Skip to main content
. 2009 Jul 8;161(3):449–459. doi: 10.1007/s00442-009-1400-3

Fig. 3.

Fig. 3

Leaf wetting increases foliar hydration in many of the dominant broadleaf, coniferous, and fern species of the redwood forest ecosystem. Each box illustrates the leaf morphology of one species with grey arrows illustrating the magnitude of foliar uptake capacity (U; arrow thickness represents the foliar uptake capacity of each species relative to the maximum capacity measured) and black arrows illustrating water conservation when leaf wetting stops nocturnal water loss through stomata (gn; arrow thickness represents the nocturnal conductance rate of each species relative to the maximum rate measured). These species are ranked in order of how influential foliar uptake may be for leaf hydration relative to the suppression of nocturnal conductance when leaves are wet. P. munitum is ranked first because it demonstrated the highest ratio of foliar uptake capacity to nocturnal conductance and U. californica and O. oregana are ranked last because no foliar uptake capacity was measured. All illustrated species either experience leaf wetting in the canopy of redwood forest where fog impaction and interception occurs first during fog exposure or on the forest floor where occult precipitation delivers fog water after the canopy foliage saturates. Crown silhouettes on the left indicate the relative position of each species within the redwood forest profile