Table 5.
Taxon | Nsequences | Npoly | Nfixed | Runs Test |
Kolmogorov–Smirnovb |
Mean sliding G |
|||
Test Statisticc | P | Test Statisticd | P | Test statisticd | P | ||||
Promoter | |||||||||
Arabidopsis lyrata | 23 | 67 | 57 | 56 | 0.2293 | 0.0801 | 0.0334 | 2.9725 | 0.2899 |
Arabidopsis lyrata lyrata | 10 | 40 | 63 | 48 | 0.5293 | 0.0508 | 0.3949 | 2.2286 | 0.4418 |
Arabidopsis lyrata petraea | 13 | 49 | 57 | 44 | 0.0846 | 0.0919 | 0.0257 | 3.5192 | 0.2071 |
Arabidopsis thaliana | 18 | 15 | 71 | 27 | 0.795 | 0.0381 | 0.3685 | 1.1409 | 0.557 |
Gene (silent sites) | |||||||||
A. lyrata | 28 | 123 | 188 | 126 | 0.0122 | 0.0066 | 0.0136 | 6.8013 | 0.0692 |
A. l. lyrata | 13 | 69 | 207 | 89 | 0.035 | 0.0562 | 0.025 | 5.6133 | 0.1015 |
A. l. petraea | 15 | 99 | 196 | 112 | 0.24 | 0.0722 | 0.0089 | 9.2926 | 0.0294 |
A. thaliana | 13 | 37 | 241 | 66 | 0.6776 | 0.0406 | 0.0136 | 5.2926 | 0.0591 |
For each test, we used the value of the recombination rate parameter (R) that produced the most conservative test statistic.
The test using Kolmogorov–Smirnov statistics is most powerful when the ratios at the far ends of the gene differ (McDonald 1998), and this test appears to be the most sensitive to the heterogeneity in our data set.
A smaller value indicates greater heterogeneity.
A larger value indicates greater heterogeneity.