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Gene-environment-wide interaction studies of disease occurrence in human populations may be able to exploit
the same agnostic approach to interrogating the human genome used by genome-wide association studies. The
authors discuss 2 methods for taking advantage of possible independence between a single nucleotide poly-
morphism they call G (a genetic factor) and an environmental factor they call E while maintaining nominal type I
error in studying G-E interaction when information on many genes is available. The first method is a simple 2-step
procedure for testing the null hypothesis of no multiplicative interaction against the alternative hypothesis of
a multiplicative interaction between an E and at least one of the markers genotyped in a genome-wide association
study. The added power for the method derives from a clever work-around of a multiple testing procedure. The
second is an empirical-Bayes–style shrinkage estimation framework for G-E interaction and the associated tests
that can gain efficiency and power when the G-E independence assumption is met for most G’s in the underlying
population and yet, unlike the case-only method, is resistant to increased type I error when the underlying as-
sumption of independence is violated. The development of new approaches to testing for interaction is an example
of methodological progress leading to practical advantages.
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Abbreviations: E, environmental factor; G, genetic factor.

In this issue of the Journal, Murcray et al. (1) present a new
approach to evaluating multiplicative gene-environment
interaction in the context of a genome-wide association
study, where there are M single nucleotide polymorphisms
and a single E, the environmental factor under consideration.
They propose a simple 2-step procedure for the null hypoth-
esis of no multiplicative interaction against the alternative
hypothesis of a multiplicative interaction. In step 1, they pro-
pose an a-level test for association in the 2 3 2 table of
a single nucleotide polymorphism we call G (a genetic fac-
tor) crossed with E among cases and controls combined. If
the P value for the test is above some a1 < a, then the null
hypothesis is accepted. Otherwise, in step 2, the P value from
the standard test of multiplicative interaction between G and
E in the 2 3 2 3 2 table of disease status 3 G 3 E is
compared with a=m, where m is the number of tests not
accepted in step 1: if the P value is above a=m, then the
hypothesis of no interaction is accepted; otherwise, the
hypothesis of no interaction is rejected. When the standard

assumptions hold, the independence of the 2 test statistics
guarantees that only a=m among the m hypotheses are re-
jected, giving the desired property that only proportion a of
all hypotheses is rejected, regardless of a1.

Either greater pGE, the fraction of G’s associated with E,
or increasing a1 leads to an increase in m, the number of G’s
that reach step 2, and reduced power of the new method.
Why does the power advantage diminish as m increases? As
noted by the authors (1), the added power for the method
derives from a clever work-around of a multiple testing pro-
cedure. The power of a standard analysis of a case-control
study is calculated at an a level of a=M; The power of the
Murcray et al. procedure is calculated at an a level of a=m in
step 2 and therefore increases with decreasing m. Although
this procedure guarantees that the family-wise error rate is at
or below a, as does Bonferroni correction under the usual
assumptions, it is not as conservative as Bonferroni adjust-
ment at the level of each individual hypothesis. With Bon-
ferroni adjustment, each of M hypotheses is of statistical
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size a=M. Instead, the Murcray et al. procedure allows
hypotheses with extreme G-E association but no interaction
to be of a size above a=M, whereas hypotheses when the
G-E association is near 1 are of a size below a=M.

Murcray et al. (1) use the G-E independence assumption
to construct an efficient screening test for interaction at
step 1. Their simulation studies demonstrate that if the
independence assumption is valid for a large fraction of
G-E combinations (say, pGE �5%) under study, then the
proposed 2-step method can have a substantial power
advantage over the standard 1-step case-control test for in-
teraction that completely ignores the natural G-E indepen-
dence assumption. Thus, the method has increased power,
yet retains the conservatism of the genome-wide signifi-
cance level, which is needed to keep the chance of a false-
positive finding low when the prior probabilities of each
hypothesis are very low, as they will be with an agnostic
approach (2).

The power advantage of the 2-step procedure over the
standard 1-step method diminishes as M, the total number
of markers, increases, everything else being equal. In par-
ticular, a 2-step procedure in a genome-wide association
study with 500,000 single nucleotide polymorphisms and
the standard a level of 10�7 for genome-wide significance
would require, on average, an a level for the second step of
2 3 10�6 if a1 ¼ 0.05 at the first step. Thus, the power of the
2-step procedure, which is bounded above by the power of
the test used at the second step, would be only slightly
higher than that of a 1-step method. In contrast, if one starts
with a much smaller number of single nucleotide polymor-
phisms, say M ¼ 5,000, the power gain attributable to the
reduction in the number of tests due to the screening pro-
cedure at the first step using an a level of 0.05 indeed could
be substantial, as demonstrated by the authors (1).

Recently, Mukherjee and Chatterjee (3) proposed a novel
approach to ‘‘1-step’’ inference of gene-environment inter-
action by using an empirical Bayes–type shrinkage estima-
tion framework. Their estimator is a weighted average of the
case-only and case-control estimators of the logarithm of the
interaction. The weights are based on the variance of
the robust case-control estimate and the difference between
the 2 observed estimates, which reflect the dependence be-
tween G and E among controls; note that in the 2 3 2 3 2
table, the ratio of the interaction estimates is simply the
G-by-E odds ratio in the controls (4). When the estimates
from the standard and case-only estimates are similar, the
empirical Bayes estimator puts more weight on the efficient
case-only estimate, which is not robust to departure from
G-E independence (5). As the difference between estimates
increases, the estimator gives increasingly more weight
to the case-control estimate, which is robust to departure
from G-E independence. The weight for the standard case-
control estimate also increases as its precision relative to the
case-only estimate increases. Such empirical Bayes–type
estimators, and the associated tests, can gain efficiency
and power when the G-E independence assumption is met
for most G’s in the underlying population and yet, unlike
the case-only method (4), are resistant to increased type I
error when the underlying assumption of independence is
violated (6).

The method proposed by Murcray et al. (1) also exploits
the G-E independence assumption, but only through a first-
step ‘‘screening’’ procedure that reduces the number of tests
to be conducted at the second step. The empirical Bayes
procedure, in contrast, gains efficiency by directly exploit-
ing the likely independence assumption for the actual test
for interaction. It will be interesting to compare the perfor-
mance of the 2-step and empirical Bayes procedures under
different scenarios of the distribution of G-E association;
although they both exploit the independence assumption,
they gain efficiency in very different ways. The performance
comparison can now be informed by Davey Smith et al.’s (7)
recent empirical study of the associations between pairs of
23 genetic variants and 96 nongenetic characteristics. Al-
though no greater association than expected by chance was
found in their study, further empirical studies of G-E asso-
ciation, particularly between the variants and environmental
exposures important for G-E interaction, will be helpful in
evaluating methods whose performance depends on G-E
independence, such as Murcray et al.’s (1) and others’
(3, 4, 6, 8, 9).

The development of new approaches to test for interaction
is an example of methodological progress leading to prac-
tical advantages. The accompanying commentary by
Khoury and Wacholder (10) shows how many more exam-
ples we need in the field of gene-environment interaction.
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