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Abstract

Reaction of 2,3-pentadienyl benzoate and benzyl carbamate with a catalytic 1:1 mixture of (NHC)
AuCl and AgOTf in dioxane at 23 °C for 5 h led to isolation of (E)-4-(benzyloxycarbonylamino)-2-
pentenyl benzoate in 84% yield as a single regio- and diastereomer. Gold(I)-catalyzed
hydroamination was effective for a number of N-unsubstituted carbamates and a range of substituted
allenes.

Allylic amines are components of many naturally occurring and biologically active molecules
and are versatile building blocks for the synthesis of complex nitrogen-containing molecules.
As a result, considerable effort has been directed toward the development of general and
selective methods for the synthesis of allylic amines.1,2 The transition metal-catalyzed addition
of the N–H bond of an amine or carboxamide derivative across the C=C bond of an allene
represents an attractive and atom economical approach to the synthesis of allylic amines.3
However, whereas general and efficient methods for the intramolecular hydroamination of
allenes have been developed,4,5 the intermolecular hydroamination of allenes remains
problematic and no methods are availavble that effectively employ ammonia or ammonia
equivalents as nucleophiles.6,7 Here we describe a general, regio- and stereoselective gold(I)-
catalyzed protocol for the intermolecular hydroamination of allenes that employs N-
unsubstituted carbamates as ammonia surrogates.

We have developed an effective protocol for the intramolecular hydroamination of N- γ- and
δ-allenyl carbamates catalyzed by a mixture of the gold phosphine complex (1)AuCl [1 = Pt-
Bu2o-biphenyl]5 and AgOTf and a protocol for the intermolecular hydroalkoxylation of allenes
with alcohols catalyzed by a mixture of the gold (NHC) complex (2)AuCl [2 = 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidine] and AgOTf (Scheme 1).8,9 We therefore targeted (1)
AuCl and (2) AuCl as precatalysts for the intermolecular hydroamination of allenes with N-
unsubstituted carbamates. In an initial experiment, reaction of 3-methyl-1,2-butadiene (3) and
benzyl carbamate catalyzed by a 1:1 mixture of (1)AuCl and AgOTf in dioxane at 23 °C for
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24 h led to 57% conversion to form the N-tertiary allylic carbamate 4a as the exclusive product
(Table 1, entry 1). Longer reaction time or employment of related gold phosphine catalysts led
to no significant improvement in conversion (Table 1, entries 2-5). Conversely, reaction of 3
and benzyl carbamate with a catalytic mixture of (2)AuCl and AgOTf at 23 °C for 24 h led to
96% conversion to form 4a as the exclusive product (Table 1, entry 6). Allylic carbamate 4a
was isolated in 93% yield from the corresponding preparative-scale reaction (Table 2, entry
1).

In addition to benzyl carbamate, 9-fluorenylmethyl carbamate and methyl carbamate reacted
with 3 in the presence of (2)AuCl/AgOTf to form N-tertiary allylic carbamates 4b and 4c,
respectively (Table 2, entries 2 and 3). Both the differentially 1,1-disubstituted allene 5 and
trisubstituted allene 6 underwent intermolecular hydroamination to form the corresponding
N-tertiary allylic carbamates (7-8) in modest yield as single regioisomers (Table 2, entries 4-6).
Whereas hydroamination of the electron-deficient monosubstituted allene 9 led to exclusive
formation of the N-primary (E)-allylic carbamate 10 (Table 2, entry 7), hydroamination of
mono-alkyl-substituted allene 11 formed a 1:1 mixture of N-primary (12a) and N-secondary
(12b) allylic carbamates (Table 2, entry 8). 1,3-Disubstituted allenes 13-16 underwent
hydroamination in good yield, with high E-selectivity, and, in the case of differentially-
substituted allenes 14-16, with exclusive attack of carbamate at the more electron-rich allene
terminus (Table 2, entries 9-12). Reaction of enantiomericaly enriched allene (S)-15 (76% ee)
with benzyl carbamate led to isolation of racemic 19 in 78% yield. This outcome is not
surprising given the rapid (≤10 min) racemization of (S)-15 under reaction conditions.8
Hydroamination of tetrasubstituted allene 21 formed N-tertiary allylic carbamate 22 in modest
yield (Table 2, entry 13).

Noteworthy is the contrasting regioselectivity of the (2)AuCl/AgOTf-catalyzed intermolecular
hydroamination and hydroalkoxylation of allenes. While both transformations favor addition
of the nucleophile to the more electron-rich terminus of differentially 1,3-disubstituted allenes
such as 14 and 15, hydroalkoxylation displays much greater sensitivity to steric hinderance
than does hydroamination, leading to preferential attack of alcohol at the less-substituted
terminus of 1,1-disubstituted allenes such as 3 and trisubstituted allenes, as opposed to selective
attack of carbamate at the more substituted allene terminus.10

Stereochemical analysis of the gold(I)-catalyzed hydrofunctionalization of C–C multiple bonds
has consistently supported outer-sphere pathways for C–X (X = N, O, C) bond formation.5,8,
11 It therefore appears likely that the intermolecular hydroamination of allenes catalyzed by
(2)AuCl/AgOTf occurs via outer-sphere attack of the carbamate on gold π-allene complex I
to initially form the cationic gold σ-alkenyl complex II that loses a proton to form II (Scheme
2). Protonolysis of the Au–C bond of III then releases the N-allylic carbamate with regeneration
of the cationic Au(I) catalyst.12 Available evidence regarding the gold(I)-catalyzed
hydrofunctionalization of allenes points to rapid and reversible formation of one or more gold
π-allene complex followed by irreversible C–X bond formation.5,8,13 Therefore, the
regioselectivity of gold(I)-catalyzed intermolecular hydroamination and hydroalkoxylation is
presumably established via kinetic trapping of gold(I) π-allene complexes I and Ia with
carbamate and alcohol, respectively, under Curtin-Hammett conditions (Scheme 2). However,
the origins of this nucleophile-dependent selectivity remain unclear.10

In summary, we have developed a gold(I)-catalyzed protocol for the intermolecular
hydroamination of allenes. The protocol was effective for a number of N-unsubstituted
carbamates and was effective for monosubstituted, 1,1- and 1,3-disubstituted, trisubsituted,
and tetrasubstituted allenes. We are currently working toward the development of
enantioselective intermolecular allene hydroamination protocols and toward an understanding
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of the nucleophile-dependent regioselectivity of gold(I)-catalyzed allene
hydrofunctionalization.
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Scheme 1.
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Scheme 2.
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Table 1
Gold(I)-Catalyzed Hydroamination of 3-Methyl-1,2-butadiene (3) with Benzyl Carbamate as a Function of Supporting
Ligand.

entry L convn (%)a

1 1 57

2 PCy2o-biphenyl 58

3 PCy2{2-[2,5-(OMe)2C6H3]C6H4} 47

4 Pt-Bu2[2-(2-NMe2C6H3)C6H4] 0

5 P(4-MeOC6H4)3 25

6 2 96

a
Conversion determined by GC analysis of the crude reaction mixture versus hexadecane internal standard.
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