 (15)

37 weeks Based on date
of last menstrual
period

3,138 (479) 7.80 0.90 �1.69 (809) 185 (1,262) 0.50 1.50 (718) 10.0 (75.5) 1 (18)

Abbreviation: SD, standard deviation.
a Except when noted, the means and standard deviations of the ‘‘predominant distribution’’ at each week were estimated by using Wilcox’s

method (5).
b Number of fitted data points that fell outside the 95% confidence interval of the actual death rate for each 250-g category (total number of data

points).
c Baseline neonatal death rate (per 10,000 livebirths). This death rate applies at all birth weights absent the intervention of X1 and X2.
d ‘‘Shift SD (no. of g)’’ indicates the amount of shift (in SD units) produced by X1 and X2. In parentheses, the corresponding amount in grams is

reported.
e Odds ratio for X1. In parentheses, the mortality rate for babies with only X1 is reported.
f Odds ratio for X2. In parentheses, the mortality rate for babies with only X2 is reported.
g In this example, we used a common SD of 452, given the negligible difference in the empirical ones. Smokers had a mean birth weight

difference of �193 g (SD ¼ �0.42).
h The clinical estimate of gestation was used, after excluding birth weights of<500 g and>3,250 g. Pooled means and SDs were calculated from

the pooled values of Kramer et al. (17).
i The clinical estimate of gestation was used, after excluding birth weights of<500 g and>4,250 g. Pooled means and SDs were calculated from

the pooled values of Kramer et al. (17).
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reduces birth weight and increases mortality. The presence
of such confounding does not preclude the possibility that
birth weight per se could be causally linked to mortality. If
such confounders exist, however, the true biologic effect of
birth weight on mortality would be weaker than what we
observe.

The presence of unknown confounding factors as an expla-
nation for intersecting mortality curves can also be applied to
gestational age. Although fetal immaturity (birth at an early

gestational age) is a plausible direct cause of death, some of the
causes of preterm birth probably also contribute independently
to mortality. In the presence of such confounding factors, the
lower mortality of twins compared with singletons at early
gestations can be explained with a mechanism analogous to
that illustrated here, as previously suggested (19).

Our explanation for intersecting curves is parsimonious
and biologically plausible. Any alternative explanation
would seem to require complex interactions among the

Figure 4. Empirical (A) and calculated (B) weight-specific mortality curves are shown for smokers and nonsmokers, an example with births
between 38 and 42 weeks of gestation, estimated by the date of the last menstrual period. Simulation parameters are shown in Table 2. Empirical
data are based on National Center for Health Statistics data, US livebirths, 1995–2002.

Figure 5. Empirical (A) and calculated (B) weight-specific mortality curves are shown for births at 33, 35, and 37 weeks of gestation; weeks 33 and
35 are based on clinical estimates of gestation, while week 37 is based on the date of the last menstrual period. Simulation parameters are shown in
Table 2. Empirical data are based on National Center for Health Statistics data, US livebirths, 1995–2002.
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causal factors at play, birth weight, and mortality. If X1-like
factors do not exist, then one would have to propose, for
example, that the underlying effect of birth weight on mor-
tality differs between smokers and nonsmokers. Addition-
ally, there would have to be similar interactions between
birth weight and mortality operating separately for each of
the many factors that affect birth weight and produce inter-
secting curves.

When discussing intersecting gestational age-specific
mortality curves, Klebanoff and Schoendorf (14) suggested
that the underlying cause of preterm birth may influence the
baby’s chances of survival at a given gestational age. Here,
we demonstrate this mechanism for birth weight. Under our
model, the intersection of mortality curves is explained by
the presence of confounding variables and the resulting
unequal mix of those variables across the birth weight distri-
bution. For those who would use birth weight as a general-
purpose marker of risk, the inconvenient truth is that birth
weight is likely affected by many unmeasured factors that

carry very different risks of death. As a consequence, birth
weight is—at best—an unreliable mediating variable or sur-
rogate endpoint in the study of neonatal and infant mortality.
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Table 3. Frequencies of X1 and X2, Given an Observed Birth Weight of 1,500–1,600 g at

Gestational Ages 33, 35, and 37 Weeks, Based on Calculated Curvesa

Gestational Age at
Birth and Factors

Target Birth
Weight Interval, gb X1, X2

Frequency, %c
Mortality/10,000

Birthsd

From To

33 weeks

No X1, no X2 1,500 1,600 94.1656 41.00

X1 only 2,010 2,110 5.1137 3,817.74

X2 only 1,618 1,718 0.1190 9,342.25

X1 and X2 1,108 1,208 0.6016 864.98

Overall 250.16

35 weeks

No X1, no X2 1,500 1,600 87.8251 29.00

X1 only 2,076 2,176 12.1273 2,407.10

X2 only 1,649 1,749 0.0172 7,918.50

X1 and X2 1,073 1,173 0.0304 337.24

Overall 318.85

37 weeks

No X1, no X2 1,500 1,600 63.2200 7.60

X1 only 2,290 2,390 36.7739 1,233.51

X2 only 1,572 1,672 0.0053 5,845.57

X1 and X2 782 881 0.0007 75.48

Overall 458.72

a Refer to Table 2 for model parameters.
b The 2 columns, ‘‘From’’ and ‘‘To’’ under ‘‘Target Birth Weight Interval,’’ indicate the lower and

upper limits of the birth weight that babies would have had in the absence of X1 and X2. All babies in

this table have the same observed birth weight of 1,500–1,600 g. Their target birth weight depends

on the mean and standard deviation of the distribution for each week. X1 and X2 have different

effects on birth weight and mortality at each week. (Refer to Table 2 for model parameters.)
c Frequency of babies without either X1 or X2, with 1 factor, or with both.
d Mortality rates (per 10,000 births) for each of the 4 categories. The row labeled ‘‘Overall’’

indicates the calculated mortality rate for babies in this birth weight interval. Parameters were

sought to better fit the figures (using the midpoint of the 250-g interval), but calculations in the table

accurately represent the actual interval. The modeled mortality rates per 10,000 births for the

1,500–1,749.9-g category (calculated at 1,625 g) were 210.4, 263.6, and 399.2 at 33, 35, and 37

weeks, respectively. The corresponding observed mortality rates were 220.4, 290.2, and 425.5.
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APPENDIX

All babies in this example have an observed birth weight between 2,200 and 2,300 g. We calculated the target birth weight
(the weight they would have had without X1, X2, and F) for each combination of X1, X2, and F. A baby with only X1 would have
weighed 782 g more, that is, 2,982–3,082 g. A baby with F and X1 would have weighed 1,012 (782 þ 230) g more, and so on.
(Refer to ‘‘tBW [target birth weight] Interval’’ in Appendix Table 1).

The overall relative frequencies of each combination of X1 and X2 are determined by the parameters of the model. Because
we condition on F, the sum of the 4 probabilities will be 1 within each category of F (‘‘p(X1, X2jF)’’ in Appendix Table 1). For
example, the probability of having neither X1 nor X2 is (1 � 0.005) 3 (1 � 0.003); that of having only X1 will be (0.005) 3 (1 �
0.003).

The probabilities of each of the 8 categories of target birth weight depend upon the normal distribution (‘‘p(tBWjX1, X2, F)’’
in Appendix Table 1). Each of the target birth weight categories has different probabilities and contributes proportionally to the

Appendix Table 1. Calculations Used to Obtain Values in Table 1 (and Table 3)a

Factors
tBW Interval

p(X1, X2ÅF) p(tBWÅX1, X2, F) p(tBW, X1, X2ÅF)
Interval

CompositionBetween And

No F

No X1, no X2 2,200 2,300 0.99202 0.00219 0.0022 0.89388

X1 only 2,982 3,082 0.00499 0.05169 0.0003 0.10610

X2 only 1,418 1,518 0.00299 0.00001 0.0000 0.00001

X1 and X2 2,200 2,300 0.00002 0.00219 0.0000 0.00001

F

No X1, no X2 2,430 2,530 0.99202 0.00748 0.0074 0.95153

X1 only 3,212 3,312 0.00499 0.07575 0.0004 0.04844

X2 only 1,648 1,748 0.00299 0.00004 0.0000 0.00002

X1 and X2 2,430 2,530 0.00002 0.00748 0.0000 0.00001

Abbreviation: tBW, target birth weight.
a The example refers to babies with an observed birth weight between 2,200 and 2,300 g.
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category of observed birth weight. We obtained these probabilities by taking the difference between the cumulative density
functions at the ends of the interval, using the NORMDIST function in Microsoft Excel (Microsoft Corporation, Redmond,
Washington) software.

We multiplied p(X1, X2jF) by p(tBWjX1, X2, F). The resulting values represent the absolute probabilities of each combi-
nation of X1, X2, and target birth weight interval among babies with and without F, respectively. Dividing each row value by the
sum of the 4 probabilities within the corresponding stratum of F, we obtain the X1, X2 composition in the 2,200–2,300-g weight
stratum, as shown in the last column of the table.

Appendix Table 2. Calculateda and Empirical (95% Confidence Interval) Weight-specific Mortality Rates (per

10,000 Births) for Babies of Smokers and Nonsmokers Born at 38-42 Weeks (Estimated by Date of Last Menstrual

Period)

Weight, g z Score Calculated Empirical
95% Confidence

Interval
Deaths, no. No.

Smokers

1,125 �5.28 574.83 661.48 357.61, 965.35 17 257

1,375 �4.73 403.85 450.98 270.87, 631.09 23 510

1,625 �4.18 248.33 293.38 197.62, 389.14 35 1,193

1,875 �3.62 138.03 136.05 98.60, 173.51 50 3,675

2,125 �3.07 72.87 79.09 63.49, 94.69 98 12,391

2,375 �2.52 38.46 34.37 28.81, 39.94 146 42,474

2,625 �1.96 21.35b 17.91 15.36, 20.46 189 105,554

2,875 �1.41 13.11 13.07 11.63, 14.52 316 241,692

3,125 �0.86 9.22 9.98 8.96, 11.00 367 367,901

3,375 �0.31 7.42 7.23 6.38, 8.07 279 386,048

3,625 0.25 6.65 7.11 6.14, 8.08 206 289,814

3,875 0.80 6.48 7.06 5.78, 8.33 117 165,829

4,125 1.35 6.85 5.98 4.17, 7.79 42 70,255

4,375 1.91 8.13 6.79 3.89, 9.70 21 30,906

4,625 2.46 11.30 11.87 5.16, 18.58 12 10,113

4,875 3.01 18.08 15.86 1.97, 29.76 5 3,152

Nonsmokers

1,125 �5.28 628.80 511.45 392.16, 630.75 67 1,310

1,375 �4.73 566.83 509.28 410.03, 608.53 96 1,885

1,625 �4.18 447.73 509.61 436.05, 583.17 175 3,434

1,875 �3.62 286.18 316.35 280.52, 352.18 290 9,167

2,125 �3.07 146.16 142.58 129.37, 155.80 441 30,929

2,375 �2.52 64.72 61.61 57.07, 66.16 702 113,938

2,625 �1.96 27.85b 24.18 22.55, 25.82 840 347,357

2,875 �1.41 13.07b 12.19 11.52, 12.86 1,267 1,039,729

3,125 �0.86 7.44 7.74 7.37, 8.12 1,623 2,095,936

3,375 �0.31 5.34 5.53 5.26, 5.80 1,587 2,870,095

3,625 0.25 4.58b 4.92 4.66, 5.19 1,348 2,738,139

3,875 0.80 4.36 4.11 3.83, 4.40 794 1,930,813

4,125 1.35 4.44 4.68 4.25, 5.10 459 981,709

4,375 1.91 4.86 5.46 4.80, 6.11 268 491,104

4,625 2.46 6.01 5.23 4.17, 6.29 94 179,774

4,875 3.01 8.71 9.20 6.75, 11.66 54 58,682

a The calculated points were fitted at the midpoint of the 250-g birth weight interval, as reported in the table.
b Data point falling outside the 95% confidence interval of the empirical rate.
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