
TRAIL gene therapy: From preclinical development to clinical
application

Thomas S. Griffith1,2,3, Brittany Stokes3, Tamara A. Kucaba1, James K. Earel Jr.1, Rebecca
L. VanOosten1,2, Erik L. Brincks1,2, and Lyse A. Norian1
1Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
2Interdisciplinary Graduate Program in Immunology, University of Iowa, 375 Newton Road, Iowa
City, IA 52242
3The Prostate Cancer Research Program of the Holden Comprehensive Cancer Center, University
of Iowa, 375 Newton Road, Iowa City, IA 52242

Abstract
Numerous studies have investigated the potential use of TNF-related apoptosis-inducing ligand
(TRAIL) as a cancer therapeutic since its discovery in 1995 – because TRAIL is a potent inducer of
apoptosis in tumor cells but not in normal cells and tissues. Consequently, a great deal is known
about TRAIL/TRAIL receptor expression, the molecular components of TRAIL receptor signaling,
and methods of altering tumor cell sensitivity to TRAIL-induced apoptosis. Our laboratory was the
first to report the possibility of TRAIL gene transfer therapy as an alternative method of using TRAIL
as an antitumor therapy. As with recombinant proteins administered systemically, intratumoral
TRAIL gene delivery also has limitations that can restrict its full potential. Translating the preclinical
TRAIL studies into the clinic has started, with the hope that TRAIL will exhibit robust tumoricidal
activity against human primary tumors in situ with minimal toxic side effects.
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INTRODUCTION
Cell death can be generally classified into two forms based on morphological and biochemical
criteria: necrosis and apoptosis [1–3]. Necrosis is the nonphysiological or passive type of cell
death usually resulting from extreme cellular trauma, generally affecting groups of cells rather
than individual cells, and typically evoking inflammation [4]. Cells undergoing necrosis
normally have problems maintaining proper plasma membrane function, so they can no longer
regulate osmotic pressure. Consequently, the cells swell and rupture, spilling their cellular
contents into the surrounding tissue, resulting in the nonspecific cellular destruction that leads
to an inflammatory response necessary to remove the debris and begin tissue repair.

Apoptosis is a more subtle process usually affecting scattered single cells, and is characterized
histologically by the formation of small, spherical cytoplasmic fragments, some of which
contain pyknotic remnants of nuclei [3]. The nuclear changes are accompanied by
fragmentation of the cellular DNA into a ladder of regular subunits, the result of random
double-stranded breaks in the linker regions between nucleosomes [5]. While these
intracellular changes are taking place, the cell membrane becomes ruffled and blebbed in a
process called zeiosis [6]. The fate of the apoptotic cell is to be phagocytosed by surrounding
cells before it can rupture and release its potentially inflammatory contents. Thus, apoptotic
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cell death is well-suited for a role in tissue homeostasis, as it results in the deletion of cells
with little tissue disruption.

The rapid phagocytosis of apoptotic cells suggests that alterations in the plasma membrane
occur early in the death process, targeting these cells for removal. Phagocytic recognition of
the plasma membrane alterations in dying cells can occur through several different mechanisms
[7]. For example, the αvβ3 vitronectin receptor, recognition of thrombospondin, membrane
carbohydrate changes, and changes in cell membrane net surface charge have all been described
as recognition elements for phagocytic cells [7]. Another possible marker for apoptotic cell
identification is through changes in membrane composition involving the loss of cell membrane
phospholipid asymmetry [8,9]. A normal plasma membrane exhibits a marked phospholipid
asymmetry, where phosphatidylcholine and sphingomyelin are predominantly on the outer
membrane leaflet and most of the phosphatidylethanolamine and phosphatidylserine (PS) are
on the inner membrane leaflet [10]. This asymmetry is maintained by an ATP- and Mg2+ -
dependent translocase mediating the inward transport of negatively charged phospholipids and/
or association of PS with membrane skeletal proteins [11]. During apoptosis, cell membrane
leaflet composition changes, with a redistribution of negatively charged PS to the outer leaflet.
Surface exposure of PS occurs with chromatin condensation, precedes the increase in
membrane permeability, and constitutes one of the principal targets of phagocyte recognition.

In recent years, work from Dr. Shigezaku Nagata’s laboratory has identified two molecules
essential in the phagocytosis of PS-expressing apoptotic cells. One is milk fat globule epidermal
growth factor (EGF) factor 8 (MFG-E8), which binds to apoptotic cells by recognizing PS and
enhances the engulfment of apoptotic cells by macrophages [12,13]. Analysis of MFG-E8-
deficient mice found they contained many apoptotic lymphocytes attached to macrophages,
but they were not being efficiently engulfed. In addition, MFG-E8-deficient mice were prone
autoimmunity, most likely resulting from the inability to clear apoptotic cells. More recently,
a report from Miyanishi and colleagues [14] identified T cell immunoglobulin- and mucin-
domain-containing molecule-1 (TIM-1) and TIM-4 as PS receptors for the engulfment of
apoptotic cells. Thus, the once indiscriminate process of apoptotic cell phagocytosis is now
being defined at a molecular level.

With the identification of these basic characteristics, apoptotic cell death was found to be a
normal physiological process associated with a variety of basic systems, such as embryonic
development, tissue remodeling, immune regulation, and tumor regression, which is regulated
in situ by many extracellular and intracellular signals [15,16]. Survival signals from the
environment and intracellular sensor molecules that monitor cellular integrity normally
regulate a cell’s apoptotic machinery. For example, in the event a cell loses contact with its
surroundings or sustains irreparable internal damage, the apoptotic death process is commonly
initiated. Apoptosis also helps to balance the number of cells within a multicellular organism
that arise through normal cellular proliferation, maintaining the normal homeostatic nature of
the organism. Just as with apoptosis, cell proliferation is a highly regulated process with
numerous regulatory proteins. A variety of growth factors and proto-oncogenes serve as
positive regulators of cell cycle progression. In contrast, there are multiple tumor suppressor
genes that function to oppose uncontrolled cell proliferation by inhibiting the activity of the
proto-oncogenes. Thus, a balance in the cellular proliferation and death rate must be maintained
for homeostasis, and alterations in proliferation or death can lead to a multitude of disease
states.

Cancer is probably the most commonly studied disease associated with defects in the apoptotic
process. Tumor cells from a wide array of human malignancies have a decreased ability to
undergo apoptosis, and the development of therapeutic agents targeting the apoptosis pathway
within tumor cells has consequently become heavily investigated – especially the induction of
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tumor cell apoptosis through an active, instructive process mediated by cell surface death
receptors that transmit apoptotic signals when bound by their cognate death ligands. The death
receptors belong to the tumor necrosis factor (TNF) receptor superfamily, and are characterized
by cysteine-rich extracellular domains [17,18]. Additionally, all death receptors contain a
homologous cytoplasmic sequence called the death domain (DD) that serves as the recognition
point for the apoptotic machinery [18–20]. The ligands for the death receptors belong to the
TNF family of cytokines, a group of molecules that influence a variety of immunological
functions. For example, TNF and Fas ligand (FasL) are two of the most studied death ligands
that induce apoptosis in many physiological events, such as autoimmunity, activation-induced
cell death (AICD), immune privilege, and evasion of tumors from the immune system [21–
25].

TRAIL IS A POTENT INDUCER OF TUMOR CELL APOPTOSIS
TNF-related apoptosis inducing ligand (TRAIL) is another TNF family member that can induce
apoptosis, and has received great attention because of its cancer therapeutic potential. While
searching for molecules containing a conserved sequence present in many TNF family
members, Wiley et al. identified an expressed sequence tag that was then used to clone the full
length TRAIL [26] (or Apo-2 ligand [27]) cDNA. The extracellular domain of TRAIL is most
homologous to Fas ligand (28% a.a. identity), but it also has significant identity to TNF (23%),
lymphotoxin (LT)-α (23%), and LT-β (22%). Whereas the homology of TRAIL to other TNF
family members may be considered low, examination of the crystal structure of monomeric
TRAIL found it to be very similar to that of TNF and CD40 ligand [28]. TRAIL monomers
contain two antiparallel β-pleated sheets that form a β sandwich core framework, and the
monomers interact with other TRAIL monomers in a head-to-tail fashion, to form a bell-shaped
trimer [28]. This oligomerization enhances TRAIL activity as studies with recombinant soluble
TRAIL found that multimeric, or crosslinked, forms possessed the most biological activity,
rather than monomeric forms of TRAIL [26].

Early studies identified two unique characteristics of TRAIL. First, TRAIL-induced apoptosis
occurs only in tumorigenic or transformed cells and not normal cells [26]. As with the other
death-inducing members of the TNF family (i.e. FasL and TNF), cells undergoing TRAIL-
induced death exhibited many of the hallmarks of apoptosis, including DNA fragmentation,
expression of pro-phagocytic signals (i.e. phosphatidylserine) on the cell membrane, and
cleavage of multiple intracellular proteins by caspases [26,27,29,30]. Second, in contrast to
other TNF family members whose expression is tightly regulated and often transiently
expressed, mRNA for TRAIL is detected in a wide range of tissues, including peripheral blood
lymphocytes, spleen, thymus, prostate, ovary, small intestine, colon and placenta [26]. Within
the immune system, TRAIL can be expressed by human T cells after CD3 crosslinking and
type I IFN stimulation - perhaps contributing to the activation-induced cell death of T cells in
the natural setting [31]. In addition, human NK, B cells, monocytes, and dendritic cells express
membrane-bound TRAIL following cytokine stimulation (especially type I and II IFN),
transforming them into potent tumor cell killers [32–35]. Our group is also one of several to
show that human polymorphonuclear neutrophils (PMN) are a rich source of TRAIL [36–
40], which can be released in a functional soluble form after stimulation with Mycobacterium
bovis bacillus Calmette-Guerin (BCG) [39,41,42].

TRAIL RECEPTOR SIGNAL TRANSDUCTION
Unlike FasL and TNF, which interact with a single or pair of receptors, respectively, TRAIL
specifically binds to four distinct receptors: DR4 [43], DR5/TRAIL-R2 [44–46], TRID/DcR1/
TRAIL-R3 [44,45,47], and TRAIL-R4/DcR2 [48,49] (hereafter referred to as TRAIL-R1, -R2,
-R3, and -R4, respectively). Both TRAIL-R1 and TRAIL-R2 contain a cytoplasmic DD, and
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crosslinking by TRAIL or receptor-specific mAb activates the apoptosis signaling pathway in
sensitive cells [30,43–46]. In contrast, neither TRAIL-R3 (which is GPI linked) nor TRAIL-
R4 (which is a type I membrane protein) contains a complete cytoplasmic death domain, and
neither can induce apoptosis after ligation [44,45,47–49]. Because TRAIL can bind to TRAIL-
R3 and/or -R4 without directly signaling for cell death, it was initially proposed that these
receptors inhibit TRAIL-induced apoptosis by acting either as antagonistic receptors [44,45,
47] or via transduction of an anti-apoptotic signal [48]. Therefore, the presence or absence of
TRAIL-R3 and/or -R4 was thought to determine whether a cell was resistant or sensitive,
respectively, to TRAIL-induced apoptosis [44,45,49]. Further investigation of many tumor cell
lines, however, disproved this theory as the sole mechanism regulating TRAIL-sensitivity and
resistance [30,50].

Initial evaluation of the TRAIL receptor signaling pathway proved difficult, yielding
contradictory results from different laboratories. It took 5 years to fully elucidate the molecular
signal transduction events leading to apoptosis induced via TRAIL/TRAIL receptor interaction
[51,52]. Death receptor, be it TRAIL-R1/R2, Fas, or TNF-R1, crosslinking leads to the
formation of a multiprotein structure called the death-inducing signaling complex (DISC
[53]) that includes the death receptor, the death adapter protein Fas-associated death domain
protein (FADD [54]), and the proteolytic cysteine protease procaspase-8. All death receptors
share a homophilic protein/protein intracellular domain, called the DD [19,20], which serves
as the recognition point for specialized apoptosis signaling molecules that often contain a DD
themselves. In a homotypic interaction, the DD of FADD binds to the DD of TRAIL-R1 or –
R2. The death effector domain (DED) of FADD, in turn, interacts with the DED of procaspase-8
[55]. Procaspase-8 is proteolytically cleaved and activated at the DISC, which then initiates
the apoptosis executing caspase cascade. The downstream executioner caspases, caspase-3,
−6, and −7, are then activated to cleave the numerous structural and regulatory proteins that
maintain cellular integrity. The apoptotic signal from TRAIL-R1/-R2 can also be amplified by
engaging the apoptotic mediators present in mitochondria and activation of the apoptosome
[56]. Figure 1 shows a schematic representation of the principal molecules involved in the
TRAIL-R1/-R2 signal transduction pathway.

TRAIL AS AN ANTITUMOR THERAPEUTIC
Since the first report describing TRAIL [26], the majority of the published studies have focused
on its tumoricidal activity in vitro and in vivo, with the goal of developing this molecule into
an antitumor therapeutic agent. Early in vitro analyses demonstrated that recombinant, soluble
TRAIL possessed the unique ability of inducing apoptosis in a broad range of tumor cell lines,
while having little to no activity against normal cells [26,27,29]. Based on these in vitro results,
it was suggested that TRAIL could be used as an anti-tumor therapy without the side effects
seen with other TNF family members - namely FasL and TNF. The first reports examining the
antitumor activity of TRAIL in vivo also evaluated its toxicity against normal tissues. Walczak
et al. [57] compared the effects of intravenous administration of soluble TRAIL or FasL into
immunocompetent mice. Injection of TRAIL (either human or murine, 200 µg) did not result
in any observable toxic effects, whereas mice given human FasL (50 µg) were dead within 1
h due to massive hepatocellular degeneration, necrosis, and hemorrhage. Histologic
examination of tissues obtained from mice treated for a longer period (500 µg/d for 14 days)
also demonstrated no toxicity. Further investigation into the potential side effects of TRAIL
was performed in nonhuman primates by Ashkenazi et al. [58]. The exposure of cynomolgus
monkeys to TRAIL at 0.1–10 mg/kg/d over 7 days did not induce detectable toxicity. In
contrast, TNF induced severe toxicity at 0.003 mg/kg/d. Interestingly, certain recombinant
forms of soluble TRAIL have been shown to induce apoptosis in human hepatocytes in vitro
[59,60], raising some concerns about the therapeutic potential of TRAIL. The explanation for
the observed hepatocyte killing may actually lie in the form of TRAIL used. A TRAIL
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monomer of native sequence contains a single cysteine, Cys-230, and when forming trimeric
TRAIL the cysteines from three monomers are close to each other and chelate Zn2+ [28,61].
In contrast, the poly-His tagged recombinant TRAIL version that demonstrated toxicity toward
hepatocytes in vitro [59,60] had a low Zn2+ content and displayed an aberrant structure
compared to native TRAIL [62]. These results suggest that the question of liver toxicity was
nothing more than an in vitro observation entirely dependent upon the form of TRAIL used,
and the use of untagged TRAIL (a.k.a. Apo2L/TRAIL.0 [62]) in a therapeutic setting in humans
will not display any toxicity.

These results clearly demonstrated the safety of large, systemic doses of TRAIL, leading to
further studies that evaluated the antitumor activity in vivo. In these experiments,
immunocompromised mice were subcutaneously injected with human tumor cells, after which
intraperitoneal or intravenous injections of soluble TRAIL were started after tumor
implantation [57,58]. Multiple doses of TRAIL beginning the day after tumor implantation
suppressed tumor outgrowth, with many animals becoming tumor-free. Further studies have
shown that the in vivo antitumor activity of TRAIL is enhanced when combined with
chemotherapeutics and ionizing radiation [49,58,63]. The antitumor activity of systemically
administered TRAIL in these experiments demonstrated that TRAIL could interact with the
primary tumor and, potentially, any metastases that would normally be difficult to detect and/
or treat. One major drawback to these findings, however, was that large amounts of TRAIL
(up to 500 µg/d) were required to inhibit tumor formation, since most of the protein was cleared
within 5 hours [57]. Furthermore, the systemic administration of TRAIL appeared to be most
successful when administered shortly after tumor implantation [49,57,58,63]. Although these
previous results show promise, successful treatment relied on repeated, systemic
administration of large amounts of soluble TRAIL to have an effect. Yet, the administration
of equivalent doses of recombinant TRAIL protein into humans may be problematic. Despite
these possible concerns, recombinant soluble TRAIL protein and several TRAIL-R1 and –R2-
specific agonistic mAb have been tested clinically [64]. The generation of large amounts of
clinical-grade recombinant TRAIL protein or agonistic mAb can be accomplished with current
technologies, and because these are human proteins there is little/no immunological response
induced that could potentially neutralize their cytotoxic effects. That said, the systemic
administration of these molecules requires repeated injections to maintain high enough
concentrations to have a potential therapeutic response. Thus, the development of an alternative
means of delivery may increase the relative activity of TRAIL such that larger, more established
tumors may be eradicated as efficiently as smaller tumors.

An alternative approach, which was first reported from our laboratory, is the delivery of the
TRAIL cDNA using a nonreplicative adenoviral vector [65]. Since that report, there have been
a number of recombinant viral vectors containing the TRAIL cDNA described in the literature
[66–78]. Localized therapy of solid tumors has been successful in a number of settings. For
example, the treatment of prostate cancer with local (intraprostatic) regimens is also common
practice, with cryotherapy, brachytherapy, and several experimental viral-based studies serving
as current treatment options [79–81]. Of the viral-based therapies, published data indicate
minimal toxicity for adenovirus injection into the prostate up to doses of 1011 pfu [82]. As
demonstrated in the studies performed to date, transfer of the TRAIL gene by Ad5-TRAIL into
human prostate tumor cells in vitro and in vivo led to the rapid transcription and translation of
the transferred TRAIL gene into functional TRAIL protein that, when expressed on the cell
surface, induced apoptotic death in TRAIL-sensitive tumor cell targets but not normal cells
[65,69]. In addition, we observed sustained TRAIL expression (up to 7 d) after a single
intratumoral injection of Ad5-TRAIL [69] – something that would not be possible with the
administration of recombinant TRAIL protein.
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Adenoviral-mediated gene transfer has been well-studied over the past decade, and one major
criticism of this approach is the fact that adenovirus is highly immunogenic and most people
have been exposed to adenovirus at some point in their life [83,84]. This fact is one of the
reasons for the limited clinical success of adenoviral-mediated gene transfer protocols. In their
study of agents to enhance the delivery of recombinant viral vectors, Siemens et al. observed
that the coinjection of adenovirus in a collagen-based matrix led to enhanced adenoviral
transgene expression, and stimulated the generation of transgene-specific CTL responses –
even in the presence of preexisting anti-adenoviral immunity [85]. Thus, in addition to
generating “less immunogenic” adenoviral vectors through genetic modifications, there are
ways to minimize the immunological response that could restrict the therapeutic potential of
adenoviral vectors.

We recently completed a Phase I clinical trial with Ad5-TRAIL in men with locally-confined
prostate cancer, where the primary objectives were to determine the toxicity profile and
maximal tolerated dose. The ability of the vector to induce tumor cell death was also evaluated.
Patients with histologically confirmed adenocarcinoma of the prostate [clinical stage (as per
AJCC 2002, 6th edition) -T1c, T2a, T2b all of whom are clinically N0, M0] and scheduled to
undergo radical prostatectomy within 10 days following study entry were eligible for the study.
The vector was administered intraprostatically in a collagen matrix (Gelfoam, 30 mg/ml) to 12
patients using the following dose escalation: Level 1 – 1.3 × 108 pfu (4.2 × 109 particles); Level
2 – 4.2 × 108 pfu (1.3 × 1010 particles); Level 3 – 1.3 × 109 pfu (4.2 × 1010 particles); Level 4
– 4.2 × 109 pfu (1.3 × 1011 particles). Each group received injections of Ad5-TRAIL in Gelfoam
divided equally into both lobes of the prostate, further divided into 2 injection points in each
lobe. No adverse reactions were observed in any of the patients treated, and all patients tolerated
the injection. Further, there were no complications with the surgical removal of the prostate
after Ad5-TRAIL injection.

The clinical trial protocol specified that 3 subjects be enrolled at each of 4 dose levels with a
4 week break between dose levels to allow observation for side effects at each level. The
Gelfoam could be detected by histological assessment in the injected prostate after
prostatectomy. Inflammatory cells were evident in the areas where Gelfoam was present, as
well as TUNEL-positive staining – indicating DNA fragmentation that is indicative of
apoptotic death. Serum samples from each patient were also assayed for caspase 3 activity,
another marker of apoptotic death. Increases in active caspase 3 were detected in every patient.
These are the first pieces of data, to our knowledge, evaluating TRAIL gene transfer therapy
in humans. Studies are planned to further test the therapeutic potential of Ad5-TRAIL in
patients with metastatic disease.

While one of the intended uses of Ad5-TRAIL is to kill tumor cells present at the site of
injection, we also envision that intratumoral injection of Ad5-TRAIL will generate sufficient
apoptotic tumor cell debris that a systemic tumor-specific immune response will develop. We
recently published a report that offered a glimpse of the ability of localized, intratumoral
delivery of Ad5-TRAIL to induce systemic antitumor immunity [86]. It was our hypothesis
that increasing the amount of antigen for presentation would elicit a stronger antitumor T cell
response. When Ad5-TRAIL was given intratumorally to mice bearing experimental renal cell
carcinoma (Renca) tumors, the mice displayed only a minimal increase in survival and a low
level of CTL activity. To enhance DC efficiency, an immunostimulatory CpG
oligodeoxynucleotide (CpG ODN) was co-administered intratumorally with the Ad5-TRAIL.
This combination therapy augmented in vivo antigen-specific T cell proliferation and CTL
activity, as well as significantly prolonging the survival of Renca tumor-bearing mice.
Interestingly, depletion of CD4+ or CD25+ cells prior to therapy further enhanced survival and
in vivo CTL activity In addition, tumor-free mice depleted of CD4+ cells were also able to
reject a subsequent challenge of Renca cells, but not MHC-matched RM-11 prostate tumor
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cells, demonstrating the existence of immunologic memory. In recent years, the pivotal role
that CD4+ T cells play in the induction of CD8+ T cell responses has been highlighted [32,
87–89], where most CD8+ T cell-mediated responses depend on concomitant CD4+ T cell
priming to be effective. In addition, CD8+ T cell priming in the absence of CD4+ T cell help
leads to their deletion from the periphery, an effect that can be overcome by supplying help
during the initial priming phase [90]. Thus, we were surprised by the observation that CD4+

cell depletion prior to Ad5-mTRAIL/CpG ODN treatment augmented the CD8+ T cell response
and significantly enhanced animal survival. CD40-CD154 interactions between APC and
CD4+ T cells are important in facilitating CD8+ CTL cross-priming events [32,87], and CD40
ligation on the APC increases CD80/CD86 expression [91], which is essential for proper T cell
activation. In this regard, Prilliman et al. [92] demonstrated that CD8+ CTL cross-priming
could still occur in the absence of CD4+ T cell help provided there was sufficient CD28
signaling with an agonistic mAb. Because of its profound immunostimulatory nature, we
hypothesize that the CpG ODN used in our system substituted for the required CD4+ T cell
help. The report by Cho et al. [93] supports this concept, where they were able to induce
CD8+ CTL activity in CD4 or MHC class II-deficient animals. These results importantly
demonstrated that local treatment with Ad5-TRAIL and CpG ODN (in this experimental
setting) can augment tumor antigen cross presentation resulting in T cell proliferation,
enhanced CTL activity, and increased animal survival. Current studies are assessing the Ad5-
TRAIL/CpG ODN-induced immune response in an experimental model of metastatic cancer.

Though our results showed Ad5-TRAIL was effective in suppressing tumor outgrowth in
vivo, additional debulking of the tumor by increasing the tumoricidal activity of Ad5-TRAIL
should only make the task of removing any residual tumor cells by the immune system easier.
Methods to enhance the distribution and expression of recombinant genes are currently being
investigated. For entry into a cell by receptor-mediated endocytosis, Group C adenovirus (e.g.
adenovirus type 5) requires interaction between the viral fiber capsid protein with the coxsackie
and adenovirus receptor (CAR) and the viral penton base binding to αv integrins [94–96]. With
the principal viral vector for cancer gene therapy being adenovirus, the success of any
adenoviral-based gene transfer therapy is dictated by (CAR) recognition [95,97]. While CAR
is ubiquitously expressed in most benign epithelial tissues, there can be marked variations in
amount of CAR expressed by different tumor cell lines of the same tissue origin [98]. For
example, Okegawa et al. examined three prostate cancer cell lines and found that CAR is down-
regulated in the tumorigenic cell line PC-3 compared to DU-145 and LNCaP [99]. Despite
these variations, adenoviral infection of human prostate tumor cells appears to be very efficient,
and numerous reports have evaluated the use of recombinant adenoviral vectors in the treatment
of prostate cancer [100–107]. Furthermore, the utility of replication-deficient adenoviral
vectors for cancer gene therapy is also restricted by their inability of infect every cell within a
solid tumor mass [108]. If CAR expression on target cells could be increased, one would predict
that the clinical efficacy of adenoviral-based gene transfer therapy for cancer would also be
increased. Consequently, numerous substances have been tested as vehicles to enhance gene
delivery and sustain expression to both cancerous and normal tissues [109–111].

Histone deacetylases (HDAC) catalyze the removal of acetyl groups from the ɛ-amino group
on lysine residues of proteins, including the core nucleosomal histones H2A, H2B, H3, and
H4, and together with histone acetyltransferases regulate histone acetylation levels. The
balance of nucleosomal histone acetylation plays an important regulatory role in chromatin
structure and transcription of many genes [112–115]. HDAC inhibition leads to the
accumulation of marked amounts of acetylated histone species that result in profound effects
on tumor cells, such as inhibiting cell cycle, or inducing differentiation or apoptosis [113,
116,117]. Currently, there are several HDAC inhibitors (HDACi) undergoing Phase I and II
testing as single agent therapy as a treatment for cancer. We became interested in combining
Ad5-TRAIL with HDACi because they were also shown to increase adenoviral infection of
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tumor cells and enhance adenoviral transgene expression [98,118,119]. We have performed
studies with a number of histone deacetylase HDACi, including depsipeptide, MS-275,
oxamflatin, suberoylanilide hydroxamic acid (SAHA), sodium butyrate, trichostatin A, and
valproic acid. These HDAC inhibitors display differential abilities to increase the susceptibility
of tumor cells to adenoviral infection, augment the level of adenoviral transgene expression
in vitro and in vivo, and increase the tumoricidal activity of Ad5-TRAIL [120–124]. For
example, human prostate tumor cells became more susceptible to adenoviral infection and Ad5-
TRAIL-induced killing after SAHA pretreatment compared to untreated or vehicle-treated
cells (Figure 2). Not only do HDACi increase tumor cell susceptibility to adenoviral infection,
but adenoviral transgene expression is also enhanced in HDACi-treated cells [124]. In addition,
our studies have identified several mechanisms by which tumor cell susceptibility to Ad5-
TRAIL-induced death occurs, including facilitating TRAIL-R1/-R2 redistribution to lipid rafts,
overall increased TRAIL-R1/-R2 expression, increased caspase-2 activity, and accelerated
DISC formation [121–124]. Reports describing the efficacy of TRAIL-based therapies
combined with HDACi are beginning to appear in the literature [125–129], which will open
new avenues of cancer therapy.

MECHANISMS REGULATING SENSITIVITY/ RESISTANCE TO TRAIL-
INDUCED APOPTOSIS

Despite TRAIL’s ability to induce apoptosis in a wide variety and number of human tumor
cell lines, there are many reports describing the existence of TRAIL-resistant tumor cells.
Consequently, investigation into the mechanism for tumor cell resistance to TRAIL-induced
apoptosis, and ways to overcome the resistance, has become an intense area of research. It is
also believed that studies examining TRAIL-resistant tumor cells may reveal clues to explain
the profound level of resistance shown by normal cells and tissues to TRAIL-induced apoptosis.
TRAIL mRNA is constitutively expressed in a wide variety of tissue and cell types [26],
suggesting that the restricted expression of the different TRAIL receptors regulates the
induction of TRAIL-mediated apoptosis. However, as previously discussed, mRNA for the
four TRAIL receptors has been detected in a wide range of normal cells and tissues, and each
of the four TRAIL receptors is capable of binding TRAIL with comparable affinity [47,48].
Therefore, the initial hypothesis to explain a cell’s ability to respond to TRAIL was that the
non-death-inducing TRAIL receptors (TRAIL-R3 and –R4) were acting as “decoys”, and were
the chief molecules determining whether a cell was resistant or sensitive to TRAIL-induced
death [44,45,49]. This hypothesis seemed logical and drew support from experiments utilizing
TRAIL-sensitive cells overexpressing either TRAIL-R3 or -R4, resulting in an inhibition of
TRAIL-induced apoptotic cell death [44,45,49]. Rather surprisingly, though,
immunohistochemical analysis of several human tissues (brain, colon, heart, liver, lung,
kidney, and testis) found TRAIL-R3 expression only within the brain, heart, liver, and testis
[130]. Additionally, TRAIL-R4 may be more effective than TRAIL-R3 in protecting target
cells from TRAIL-induced death [48], perhaps because TRAIL-R4 ligation activates NF-κB,
a known inhibitor of death-ligand-induced apoptosis [131,132]. NF-κB activation can prevent
cells from undergoing TNF-induced cell death, probably by up-regulating expression of a gene
or group of genes whose products are anti-apoptotic [131,132]. Support for the protective role
of TRAIL-R3 and/or –R4 against TRAIL-induced tumor cell death was recently provided by
Sanlioglu et al, who reported that TRAIL-R4 expression was well correlated with TRAIL
resistance in human breast tumor cell lines [133]. Additional studies from this group elegantly
showed that modulation of TRAIL receptor composition, especially TRAIL-R4, on human
lung and prostate tumor cells using an siRNA approach improved the tumoricidal activity of
adenoviral-mediated delivery of the TRAIL cDNA into the cells [134,135]. Thus, the premise
of tumor cell sensitivity/resistance being controlled by TRAIL-R3/-R4 expression remains a
plausible theory. That said, TRAIL-R1 and -R2 ligation also activates NF-κB [136,137], though
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still resulting in apoptotic cell death. Thus, such explanations cannot fully account for
resistance to TRAIL-induced apoptosis. While TRAIL-R3 and/or -R4 expression may indeed
be a means of regulating TRAIL-mediated apoptosis, analysis of TRAIL receptor mRNA and
protein expression in a panel of human tumor cell lines by RT-PCR, immunoblotting, and flow
cytometry have indicated no correlation between TRAIL resistance and TRAIL-R3/-R4
mRNA expression.

A more defendable hypothesis involves the differential expression of any of a number of pro-
and anti-apoptotic proteins within the tumor cell that collectively help to regulate the signals
generated from trimerized TRAIL-R1 and/or –R2. Molecules such as FLIP, Bcl-2 family
members, inhibitors of apoptosis (IAP) proteins, the ERK survival pathway, Akt, and Toso,
have all been implicated in regulating the TRAIL receptor signal transduction pathway [29,
138–147]. Furthermore, identification of numerous chemotherapeutic drugs that specifically
regulate the levels of these proteins, as well as others important in the TRAIL receptor signaling
pathway, has been shown to alter tumor cell sensitivity to TRAIL. It is likely that therapies
that combine TRAIL with agents that target apoptosis-regulatory proteins will be necessary to
make TRAIL a feasible alternative approach for treating cancer. Recently, it was found that
expression of the peptidyl O-glycosyltransferase GALNT14 correlated with TRAIL-sensitivity
in a number of human tumor cell lines [61]. O-glycosylation of TRAIL-R1 and –R2 promoted
ligand-stimulated clustering of the receptor, which mediated the recruitment and activation of
caspase-8. Further evidence demonstrating the ability of GALNT14 to sensitize tumor cells to
TRAIL was obtained by RNAi-mediated knock-down, which reduced cellular sensitivity to
TRAIL-mediated killing.

A third option for explaining the differences in tumor cell sensitivity to TRAIL-induced
apoptosis focuses on cell cycle progression. Apoptosis of dividing cells occurs at various stages
of the cell cycle depending on the cell type and/or death-inducing stimulus. For example, TNF-
and Fas ligand-induced apoptosis is influenced by cell cycle stage. Moreover, inappropriate
regulation of the cell cycle machinery can also result in induction of apoptosis. A study by Jin
et al. [148] determined, by using SW480 colon cancer and H460 lung cancer cell lines, that
arresting these cells at the G0/G1 phase resulted in increased sensitivity to TRAIL-induced
apoptosis compared to the same cells arrested at other cell cycle phases. The mechanism by
which G1-arrested cells display increased sensitivity to TRAIL remains to be determined. One
possible explanation may lie in the levels of anti-apoptotic proteins during the different cell
cycle phases. Though using a different system, Algeciras-Schimnich et al. [149] found that
activated T cells arrested in G1 phase contained high levels of FLIP protein, which correlated
with an increase in TCR-induced apoptosis observed in other cell cycle phases. It is possible
that FLIP and/or other pro- or anti-apoptotic proteins fluctuate in a similar fashion in tumor
cells.

Tumor cells are commonly found to contain genetic abnormalities that account for the
production of mutated proteins. Thus, it is possible that some tumors possess mutations that
inhibit TRAIL-induced apoptosis and the blockade of TRAIL-induced apoptosis facilitates the
survival of the tumor cells. The TRAIL-R2 gene has been mapped to human chromosome 8p21
[150], a region that is frequently the site of losses of heterozygosity in many types of cancer
[151]. Mutations of the TRAIL-R2 gene have been identified in head and neck cancer, non-
small cell lung cancer, breast cancer, non-Hodgkin’s lymphoma, colorectal cancer, gastric
cancer, and hepatocellular carcinoma [152–157]. In each case, the mutations have been located
within the DD, which is important for connecting the receptor to the apoptotic signal
transduction pathway. The genes for the four TRAIL receptors are tightly clustered on human
chromosome 8p21–22 [46–48], suggesting they evolved relatively recently via gene
duplication. It remains to be determined if the other TRAIL receptor genes are also mutated in
some cancers that alter tumor cell sensitivity to TRAIL-induced apoptosis.
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CONCLUDING THOUGHTS
The development of TRAIL as a potential anti-cancer therapeutic arose from its ability to
potently induce apoptosis in tumor cells, while having little or no detectable cytotoxic effects
on normal cells and tissues. The identification of four distinct receptors that can bind TRAIL
has significantly increased the potential complexity of this receptor/ligand system in terms of
understanding normal physiological functions and as a therapeutic molecule. Not only will it
be essential to optimize the form of TRAIL (protein or gene) used in therapy, as well as the
mode of delivery, it may be even more important to further understand the mechanism(s) by
which tumor cells regulate their sensitivity to TRAIL-induced apoptosis. At the same time,
elucidating the molecular basis that protects normal cells and tissues from TRAIL will also be
essential in formulating TRAIL-based therapies for cancer that will not be toxic to normal cells
within the body. Since its identification over 10 years ago, there has been a great deal learned
regarding how TRAIL functions within the body in tumor and non-tumor scenarios. Future
studies will continue to develop TRAIL into the powerful anticancer therapeutic many believe
it can become.
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Figure 1.
Schematic representation of TRAIL receptor signaling.
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Figure 2.
HDACi treatment increases prostate tumor cell sensitivity to adenovirus infection and Ad5-
TRAIL-induced cell death. DU-145 cells were treated for 16 h with vehicle or suberoylanilide
hydroxamic acid (SAHA) at the indicated concentrations. A The cells were then cultured with
(A) Ad5-eGFP (100 pfu/cell) or (B) Ad5-TRAIL (at the indicated doses) for 24 h. Cell infection
was determined by quantitiating the percentage of GFP+ cells by flow cytometry. Cell death
was determined by crystal violet staining.
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