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Abstract

Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and
takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires
RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN
colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the
presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct
pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon
addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU
dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser
degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA.
RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku
protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage
DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent
bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if
entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA
only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand
invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely
mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows
an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.
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Introduction

Natural genetic transformation is an efficient mechanism of

horizontal gene transfer between bacteria, and thus of the

acquisition of novel genetic material. At the onset of stationary

phase, Bacillus subtilis cells can become competent (up to 20% of all

cells), specified through the induction of proteins mediating the

binding of environmental DNA to the cell surface, and upon its

processing, transporting the single-stranded (ss) DNA into the

cytosol [1,2]. Recombination proteins integrate homologous or

‘‘partially’’ homologous foreign DNA into the chromosome, or

allow the establishment of autonomously replicating molecules

(plasmid or viral DNA). The competence-specific DNA-uptake

proteins and a large set of additional proteins are under the control

of the master competence transcription factor, ComK [3,4]. DNA

uptake occurs in a highly processive manner [5] at a single cell

pole, as exemplified by visualization of ComGA and ComFA, two

presumed ATPases involved in DNA translocation [6,7]. Envi-

ronmental double-stranded (ds) DNA somehow crosses the cell

wall to bind to the ComEA membrane protein, and is nicked (and

thus fragmented) by the NucA endonuclease. Then, one strand is

transported across the membrane via ComEC, whereas the other

strand is degraded to nucleosides outside the cell [1,2]. Hence, the

DNA uptake machinery takes up linear ssDNA molecules, which

are then available to the intracellular recombination machinery.

More than 12 genes have been shown to be involved in genetic

recombination in B. subtilis. The absence of RecA, the central

recombination protein that mediates strand invasion between

homologous linear ssDNA and supercoiled dsDNA (forming D-

loop intermediates) and strand exchange, leads to a reduction in

transformation with chromosomal DNA by more than 4 orders of

magnitude [8,9]. A defect in any gene classified within the a (recF,

recO and recR), b (addA and addB), c (recH and recP), d (recN), e (recU)

or f (recJ, recS and recQ) epistatic group reduces the frequency of

chromosomal transformation only 4-fold or less in an otherwise

wild type (wt) background [10,11], suggesting that alternative
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pathways may help or modulate RecA to achieve this process. This

conclusion is in agreement with in vivo data showing that in the

simultaneous absence of RecA modulators (i.e. in a addAB recO

double mutant strain), chromosomal and plasmid transformation

are blocked [12]. On the other hand, the transformation frequency

with plasmid DNA is reduced more than 20-fold in recO or in recU

mutant cells, but is only moderately (less than 4-fold) reduced in all

other rec mutants tested, and is not at all reduced in recA mutant

cells [12,13,14]. These data suggest that a redundancy of factors

involved in transformation and different pathways exist during

transformation [11]. However, the use of different B. subtilis

genetic backgrounds and/or of different DNA substrates in the

past has complicated the interpretation of genetic data.

Three different pathways for transformation have been

proposed. Firstly, if taken up DNA contains sufficient homology

to the chromosome (,than 20% divergence in several hundred

bp), ssDNA may be directly incorporated into the chromosome via

intermolecular recombination (chromosomal transformation) [15],

setting up heteroduplex DNA (with one parental DNA strand

getting degraded) (Figure 1A). Upon re-entering into the vegetative

state, one daughter cell receives a chromosome copy derived from

the incorporated DNA, and may thus become transformed, while

the other cell receives the parental DNA. Secondly, if taken up

ssDNA lacks homology with the chromosome it must be annealed

to form a circular dsDNA molecule (Figure 1B) and be self-

replicative (i.e. contain an origin of replication). Interestingly, only

multimeric, but not monomeric, plasmid DNA can lead to

transformation [14,16]. A third scenario may occur in case of viral

transfection. It has been shown that the average length of the

entering ssDNA is around 12-kb (reviewed by [17]), while phage

SPP1 is composed of 45.5-kb DNA. Therefore, in order to form a

full-length phage dsDNA molecule from incoming ssDNA

fragments, these must be recombined intermolecularly to yield a

partially annealed full-length molecule which can then be

replicated (Figure 1C). The terminal repeats may be recombined

intramolecularly to form a circular molecule that can be proficient

for replication. In the absence of homology with recipient DNA or

of an autonomous replication unit, taken up DNA is degraded

[17].

Author Summary

Many bacteria can actively acquire novel genetic material
from their environment, which leads to the rapid spreading
of, for example, antibiotic resistance genes. The bacterium
Bacillus subtilis can differentiate into the state of compe-
tence, in which cells take up ssDNA through a DNA uptake
complex that is specifically localized at a single cell pole.
DNA can be integrated into the chromosome, via RecA, or
can be reconstituted as circular dsDNA, if derived from
plasmid or from viral DNA. We show that RecO, RecU, and
Ku proteins, but not RecA, are important for plasmid
transformation, and differentially accumulate at the polar
DNA uptake machinery. Upon addition of any kind of DNA,
the assembly of RecU at the competence pole dissipated,
while RecA formed filamentous structures that rapidly grew
and shrank within a 1 minute time scale. RecO visibly
accumulated at the competence machinery only upon
addition of plasmid DNA, but not of chromosomal DNA. In
vitro, RecO was highly efficient at enhancing the annealing
of complementary strands covered by SsbA, without the
need for any nucleotide cofactor. The findings show that
competent cells possess a dynamic recombination machin-
ery and provide visual evidence for the existence of
different pathways for transformation with chromosomal
DNA or with plasmid DNA.

Figure 1. Model for natural transformation with different kinds of DNAs. (A) With chromosomal transformation, the incoming ssDNA (red
line) displaces the identical strand in the duplex of chromosomal DNA and pairs with the complementary strand. The D-loop structure is resolved as
indicated by white triangles, and the displaced DNA strand degraded. The ends are sealed and one of the daughter cell inherits the donor DNA; (B),
with oligomeric plasmid DNA, the incoming ssDNA (red line) is longer than a unit-length plasmid genome (ULG), indicated by vertical bars.
Replication initiated at the primosome assembly site (pas, indicated as a blue line), may convert the ssDNA onto dsDNA. After DNA replication,
homologous regions must recombine to generate a circular intermediate that is then converted into a single plasmid monomer. (C) With viral DNA,
the fragmented viral ssDNA (red line) recombines intermolecularly to generate a ULG after filling-in the gaps. The assembled dsDNA must recombine
intramolecularly, probably through the terminal redundancy (tr, depicted in green) to generate a circular molecule.
doi:10.1371/journal.pgen.1000630.g001

Dynamic Recombination Machinery in Competent Cells
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The visualization of proteins involved in competence in B.

subtilis has recently provided a new tool to study transformation in

time and space. During the state of competence, the DNA uptake

machinery, SsbB (also termed YwpH), DprA (Smf), CoiA (YjbF)

[6,18], and RecA, colocalizes at a single cell pole, whereas RecN

oscillates between the poles [19]. Internalized linear ssDNA

appears to stop the oscillation of RecN, which is a ssDNA-binding

protein [20,21], and DprA is important for loading of RecA to

incoming ssDNA [22]. Thread-like structures of RecA are

observed to emanate from the competence pole [19]. These have

been proposed to guide ssDNA onto the nucleoid that contains the

chromosome, in order to mediate strand exchange with the

recipient DNA. In support of this idea, a non-functional RFP-

RecA fusion, which accumulates at the competence pole, but fails

to form threads after addition of DNA, is entirely deficient in

transformation [19]. Therefore, transformation with DNA appears

to be a spatially highly organized process.

Genetic data suggest that RecO and RecU (analogue of

Escherichia coli RuvC) are not essential during chromosomal

transformation, and their significant role played during plasmid

transformation is poorly understood [15]. Both RecO and RecU

have an important function during DNA double strand break

(DSB) repair [21,23,24,25,26]. Here, RecO promotes loading of

RecA onto SsbA-coated ssDNA, and RecU catalyzes the

resolution of HJs [27,28]. To verify the genetic requirements

during transformation, we analyzed the relevance of RecA,

RecO, and RecU and other proteins in transformation with

three different substrates, chromosomal, plasmid and viral DNA,

within a single genetic background. We also investigated the

involvement of Ku protein, which is involved in DNA end

joining during DSB repair [29]. We show that RecO, RecA and

RecU proteins localize dynamically and differentially at the

competence pole, dependent on the DNA substrate added to the

cells, and in accordance with this, that the proteins perform

different roles in promoting recombination of incoming DNA,

which also depends on the nature of incoming DNA. Our work

shows that recombination proteins appear at different time

points and steps during DSB repair and transformation, showing

that they obtain different functional specificities during the two

processes.

Results

RecO, RecU, and Ku play an important role during
plasmid or viral DNA transformation

Transformation efficiencies have been assayed for different

types of DNA and in various different B. subtilis strains, all of which

carried inducible prophages, which complicates all analyses [10].

We therefore investigated the function of B. subtilis DNA

recombination and repair proteins during transformation in the

same phage-free background (strain BG214 lacks the ICEBs1

transposon and prophage SPb, and PBSX cannot be induced), and

with three different DNA substrates (chromosomal, plasmid and

viral DNA) in parallel. Previously, the transformation defects of

DrecA, DrecO, DrecR, recF15, DrecU and DrecN cells have been

analysed using different conditions (replicons, markers, DNA

concentrations, etc.) or viral transfection (also termed viral

transformation) (reviewed in [11]), but were re-evaluated here

for a direct comparison. The assays were normalized to actual

DNA uptake and to cell viability (see Material and Methods). The

selected DNA substrates allowed us to study presumably different

recombination events: (i) recombination of internalized chromo-

somal ssDNA with the host chromosome based on the existence of

homology with recipient DNA (intermolecular recombination,

Figure 1A), (ii) conversion of internalized ssDNA to dsDNA and

circularization by intramolecular recombination in the case of

replicative plasmid DNA (Figure 1B), or (iii) internalization of

fragmented (i.e. less than unit-length) viral SPP1 ssDNA, which

has to be converted to dsDNA, recombined to generate full-length

viral DNA, and circularized (both, inter- and intramolecular

recombination) (Figure 1C).

The frequency of appearance of chromosomal transformants

was ,10,000-fold decreased in the DrecA strain, whereas

chromosomal transformation efficiency in the DrecO, DrecR, recF15,

DrecU, recU71, DruvAB, DrecN or Dku (also termed DykoV) deficient

strains did not change more than 2- to 3-fold relative to the wild

type strain (Table 1). These results reinforce the idea that RecA is

required for intermolecular recombination, and show that

presynaptic (RecN, RecF, RecO, or RecR) or postsynaptic (RecU

and RuvAB) functions are not required for this pathway in an

otherwise wt background, or may have redundant roles in

Table 1. RecO, RecU, and Ku play an important role in plasmid transformation, but are dispensable for transformation with
chromosomal DNA.

Relevant genotype Normalized plasmid transformation Normalized SPP1 transfection Normalized chromosomal transformation

wt 100 (1.56104) 100 (2.86104) 100 (5.56106)

DrecO 3.1 2.8 54

recF15 86 120 74

DrecR 72 100 69

DrecU 3.8 3.9 53

recU71 2.9 3.3 41

DruvAB 23 60 82

DrecN 55 51 72

Dku (ykoV) 17 19 56

DrecA 98 1.4 ,0.01

Competent B. subtilis cells auxotrophic for methionine were transformed with chromosomal DNA from a met+ (SB19) strain. The yield of met+ transformants
(chromosomal transformation), kanamycin-resistant transformants (plasmid pUB110 transformation), and SPP1 transfection was corrected for DNA uptake and cell
viability and the values obtained normalized relative to that of the rec+ strain, taken as 100 (between parentheses, the number of transformants/transfectants obtained
per 0.1 mg DNA/ml). The results are the average of at least five independent experiments and are within a 10% standard error.
doi:10.1371/journal.pgen.1000630.t001

Dynamic Recombination Machinery in Competent Cells
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chromosomal transformation, because negative effects are seen

with some double mutations [10].

The efficiency of plasmid transformation was not affected in the

absence of RecA (Table 1). Plasmid establishment was marginally

impaired in recF15, DrecR or DrecN competent cells (2-fold), and

slightly impaired (,4-fold) in DruvAB cells compared with wild

type cells (Table 1). However, plasmid establishment was reduced

,6-fold in Dku cells and 25- to 35-fold in DrecO, recU71 or DrecU

cells (Table 1). These results show that RecO and RecU are

required for plasmid transformation and that Ku plays a minor

role in this pathway, whereas other presynaptic proteins (RecN,

RecF and RecR) are not required in an otherwise wild type

background. The defect seen in DruvAB cells may be caused by a

reduction of the resolution of HJs, but RecU seems to play an

additional role in plasmid transformation, because recU mutant

cells are 5-times more deficient in plasmid transformation than

ruvAB mutants. This is consistent with the observation that the

recU71 strain, which encodes a RecU variant (RecU R71A)

proficient in strand annealing and HJ resolution, but deficient in

RecA modulation [30], is as defective in plasmid transformation as

a recU deletion strain (Table 1). We therefore argue that the main

function of RecU during plasmid transformation is not HJ

resolution.

It has been shown that the average length of incoming donor

ssDNA is ,12-kb [17]. Mature SPP1 DNA is a linear 45.5-kb long

dsDNA molecule with 4% of terminal redundancy [31], hence,

internalized SPP1 ssDNA is fragmented into 3 or more pieces by

the DNA uptake machinery. Intracellular reconstitution of SPP1

DNA may therefore involve both intermolecular recombination to

reconstitute a full-length molecule, and intramolecular recombi-

nation to achieve circularization [15]. Consistent with this,

transfection of SPP1 DNA was affected in recombination mutants

involved in both chromosomal (recA) and plasmid transformation

(recU, recO and ku). The frequency of SPP1 transfection was

reduced ,100-fold in DrecA, ,35-fold in DrecO, ,30-fold in

recU71, ,25-fold in DrecU, or ,5-fold in Dku cells (Table 1). SPP1

transfection was marginally impaired in DrecN or DruvAB

competent cells (less than 2-fold relative to the rec+ value) or not

reduced in DrecR or recF15 competent cells (Table 1).

These results demonstrate that: (i) RecA-mediated strand

exchange is required for intermolecular recombination during

chromosomal transformation, rather than for protection of

incoming ssDNA from nuclease attack, (ii) RecO, RecU and to

some extent Ku are involved in plasmid transformation, and (iii)

phage transfection follows a route comprising viral- and host-

encoded functions from both pathways.

RecA threads are highly dynamic and form after addition
of any kind of DNA

In cells grown to competence, a functional GFP-RecA fusion

(see Material and Methods) colocalizes with competence ComGA

protein to a single cell pole in ,20% of all cells (this is the fraction

of competent cells), or is associated with the nucleoids in the

remaining cells [19] (Figure 2A). Addition of chromosomal DNA

to competent cells leads to the formation of filamentous GFP-

RecA structures, termed threads, which are very variable in length

and shape (Figure 2B).

To investigate whether the threads are dynamic structures, we

performed time-lapse microscopy, capturing images of cells grown

to competence 10 to 30 min after addition of DNA within 1 min

time intervals. Figure 2C and Videos S1, S2, S3, and S4 show

examples of such experiments. A GFP-RecA thread, which

changes its shape within each 1 min time interval, can be seen

to extend from a single cell pole into the cell (Figure 2C) (left

panel). At min 8, two apparently separate structures arise, one

close to the cell pole and the other extending away from the

competence cell pole. In all of the 26 movies taken, GFP-RecA

threads showed highly dynamic localization, arising at one cell

pole and extending into the cytosol, but never reaching the other

cell pole. We have also observed discrete GFP-RecA foci that

rapidly and continuously (for at least 20 min) moved through the

cells (data not shown), but the nature of these assemblies is unclear.

In Figure 2C, right panel, extension of a thread from a single focus

can be seen to occur between min 2 to min 9, with peak extension

between min 4 and 5. We were able to only capture 3 of such

extension events from a single focus (with.300 cells analyzed),

indicating that extension from the pole occurs very rapidly. In

Video S4, GFP-RecA threads can also be seen to rapidly grow as

well as shrink between 1 min intervals. Maximum extension of 0.6

(60.2) mm/min was measured in 6 time lapse series, which is

similar to the observed spreading of E. coli RecA onto dsDNA in

vitro [32]. These experiments reveal rapid growth and shrinkage of

RecA threads in vivo, and reinforce the idea that RecA threads

guide incoming ssDNA from the pole onto nucleoids for homology

search, ensuring maximum efficiency of transformation.

The fact that RecA does not play a major role in plasmid

transformation raises the question if RecA threads are also formed

during uptake of supercoiled plasmid DNA (which was taken as a

source for oligomeric ssDNA). There was no visible change of

pattern with regard to the formation of RecA threads after

addition of plasmid DNA. Of the competent cells (,20% of cells

grown to competence), ,65% showed RecA signals containing

polar foci, ,12% contained foci at various intracellular positions

(other then the poles), and ,23% showed GFP-RecA threads after

addition of plasmid DNA (Figure 2D). Similarly, after addition of

chromosomal DNA, ,63% of the competent cells contained polar

foci, ,13% foci at other positions, and ,24% formed threads

(Figure 2B). Thus, formation of RecA threads is not specific for the

kind of DNA substrate entering the cell during transformation.

RecO assembles at a single cell pole in response to
incoming plasmid or phage DNA

During DSB repair RecO is necessary to load RecA onto SsbA

coated ssDNA [28]. Our genetic data show a RecR- and RecF-

independent role for RecO during plasmid transformation (see

Table 1). To analyze if RecO shows a particular pattern of

localization after addition of DNA to competent cells, a functional

RecO-YFP fusion was used (see Material and Methods). The same

amount of chromosomal, plasmid or viral DNA was added in these

experiments (0.1 mg/ml). Under this condition, transformation

with chromosomal DNA was 200 to 1000 times more efficient

(transformants per mg of DNA added) compared with plasmid

transformation, although DNA concentrations curves for plasmid

and chromosomal transformation revealed that both are first order

processes (data not shown).

RecO-YFP was dispersed throughout cells grown to compe-

tence (Figure 3A) and addition of chromosomal DNA did not alter

this pattern: none of 600 cells analyzed contained visible RecO-

YFP foci (Figure 3B). Strikingly, RecO-YFP formed a single focus

at one cell pole in 5% of the cells grown to competence, as soon as

5 min after addition of supercoiled plasmid DNA. Up to 16.9%

(102 out of 600 cells) of the cells showed a polar focus or two polar

foci 30 min after addition of supercoiled plasmid DNA (Figure 3D,

26% of the cells having RecO foci contained two polar foci,

indicated by grey triangles). These findings reveal a striking

substrate- and time-dependent recruitment of RecO to the DNA

uptake machinery.

Dynamic Recombination Machinery in Competent Cells
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To verify, that the RecO foci correspond to sites where the

competence machinery is present, we combined the RecO-YFP

strain with a ComGA-CFP fusion. In ,18% of cells grown to

competence (99 out of 550 cells analyzed), RecO-YFP colocalized

with ComGA to a single cell pole (in 72% of these cells) or to both

cell poles (in 28% of these cells) (Figure 3E), or was present

throughout the remaining cells. 2 cells out of 550 showed one

polar ComGA-CFP focus but no RecO-YFP focus, and 3 cells had

two polar ComGA-CFP foci, but only one RecO-YFP focus was

present, colocalizing with one ComGA-CFP focus (Figure 3E,

indicated by green and orange triangles). These data show that

RecO foci largely colocalize with the DNA uptake machinery

upon addition of plasmid DNA.

Plasmid preparations from E. coli cells contain monomeric as well

as multimeric plasmid forms. Only multimeric plasmid DNA has

been shown to lead to transformation of B. subtilis cells [16,33], so we

generated monomeric as well as multimeric plasmid preparations. In

contrast to transformation with chromosomal DNA, 8% of the cells

grown to competence (i.e. 40% of all competent cells) showed RecO-

YFP foci at the pole 30 min after addition of linearized monomeric

plasmid DNA (Figure 4B, 32 foci in 400 cells). Similarly, addition of

linearized dimeric plasmid DNA induced foci in 8.8% of the cells

(data not shown). However, 30 min after addition of trimeric and

higher multimeric plasmid DNA (all higher multimers were pooled

because they could not be clearly separated), 13.5% of the cells (i.e.

,68% of all competent cells) showed polar RecO-YFP foci

(Figure 4C, 54 foci in 400 cells analysed). Thus, RecO-YFP foci

are induced by monomeric or dimeric plasmid DNA, and

significantly (262 chi2 value 6.3 with significance value of 0.012)

increased in number after addition of multimeric plasmid DNA.

Figure 2. Fluorescence microscopy of GFP-RecA in cells grown to competence. (A) GFP-RecA forms polar foci in wt competent cells, and (B)
threads after addition of chromosomal DNA. (C) Time-lapse with 1 min intervals of cells containing a GFP-RecA thread. Left panel: the upper image
shows the outline of the cell through a membrane stain. The lower panels show an extended GFP-RecA thread that changes its shape every minute.
Right panel: nucleation and extension of a RecA thread within one cell. In the upper image, a cell contains a GFP-RecA focus from which a thread
extends for several minutes, as indicated by the white triangle. The thread appears to retract after minute 15, although it is unclear if this is based on
true retraction or bleaching. (D) GFP-RecA threads after addition of supercoiled plasmid DNA. White triangles indicate polar foci, and grey triangles
threads. Septa between cells are indicated in (A) by white lines. Grey bars 2 mm.
doi:10.1371/journal.pgen.1000630.g002

Dynamic Recombination Machinery in Competent Cells
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Figure 3. Fluorescence microscopy of cells grown to competence expressing RecO-YFP. (A) Fluorescence of RecO-YFP in wt competent
cells without added DNA, (B) after addition of chromosomal DNA, (C) after addition of plasmid DNA in comEC mutant cells, and (D) after addition of
plasmid DNA in wt cells, white triangles indicate single foci, grey triangles two polar foci. Note that RecO-YFP foci are overrepresented in this field, as
only 17% of all cells analysed show detectable RecO-YFP foci. (E) Fluorescence of RecO-YFP and of ComGA-CFP in cells expressing both fusions, after
addition of plasmid DNA. White triangles show single polar foci, grey triangles two polar foci, and orange triangle indicates a cell having two ComGA
foci, a stronger one colocalizing with a RecO-YFP focus (green triangle) and a weaker one where no RecO-YFP focus is detectable. Black bar 2 mm.
doi:10.1371/journal.pgen.1000630.g003

Dynamic Recombination Machinery in Competent Cells
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A major difference between plasmid and chromosomal

transformation is the fact that upon addition of the same amount

of DNA (as was done in these studies), the amount of identical

DNA fragments taken up by a single competent cell is more than

1000-fold higher with plasmid than with chromosomal DNA. To

test if a chromosomal DNA fragment with a size even smaller than

monomeric plasmid DNA can also induce the formation of RecO-

YFP foci, we generated a 3.5 kb DNA fragment carrying a

tetracycline resistance gene flanked by 1 kb regions homologous to

the chromosome on each side, which integrates into the non-

essential ypbR locus by a double cross-over, in a RecA-dependent

manner. As expected, the frequency of recombination was similar

to that with plasmid DNA, i.e. lower than with chromosomal

DNA. 10 to 30 min after the addition of this PCR-amplified DNA

to cells grown to competence, 10.5% of the cells showed RecO-

YFP foci (63% with one polar focus, 34% with two polar foci, and

4% with three foci, 470 cells analysed, data not shown), showing

that also small dsDNA fragments can efficiently induce the

formation of RecO-YFP foci.

We also investigated the genetic requirements for the recruit-

ment of RecO to the cell pole. The formation of RecO-YFP foci in

response to plasmid DNA was abolished in comK mutant cells (data

not shown) and in mutant cells lacking the DNA uptake channel

ComEC (Figure 3C). These experiments support the idea that

RecO assembles at the pole due to incoming ssDNA with self-

annealing potential transported through ComEC.

To address the question whether polar localization of RecO

after addition of plasmid DNA depends on other recombination

proteins, we moved the recO-yfp fusion into a DrecN strain or we

placed the DrecA mutation into a recO-yfp strain. The formation of

RecO-YFP foci was somewhat reduced in DrecN cells (9.5%, 62

foci in 650 cells analyzed) (data not shown), but remained fairly

constant in DrecA cells (16.3%, 106 foci/650 cells) upon addition of

multimeric plasmid DNA (Figure 4A). These data suggest that

during plasmid transformation, RecO acts independently of RecA,

and is mildly influenced by RecN. Similarly, during DSB repair,

the recruitment of RecO to DNA breaks is influenced by RecN,

but is independent of RecA [23,34].

We also investigated, if the addition of phage DNA (45.5 kb

DNA from SPP1) might recruit RecO to the cell pole. Clear

RecO-YFP foci were detected in 2% of cells grown to competence

30 min after addition of 0.1 mg/ml of SPP1 DNA (7 foci/340 cells

analyzed, Figure 4D), showing that to a lesser degree than plasmid

DNA, but in contrast to chromosomal DNA, uptake of phage

DNA results in polar RecO accumulation.

DNA uptake occurs at an average speed of 80-nt/s [35], so several

1,000 bases can be present few minutes after addition of DNA

within the cell to induce the formation of GFP-RecA threads and/

or RecO-YFP foci, which are visible after only 5 min. Therefore, we

tested if incoming ssDNA could be a substrate for RecO.

RecO anneals ssDNA in vitro
To investigate whether RecO can mediate the annealing of

complementary ssDNA, we directly monitored DNA annealing of

a heat-denatured 440-nt long DNA, or this substrate complexed

Figure 4. Microscopy of cells grown to competence expressing RecO-YFP after addition of various kinds of DNA. (A) Fluorescence of
RecO-YFP in recA mutant cells plus plasmid DNA, (B) wt cells plus linearised monomeric plasmid DNA, (C) wt cells after addition of linearized trimeric
and higher multimeric plasmid DNA, and (D) after addition of SPP1 phage DNA. Grey bars 2 mm.
doi:10.1371/journal.pgen.1000630.g004
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with SsbA (Figure 5). RecO protein (at a ratio of 1 RecO/14-nt)

enhanced the annealing of complementary ssDNA molecules, and

similarly, RecA?dATP?Mg2+ (1 RecA monomer/3-nt) catalyzed

the annealing of complementary ssDNA substrates (Figure 5A).

Contrarily, SsbA, at a ratio of 1 tetramer/38-nt, inhibited the

spontaneous annealing reaction (Figure 5C).

When the ssDNA substrate was pre-incubated with SsbA a

different outcome was observed (Figure 5A and 5B). RecO protein

(1 RecO/14-nt) efficiently promoted the annealing of comple-

mentary ssDNA substrates (Figure 5A, lanes 5-9). Similar results

were observed if the RecO ratio was reduced to 1 RecO/28-nt

(data not shown). However, RecA?dATP?Mg2 failed to catalyze

the annealing of complementary ssDNA substrates complexed by

SsbA (Figure 5B). Thus, RecO has potent ssDNA annealing

activity in vitro, in the absence of any cofactor, and SsbA bound to

ssDNA markedly stimulated this activity. However, SsbA exerted a

negative effect on RecA?dATP?Mg2+-mediated DNA strand

annealing.

RecU is recruited to the competence pole, but dissipates
after addition of DNA

We investigated the possibility of a colocalization of RecU and

RecA during natural competence, because we showed that DrecU

cells are impaired in plasmid transformation whereas DruvAB cells

are not, and that RecU acts as a RecA modulator in a RuvAB-

independent manner [36]. In cells grown to competence, we found

that a functional RecU-YFP fusion (see Material and Methods)

forms a focus at a single cell pole or two foci, each at a pole, in

18% (110 cells having foci/600 cells, with 27% of these having two

foci) of cells grown to competence (Figure 6A). Polar RecU-YFP

foci colocalized with polar ComGA-CFP foci in more than 95% of

the cells containing foci (Figure 6B, 350 cells analyzed), showing

that RecU assembles at the DNA uptake machinery in the absence

of transforming DNA. This is consistent with the absence of polar

RecU-YFP foci in comK mutant cells (Figure 6C). Interestingly, the

formation of a RecU focus was also dependent on RecA protein.

The number of cells containing polar RecU foci was reduced by

92% in the absence of RecA compared to wild type cells (.200

cells analyzed, Figure 6D), and the fluorescence intensity of the few

foci was much lower than in wild type cells. This is consistent with

the findings that RecU physically interacts with RecA and acts as a

modulator of RecA [30,36], and is involved in plasmid

transformation and viral transfection (see Table 1). These

observations markedly differ from RecU assembly during DNA

DSB repair. Here, the accumulation of RecU-YFP foci, at late

times after DSB induction, is strictly dependent on the presence of

the RuvAB complex [25].

Strikingly, RecU-GFP foci dissipated from the pole after

addition of any kind of DNA. Only 4% of all cells grown to

competence contained polar (or any) RecU-GFP foci 15 min after

addition of DNA (Figure 6E, 200 cells analyzed), while after

30 min, foci were not detectable in all 250 cells analyzed

(Figure 6F). Like RecA (see above), RecU was statically located

at the DNA uptake apparatus in the absence of external DNA

(data not shown), but apparently changes its pattern of localization

in response to incoming ssDNA.

Discussion

Our work provides genetic and cell biological evidence that two

different pathways operate during transformation with plasmid or

with chromosomal DNA, and that proteins involved in DSB repair

obtain different functional specificities during horizontal gene

transfer. Using a prophage-free B. subtilis strain we have

Figure 5. RecO anneals complementary ssDNA complexed with
SsbA protein. (A) heat-denatured 440 nt long ssDNA (lane 1) was pre-
incubated with SsbA (90 nM) for 10 min at 30uC, then RecO (500 nM)
was added and the reaction incubated for a variable time (lanes 4 to 9).
As controls, 440 bp dsDNA (lane 2) was heat-denatured (ssDNA, lane 1)
and incubated with RecA (1.3 mM) in buffer A for 80 min at 30uC (lane
3). (B) Quantification of SsbA, RecA, and RecO annealing reactions. Heat-
denatured 440 nt ssDNA was pre-incubated with 90 nM SsbA (+ SsbA,
empty triangles). Then, 500 nM RecO (+ RecO, empty circle) or 1.3 mM
RecA (+ RecA, empty diamonds) was added and the reaction incubated
for variable time at 30uC. Heat-denatured 440 nt ssDNA was pre-
incubated with 90 nM SsbA (+ SsbA) for 10 min. Then RecO (500 nM [+
RecO], filled circle) or RecA (1.3 mM [+ RecA], filled diamonds) was
added and the reaction incubated for a variable time. The broken line
denotes the rate of spontaneous annealing. The extent of DNA
annealing is expressed as the percentage of the observed dsDNA
signal relative to that of total DNA. (C) SsbA protein inhibits
spontaneous annealing of complementary ssDNA. Heat-denatured
440 nt long ssDNA (lane 1) was pre-incubated with SsbA (90 nM) for
variable times at 30uC (lanes 3 to 7). As control, native 440 bp dsDNA
(lane 2) was incubated in buffer A for 80 min at 30uC (lane 2).
doi:10.1371/journal.pgen.1000630.g005
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confirmed and extended previous data that in the absence of

RecA, chromosomal transformation is abolished, whereas plasmid

transformation operates normally. Conversely, the absence of

RecO and RecU had little effect on transformation with

chromosomal DNA, but severely impaired plasmid transformation

[8,9,12,13, this work]. Interestingly, the absence of RecA

suppresses the RecU requirement during plasmid transformation

[30]. RecU has three activities: to cleave HJs, to catalyze

annealing of complementary ssDNAs and to modulate RecA

activity in vitro [27]. The recU71-encoded RecUR71A is

proficient in strand annealing and HJ cleavage, but deficient in

RecA interaction [30] and in plasmid transformation, suggesting

that the main defect in the recU71 strain is the modulation of

RecA, and that in the absence of RecU, the presence of RecA is

counter productive for plasmid transformation.

In cells grown to competence, RecA, SsbB, DprA and CoiA

(YjbF) are recruited to the DNA uptake machinery [6,7,18,19],

whereas RecN oscillates between the poles [19] (Figure 7-0). We

show that in the absence of transforming DNA, RecU also

accumulates at the competence pole (Figures 4 and 7-I), whereas

RecO is dispersed throughout the competence cells. For the

cytosolic proteins that are involved in the processing of

internalized ssDNA, only the synthesis of RecA, SsbA, SsbB,

DprA and CoiA is induced or increased during the state of

competence [3,4], while that of RecN, RecO and RecU is not.

Therefore, the latter proteins gain novel functional specificity

during horizontal gene transfer. Interestingly, the cytosolic

recombination machinery responds differentially to the uptake of

different forms of DNA. Upon addition of plasmid DNA, an

accumulation of RecO at the cell pole, where the DNA uptake

machinery assembles, was observed, but not after addition of

chromosomal DNA (Figure 7-II). We show that RecO is able to

efficiently anneal SsbA covered ssDNA in vitro, even at very low

protein concentrations, and independent of a nucleotide cofactor.

Because RecA is not required during plasmid transformation, it is

clear that at least partly, RecO reassembles plasmid DNA from

incoming ssDNA in vivo, which is then established as self-

replicating unit.

Functional requirements and spatial organization of
transformation with homologous chromosomal DNA

In cells grown to competence, RecA and RecU are present at

the DNA uptake machinery, and RecN oscillates between the

poles [19, this work], whereas RecO is dispersed throughout the

Figure 6. Fluorescence microscopy of cells grown to competence expressing RecU-YFP. (A) Fluorescence of RecU-YFP in wt cells, (B) wt
cells also expressing ComGA-CFP, (C) in DcomK mutant cells, (D) in DrecA mutant cells, (E) in wt cells 15 min after addition of chromosomal DNA, and
(F) in wt cells 30 min after addition of chromosomal DNA. White triangles indicate polar assemblies of RecU (and polar ComGA-CFP foci in panel B).
Grey bars 2 mm.
doi:10.1371/journal.pgen.1000630.g006
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cytosol (Figure 7-0). Upon addition of any kind of DNA RecN

localizes to the pole that contains the DNA uptake machinery

(Figure 7-I), and RecA and RecU lose their static position at the

cell pole (Figure 7-I). RecN specifically binds to the 39-OH end of

ssDNA in vitro and protects it from exonuclease attack [20,21],

but plays a minor role in transformation in the phage free strain

background. Modulators of RecA must displace the single-

stranded binding proteins (e.g., SsbA, SsbB) and help loading of

RecA onto ssDNA, which has been demonstrated for DprA [22].

Thus, RecA binds to incoming ssDNA and forms threads that

emanate from the uptake machinery [19]. Further investigating

RecA thread formation, we found that RecA threads are highly

dynamic structures that change their length and orientation within

a 1 min time scale. Maximum extension of filaments was measured

to be 0.6 (60.2) mm/min, similar to the observed speed of

spreading of RecA on dsDNA in vitro [32], suggesting that

filament growth and shrinkage may be mediated by RecA coating

of and dissociating from incoming ssDNA. These finding reinforce

the idea that RecA threads are actively searching for homology of

the incoming DNA with the recipient chromosome. RecA/donor

ssDNA invade recipient duplex DNA, forming a D-loop structure.

Interestingly, RecU also dissipated from the pole after addition of

DNA (Figure 7-I). In agreement with the association at the cell

pole of RecA and RecU, and their loss of this static position after

DNA addition, both proteins have been shown to physically

interact with each other [30]. Possibly, RecU protein tracks along

with RecA threads that move away from the cell pole and may

enhance RecA-mediated D-loop formation, which is consistent

with data showing that RecU enhances RecA-promoted DNA

strand invasion [27,36]. However, D-loop intermediates cannot be

resolved by the RecU HJ-resolvase in vitro [27]. From the results

obtained we can also infer that in DNA transformation, 4-strand

recombination intermediates (HJs) are not formed, because HJ

resolution through RecU is not required for transformation and in

the absence of the RuvAB translocase, chromosomal transforma-

tion is also not affected. Clearly, an as yet unknown D-loop

resolvase and a ligase are needed to mediate full incorporation of

taken up homologous DNA (Figure 1A). Replication of the

generated heteroduplex will generate one transformed daughter

cell.

Establishment of non-homologous self-replicative DNA
within competent cells

The uptake of plasmid DNA follows the same pathway and

kinetics through the membrane via the uptake machinery than

that of chromosomal DNA [1,2]. In the presence of internalized

plasmid ssDNA, RecA also forms threads, showing that RecA is

loaded onto any kind of incoming ssDNA. However, the RecA

threads are unproductive if the incoming ssDNA shares no

significant homology (larger than 50-nt) with recipient DNA, as is

the case for plasmid DNA. In the absence of sufficient homology,

RecU may promote the disassembly of RecA from the taken up

ssDNA, which should then become coated by a single-strand

binding protein (e.g., SsbA, SsbB, DprA). Strikingly, incoming

plasmid DNA triggers the recruitment of RecO to the competence

machinery. Possibly, RecO accumulates at the competence pole

through direct protein-protein interaction with SsbA bound to

incoming ssDNA, consistent with in vitro data showing that RecO

physically interacts with SsbA [28]. All other proteins induced by

competence possibly covering the entering ssDNA (namely,

DprA/Smf and SsbB) are present at the competence pole even

in the absence of incoming DNA, and thus cannot cause the switch

of recruitment of RecO in response to incoming plasmid DNA. It

is also possible that an unknown factor causes the accumulation of

RecO at the competence machinery. However, we propose that

RecO accumulates due to its annealing activity. Taken up ssDNA

must anneal to form dsDNA fragments for plasmid establishment

(Figure 7-II). The likelihood that both complementary Watson and

Crick strands are taken up is several orders of magnitude higher

during uptake of a similar amount of plasmid DNA (,15 kb) than

of chromosomal DNA (4,200 kb). RecO is a dimer in solution and

binds cooperatively to ssDNA with high affinity [28], but has

drastically lower affinity to dsDNA (C.M. and B.C., unpublished).

Additionally, RecO has much higher annealing activity with

complementary ssDNA strands complexed with SsbA than RecA

in vitro (Figure 5), therefore, incoming plasmid DNA provides a

high amount of substrate for RecO. Interestingly, the number of

competent cells having visible polar RecO-YFP foci was higher

after addition of oligomeric DNA compared with monomeric

Figure 7. Model for events during transformation with
different kinds of DNA. (0) Several recombination proteins
accumulate at the polar DNA uptake machinery and RecN oscillates
between the poles. (I) Upon addition of chromosomal DNA (and in fact
any kind of DNA), RecN binds to incoming ssDNA, and RecA forms
filamentous thread structures, which are thought to mediate recombi-
nation with a homologous region on the chromosome (indicated by
gray cloud). In parallel, RecU loses its static position. Degradation of the
displaced recipient DNA, and ligation of donor and recipient DNA
generate the recombinant product. (II) RecO visibly accumulates at the
DNA uptake machinery after addition of plasmid DNA. Oligomeric
plasmid DNA is shown, indicated by the letters ABC, with one strand in
blue and one in yellow. RecA also forms dynamic threads, which are not
shown, because these are non-productive, RecU, which loses its static
position, may modulate RecA. RecO anneals incoming ssDNA to dsDNA
fragments, which can be assembled into circular plasmid DNA through
intramolecular recombination, if internal homology is present (indicated
by letters). (III) Viral ssDNA is converted into dsDNA fragments through
recombination, and overlapping fragments need to recombine to
generate a full-length phage DNA via both RecA- and RecO-mediated
recombination. Recombination of terminal repeats (tr, dark blue)
generates a circular phage molecule. Note that the chromosome is
omitted from II and III.
doi:10.1371/journal.pgen.1000630.g007
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DNA. Repetitive (homologous) sequences increase the annealing

potential, supporting the view that RecO accumulates due to its

activity in strand annealing. To further test this idea, we

investigated the effect of the addition to cells grown to competence

of a 3.5 kb construct that integrates into the recipient chromosome

by a double-cross over event (in a RecA-dependent manner).

RecO-YFP foci accumulated at the cell poles in a number of cells

in between that for monomeric or for multimeric plasmid DNA,

further supporting the notion that RecO accumulates at the DNA

import machinery due to a high amount of complementary DNA

strands.

RecU has also been shown to possess strand-annealing activity

in vitro [27,30], and is also important for plasmid transformation.

We propose that the main role of RecU in plasmid transformation

is to down regulate RecA activity rather than to mediate strand

annealing. Indeed, it was shown that the RecU requirement

during plasmid transformation can be overcome by deleting recA

[30]. Electron microscopy analyses revealed that: (i) purified RecU

does not promote RecA disassembly from ssDNA, but discrete

RecU blobs embedded in a RecA nucleoprotein filament reduces

RecA dynamic assembly, and (ii) RecU alone does not polymerizes

onto ssDNA [36]. Down-regulation of RecA may be important for

efficient plasmid DNA establishment, because RecA is inefficient

in catalyzing DNA strand invasion on linear dsDNA, in contrast to

supercoiled DNA, and may hinder the formation of circular

plasmid dsDNA.

We also found a novel function for Ku protein during

transformation with plasmid (but not with chromosomal) DNA.

Ku might protect DNA ends that arise during DNA annealing

(Figure 7-II) from nuclease attack. A Ku-GFP fusion was dispersed

throughout cells grown to competence (data not shown), and its

expression was markedly increased during competence, compared

with growing cells, supporting an important function for Ku

during plasmid horizontal gene transfer.

As a second step, annealed duplex and partially duplex DNA

must circularize to establish a plasmid molecule (Figure 7-II). As

previously documented for RecOEco [37], we propose that RecO

promotes the annealing of a homologous region of the same

molecule complexed by SsbA, to generate a circular molecule

(Figure 7-II). This intramolecular recombination only generates

unit-length molecules if the substrate has internal redundancy.

Consistent with this idea, it has been shown that plasmid

transformation can be achieved with single trimer or higher

multimer molecules, but not with monomeric plasmid DNA

[16,33]. Once an oligomeric plasmid molecule is circularized and

replicated, the host-encoded resolution system should resolve it to

monomeric plasmid DNA. These proposed steps provide an

economic avenue to reassemble plasmid DNA with few proteins,

and independently of RecA.

Transfection of viral SPP1 DNA follows a mixed route
During phage transfection with mature viral DNA, the functions

of RecA, RecO, RecU and Ku are required. Unlike chromosomal

and plasmid transformation, viral transfection requires the

recombination of 2 to 4 DNA molecules to yield a 45.5 kb viral

DNA [38]. Phage DNA must first anneal to form dsDNA

segments, similar to plasmid transformation (Figure 7-III).

Interestingly, RecO also accumulated at the pole after addition

of SPP1 DNA, but in fewer cells compared with plasmid DNA,

most likely because the different segments of the viral DNA have

less annealing potential than the oligomeric plasmid DNA. As a

second step, overlapping fragments must recombine to form a full-

length phage DNA molecule. This intermolecular recombination

event requires RecA and the phage recombination machinery (e.g.

strand annealing protein, G35P, and 59to 39exonuclease G34.1)

[39,40]. The terminal repeat regions (Figure 1C) then recombine,

perhaps via single-strand annealing, to generate a circular phage

molecule that can replicate. Thus, genetic transformation follows

different pathways, which in the case of phage transfection

contains steps from both chromosomal and plasmid transforma-

tion.

Contrarily to natural transformation, DSB repair appears to

follow one discrete avenue. Cell biological experiments have

documented that upon induction of DSBs, recombination proteins

are recruited to the DNA damage site on the nucleoid in a

relatively fine tuned temporal order (setting up a so-called repair

center), with RecN assembling first, followed by RecO (which is

important for loading of RecA onto SsbA-coated ssDNA), and

RecA itself, and later RecF and RecU [15,23,25,41]. Thus, the

recombination machinery can switch between DNA repair and

incorporation or establishment of foreign DNA within the cell, and

assembles differentially according to the different DNA substrates

taken up from the environment.

Materials and Methods

Bacterial strains, plasmids, and reagents
E. coli XL1-Blue (Stratagene) was grown in Luria–Bertani (LB)

rich medium supplemented with 50 mg/ml ampicillin where

appropriate. B. subtilis strains were grown in LB rich medium at

37uC, or in defined minimal medium for microscopy. The strains

used in this study are described in Table 2.

Construction of vectors and strains
The recN, recO, or recU genes were fused at their 39- end with the

cfp or the yfp gene and the fused gene was integrated into the

chromosome by single crossover integration to replace the wt gene

as previously described [23,25]. Thereby the recN-, recO- or recU-yfp

gene fusions were present at the native locus and transcribed from

their native promoters, which are not induced during competence

development [3,4]. RecN-YFP, RecO-YFP or RecU-YFP ex-

pressing cells were as resistant to methylmethane sulfonate and to

MMC as the wt strain [23,25] and had transformation efficiencies

like wt cells (data not shown), showing that the fusions were fully

functional. The recA gene was fused at the 59-end to the gfp gene,

the fused gene was placed under the control of the xylose inducible

promoter and ectopically integrated into the amy locus. Then the

wt recA gene was deleted [19]. The resulting GFP-RecA strain was

as sensitive to MMC as the wt strain [23,25] and had

transformation efficiencies like wt cells (data not shown), showing

that the fusion is fully active.

To move the recN-cfp, recO-yfp or recU-yfp fusion in different

mutant backgrounds, transformation with chromosomal DNA was

used (Table 2). For the colocalization experiments, strain DK2

(recO-yfp) was transformed with chromosomal DNA from comGA-

cfp, generating strain DK84. For the colocalization experiments,

strain DK53 (recU-yfp) was transformed with chromosomal DNA

from comGA-cfp, generating strain DK88. A Ku-YFP fusion was

constructed by cloning the PCR amplified 39 end (500 bp) of the

ykoV gene into pSG1164, which was integrated into the

chromosome via single crossover, such that the expression of the

downstream ykoU gene was driven by the xylose promotor. The

Ku-YFP fusion was fully functional, as all above stated YFP

fusions.

Transformation assays
Competent cultures were grown as described previously [42].

Competent B. subtilis cells were transformed with pUB110
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plasmid DNA, chromosomal DNA from a met+ strain (SB19

DNA) or bacteriophage SPP1 DNA. The yield of kanamycin-

resistant transformants (plasmid transformation), met+ transfor-

mants (chromosomal transformation), and SPP1 transfectants

was corrected for DNA uptake (assayed through the determina-

tion of uptake of radioactively labeled DNA into cells grown to

competence through DNaseI degradation of the labeled DNA)

and for cell viability (viability counts), and the values obtained

were normalized relative to that of the rec+ strain, which is taken

as 100 [9,43].

Complementary ssDNA annealing assays
RecO, RecA and SsbA proteins were purified as previously

described [28,36]. To determine whether RecO anneals comple-

mentary ssDNA coated with SsbA, buffer A (50 mM Tris-HCl

[pH 7.5], 1 mM DTT, 80 mM NaCl, 2 mM EDTA, 50 mg/ml

bovine serum albumine [BSA], 5% glycerol) was used, whereas in

RecA-SsbA reactions, buffer B (50 mM Tris-HCl [pH 7.5], 1 mM

DTT, 40 mM NaCl, 10 mM magnesium acetate, 2 mM dATP,

50 mg/ml BSA, 5% glycerol) was used, and the DNA complexes

were monitored upon deproteination. The heat-denatured 440-nt

ssDNA (7 mM in nt, pGEM-3Zf(+) EcoRI[5]-AflIII[445] DNA

fragment) when indicated was pre-incubated with SsbA (90 nM)

for 10 min at 30uC. Then RecO (500 nM) or RecA (1.3 mM) was

added and the reaction incubated by a variable time. The samples

were deproteinized as described [27], separated in a native (n) 6%

polyacrylamide gel electrophoresis (nPAGE), and the gels dried

prior to autoradiography and quantification as previously

described [27].

Image acquisition
Fluorescence microscopy was performed on an Olympus AX70

microscope. Cells were mounted on agarose pads containing S750

growth medium on object slides. Images were acquired with a

digital MicroMax CCD camera; signal intensities were measured

using the Metaview program. DNA was stained with 49,6-

diamidino-2-phenylindole (DAPI; final concentration 0.2 ng/ml),

and membranes were stained with FM4-64 (final concentration

1 nM). Chromosomal DNA (from B. subtilis or E. coli) or plasmid

DNA (various replicative plasmids) were added to 100 ml of cells

grown to competence, resulting in a final concentration of 0.1 mg/

ml of DNA. For purification of mono or multimeric plasmid DNA,

plasmid pDG148 was digested with EcoRI, and was purified after

agarose gel electrophoresis. Monomeric plasmid DNA was

incubated with LrpC protein and DNA ligase to enhance

formation of dimeric and higher multimeric DNA [44] The

ligated DNA was purified from low melting agarose using phenol-

chloroform extraction.

Supporting Information

Video S1 Time lapse microscopy (1 min intervals) of a cell

grown to competence containing a GFP-RecA thread 15 min after

addition of chromosomal DNA. 6 frames/s. First frame shows

membrane staining of the cells. Movie corresponds to Figure 1C

left panel.

Found at: doi:10.1371/journal.pgen.1000630.s001 (0.08 MB

MOV)

Video S2 Time lapse microscopy (1 min intervals) of a cell

grown to competence containing a GFP-RecA thread 15 min after

addition of chromosomal DNA. 6 frames/s. Movie corresponds to

Figure 1C right panel.

Found at: doi:10.1371/journal.pgen.1000630.s002 (0.04 MB

MOV)

Video S3 Time lapse microscopy (1 min intervals) of a cell

grown to competence containing a GFP-RecA thread 15 min after

addition of chromosomal DNA.

Found at: doi:10.1371/journal.pgen.1000630.s003 (0.08 MB

MOV)

Video S4 Time lapse microscopy (1 min intervals) of two cells

grown to competence containing a GFP-RecA thread 15 min after

addition of chromosomal DNA. First frame shows membrane

staining of the cells.

Found at: doi:10.1371/journal.pgen.1000630.s004 (0.14 MB

MOV)
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Table 2. Strains used in this study.

Strains Genotypes References

SB19a Prototoph wt

BG214b trpC2 metB5 amyE sigB37 xre1 attSPb attICEBs1 Wt

BG129 recF15 [9]

BG277 recN::cat (DrecN) [45]

BG439 recO::cat (DrecO) [12]

BG190 recA::cat (DrecA) [43]

BG427 recU::cat (DrecU) [13]

BG1021 recU71 [30]

BG809 ykoV::cat (Dku) [46]

BG128 recR::cat (DrecR) [47]

BG697 ruvAB::cat (DruvAB) [25]

PY79c Prototoph wt

DK4 recF-yfp This work

DK2 recO-yfp This work

DK80 recO-yfp, DcomK This work

DK81 recO-yfp, DcomGA This work

DK82 recO-yfp, DrecA This work

DK83 recO-yfp, DcomEC This work

DK26 recO-yfp, DrecN This work

DK84 recO-yfp, comGA-cfp This work

DK53 recU-yfp This work

DK86 recU-yfp, DcomK This work

DK87 recU-yfp, DcomG This work

DK88 recU-yfp, comGA-cfp This work

DK89 recU-yfp, DrecA This work

ST01 ykoV-yf This work

aSB19 is cured of SPb phage and non-inducible for PBSX prophage, and lacks
the ICEBs1 transposon.

bStrains of the BG series are isogenic with BG214 (cured of SPb, non-inducible
for PBSX, and lacks the ICEBs1).

cStrains of the DK and ST series are isogenic with strain PY79.
doi:10.1371/journal.pgen.1000630.t002
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