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Summary
The analysis of patient blood transcriptional profiles offers a means to investigate immunological
mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide
a basis for the discovery of clinically-relevant biomarker signatures. We designed a strategy for
microarray analysis that is based on the identification of transcriptional modules formed by genes
coordinately expressed in multiple disease datasets. Mapping changes in gene expression at the
module-level generated disease-specific transcriptional fingerprints which provide a stable
framework for the visualization and functional interpretation of microarray data. These
transcriptional modules were used as a basis for the selection of biomarkers and the development of
a multivariate transcriptional indicator of disease progression in patients with systemic lupus
erythematosus. Thus, this work describes the implementation and application of a methodology
designed to support systems-scale analysis of the human immune system in translational research
settings.

Introduction
Patient-based microarray transcriptional studies aim to discover biomarkers, and to identify
novel biological knowledge that will unravel mechanisms of disease pathogenesis. However,
these goals are met with considerable challenges. The use of gene expression microarrays in
clinical research has led to the establishment of biomarker signatures, both from the analysis
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of tumor tissues (Alizadeh et al., 2000; Bittner et al., 2000; Golub et al., 1999), and blood
samples (Allantaz et al., 2007; Baechler et al., 2003; Bennett et al., 2003; Burczynski et al.,
2005; Chaussabel et al., 2005; Cobb et al., 2005; Kaizer et al., 2007; Ramilo et al., 2007; Thach
et al., 2005). Yet, questions have been raised regarding the value of this approach for the
discovery of stable disease markers (Michiels et al., 2005). Among the concerns are the fact
that results of microarray analyses are prone to include noise (i.e. false positive results –
(Ioannidis, 2005)) and do not compare well between laboratories and/or platforms (Bammler
et al., 2005; Hyatt et al., 2006; Irizarry et al., 2005; Jarvinen et al., 2004; Larkin et al., 2005;
Shi et al., 2006).

Leveraging patient transcriptional profiles as a means to identify relevant immunological
mechanisms is also proving to be a challenge. In fact both microarray and patient-based studies
are considered by immunologists as fundamentally descriptive: in the case of microarray
studies because the results of system-wide screens do not conform to the reductionist
knowledge discovery model prevailing in the field (Benoist et al., 2006); in the case of patient-
based studies because the means of testing hypotheses in order to prove a mechanism are de
facto very limited (Steinman and Mellman, 2004). Yet, carrying out such studies in patients,
and at a systems level is necessary to advance immunological knowledge accumulated from
the study of model organisms (Benoist et al., 2006; Steinman and Mellman, 2004).

Indeed, as technology platforms for systems-wide analysis become more sophisticated and
more accessible than ever before, it is essential to continue exploring novel strategies for the
exploitation of large-scale data. Among those, approaches to uncover the modular organization
and function of transcriptional systems have already shown promise (Mootha et al., 2003;
Rhodes et al., 2005; Segal et al., 2004); reviewed in (Segal et al., 2005). Indeed, such analyses
can transform our perception of large scale transcriptional studies beyond the level of individual
genes or lists of genes.

The present work describes the implementation of a unique approach for the analysis of blood
microarray transcriptional profiles based on a modular data mining strategy. We showed that
this approach could improve our understanding of disease pathogenesis and provide a basis for
the selection of clinically-relevant transcriptional biomarkers.

Results
Construction of peripheral blood mononuclear cell (PBMC) transcriptional modules

Comparing transcriptional profiles of two or more study groups generates long lists of
differentially expressed genes. Because of the large number of comparisons performed (usually
>10,000), these results are permissive to noise, which in turn can affect biomarker discovery
and data interpretation (Ioannidis, 2005; Michiels et al., 2005).

In order to circumvent these hurdles we focused the analysis on small sets of coordinately
expressed transcripts. Indeed, the probability for multiple transcripts to follow a complex
pattern of expression across dozens or hundreds of conditions only by chance is low, and such
sets of genes should therefore constitute coherent and biologically meaningful transcriptional
units. Thus, we designed an algorithm for constructing sets of coordinately expressed
transcripts (i.e. modules) from PBMC microarray profiles generated from a wide range of
diseases. This stable modular framework was then used as a basis for the analysis of separate
PBMC dataset.

The algorithm used for the construction of transcriptional modules is described in detail in the
methods section (Supplementary Figure 1). Briefly, the first step of the module construction
process analyzes expression patterns of transcripts across samples for individual diseases: sets
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of coordinately expressed transcripts were identified using an unsupervised clustering
algorithm; in this case, the GeneSpring Version 7.1 (Agilent) implementation of the K-Means
algorithm (k=30). All transcripts detected in at least one sample were used as input; no
screening for differential expression was performed. The second step of the module
construction process analyzed the “clustering behavior” of transcripts across diseases, taking
into account the possibility that genes may co-cluster in some diseases but not others. Also, in
our example the transcripts that clustered together across all 8 diseases were grouped to form
a set of modules (round 1 of selection) and the stringency of the analysis was then decreased
gradually to identify transcripts that belong to similar K-means cluster in only a subset of
diseases (round 2: 7 out of 8 diseases & round 3: 6 out of 8 diseases). This analysis of gene
cluster membership across diseases relates to “graph theory” which is used in the mathematics
and computer science fields to model pairwise relations between objects (Biggs, 1986). It is
important to note that the module selection process is “data-driven” and does not involve
manual selection of genes by the investigator.

We implemented the module construction strategy described above using as input a total of
239 peripheral blood mononuclear cell (PBMC) samples obtained from individuals with one
of the following conditions: systemic juvenile idiopathic arthritis (n=47), systemic lupus
erythematosus (n=40), type I diabetes (n=20), metastatic melanoma (n=39), acute infections
(Escherichia coli (n=22), Staphylococcus aureus (n=18), Influenza A (n=16)), or liver
transplant recipients undergoing immunosuppressive therapy (n=37). Transcriptional profiles
were generated using Affymetrix U133A and U133B GeneChips (>44,000 probesets). A total
of 4742 transcripts distributed among 28 sets were selected upon running the module
construction algorithm described above (Supplementary Figure 1; a complete list is provided
in Supplementary Table 1). Each module is assigned a unique identifier indicating the round
and order of selection (i.e. M3.1 is the first module identified in the third round of selection).

The stringency of this algorithm was tested statistically by implementing the same module
construction procedure after randomization of the original dataset. This process was repeated
two hundred times without a single module being identified (See supplementary experimental
procedures for details). Therefore, the analysis of gene cluster membership across multiple
diseases provided a stringent means to identify PBMC transcriptional modules.

The next step consists in characterizing each module functionally. Keyword occurrence in
PubMed abstracts associated with the genes within each module were analyzed by literature
profiling (Chaussabel and Sher, 2002). Differences in patterns of keyword occurrence across
modules were observed as illustrated in Supplementary Figure 2, and functional associations
were identified for each of the 28 PBMC transcriptional modules (Table 1). Out of 28 PBMC
modules, 14 could be clearly linked with pathways or cell types involved in immune processes
(as detailed below). Functional associations were also observed in the remaining 14 modules.
M2.5, for example, includes genes encoding immune-related molecules - CD40, CD80,
CXCL12, IFNA5, IL4R - as well as cytoskeleton-related molecules - Myosin, Dedicator of
Cytokenesis, Syndecan 2, Plexin C1, Distrobrevin). (See Table 1 for details). Thus
transcriptional modules form coherent transcriptional and functional units.

Using modules to map transcriptional changes in health and disease
After identifying sets of coordinately expressed PBMC transcripts based on the analysis of
patterns found in a wide range of diseases, we used this modular framework as a stable basis
for analyzing individual PBMC datasets.

Modules were conceived as a stable framework for the analysis of data generated independently
from the sets initially used for module construction. We analyzed PBMC microarray
transcriptional profiles generated from 14 patients with acute Streptococcus pneumoniae
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infection and 10 age- and sex-matched healthy control subjects. This dataset was not used in
the module selection process. Statistical comparisons between patient and healthy control
groups were performed independently on a module-by-module basis (Mann-Whitney rank test,
p<0.05). The transcriptional profiles of differentially expressed genes were then represented
on a graph for individual modules (Figure 1A). The pie-chart indicates the proportion of
differentially expressed transcripts for a given module (e.g. 49% of the 322 transcripts forming
module M3.2 were overexpressed in patients with acute S. pneumoniae infection compared to
healthy controls). As shown in Figure 1a, differentially expressed genes in each module were
either predominantly overexpressed or predominantly underexpressed. This observation is
notable because modules were not selected based on differences in expression between study
groups but instead on clustering patterns.

To graphically represent global transcriptional changes, spots were aligned on a grid, with each
position corresponding to a different module (Figure 1A). Spot intensity positively correlates
with the proportion of differentially expressed transcripts, whereas spot color indicates the
polarity of the change (red: overexpressed, blue: underexpressed). The resulting map represents
molecular perturbations associated with a disease state. A blank grid would indicate that no
significant differences exist between the disease and healthy baseline. Conversely, the presence
of blue and red spots as in Figure 1A indicates that expression levels of sets of transcripts are
increased or decreased in patients with acute S. pneumoniae infection in comparison to healthy
controls. In addition, to facilitate data interpretation, modules' coordinates were associated to
the functional categories which have been previously assigned (Figure 1B, Table 1). For
instance, Modules M1.3 and M2.1, respectively associated with B-cells and cytotoxic cells,
are under-expressed in the S. aureus group when compared to healthy, while modules M2.2
and M3.2, respectively associated with neutrophils and inflammation are over-expressed.

Thus, we showed that sets of transcriptional modules can be used as a reference for the analysis
and interpretation of data generated independently from those used for module construction.
Furthermore we have developed means to visualize transcriptional changes on a module-by-
module basis, which in conjunction with functional annotations yield an interpretable
representation of microarray results.

We next generated module maps for three additional groups of patients (22 Systemic Lupus
Erythematosus (SLE), 16 metastatic melanoma, and 16 liver transplant recipients) compared
to their respective control groups composed of 10 to 12 healthy donors who were matched for
age and sex (Figure 1B, Supplementary Table 2). Results for M1.1 and M1.2 alone
distinguished all four diseases (S. pneumoniae: M1.1 = no change, M1.2 = over-expressed;
SLE: M1.1= over-expressed, M1.2 = no change; melanoma M1.1 = under-expressed, M1.2 =
over-expressed; transplant: M1.1 = under-expressed, M1.2 = under-expressed). A number of
genes in M3.2 (“inflammation”) were overexpressed in patients with melanoma, S.
pneumoniae infection as well as transplant recipients, while genes in M3.1 (“interferon-
inducible”) were overexpressed in patients with SLE and, to a lesser extent, in transplant
recipients. M2.1 and M2.8 include, respectively, cytotoxic cell-related genes and T-cell
transcripts, which are underexpressed in lymphopenic SLE patients and transplant recipients
treated with immunosuppressive drugs. Overall, whereas these comparisons showed that
modules can be shared between diseases (e.g. under-expression for M1.3 transcripts in both
S. pneumoniae and Melanoma groups) global modular changes remained disease-specific.

Module maps provide a means to organize and reduce the dimension of complex data, and
thereby to facilitate its interpretation. However useful, this oversimplified representation lacks
at the same time the depth that systems-scale analyses are able to provide. Representing changes
at the module-level with a red or blue spot for instance does not indicate which of the genes
are significantly changed. Indeed, a spot of the same color in two different diseases may be
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attributed to two different subsets of genes belonging to the same module. The disconnect
between gene-level and module-level data is especially apparent when the results are presented
in a static format; i.e. on paper. Thus, we have developed an interactive web-interface allowing
users to switch seamlessly between the module-level and gene-level (Supplementary Figure
3). Interactive module maps can be accessed at: www.biir.net/modules. In addition to the four
datasets analyzed in the context of this manuscript we loaded on this tool third party datasets
made publicly available by others (Burczynski et al., 2006). Mapping transcriptional changes
in patients with Crohn's disease and ulcerative colitis highlighted similarity and differences
between these diseases, with for instance a characteristic over-expression of transcripts linked
to plasma cells (M1.1) in ulcerative colitis. This repository will be updated as more blood
transcriptional data become available from our and other groups.

Using modules as a basis for the discovery of blood transcriptional biomarkers
Microarray gene expression data generated from blood not only provide valuable insights into
mechanisms of disease pathogenesis but also constitute a promising source of biomarkers. The
difficulty, however, lies in the extraction of indicators of potential clinical value from the vast
amounts of data generated. We used modular transcriptional data as the foundation of our
biomarker discovery strategy. This approach was implemented using a dataset generated from
patients with SLE.

Microarray analyses have been carried out on peripheral blood mononuclear cells obtained
from pediatric and adult SLE patients (Baechler et al., 2003; Bennett et al., 2003; Crow et al.,
2003; Kirou et al., 2004). Using an earlier generation of Affymetrix arrays (∼12,600 probe
sets), we identified a type I interferon (IFN) signature in all active pediatric patients (Bennett
et al., 2003). This analysis also revealed the presence of neutrophil, immunoglobulin (Ig) and
lymphopenic signatures that correlated with the presence of low density granulocytes, plasma
cell precursors and a reduction in lymphocyte numbers in SLE blood, respectively (Bennett et
al., 2003).

These findings were confirmed in the present study, with significant changes observed in
modules M3.1, M2.2, M1.1 and M2.8 (interferon-inducible, neutrophils, plasma cells and T
lymphocytes, respectively) for a new dataset generated from a cohort of 22 pediatric lupus
patients sampled at the time of diagnosis and before initiation of treatment. Transcriptional
changes were observed in 7 additional modules (M1.7, M2.1, M2.3, M2.4, M2.5, M2.6, and
M2.7). Two of these modules, M1.7 and M2.4, included transcripts encoding ribosomal protein
family members whose expression was recently found altered in acute infection and sepsis
(Calvano et al., 2005; Thach et al., 2005). Furthermore, our unpublished observations have
shown that in vitro exposure of purified human monocytes to interferon alpha results in a late
downregulation of the transcripts forming these modules. In addition, marked changes in gene
expression were also observed for modules M2.1 and M2.3 which include transcripts expressed
in cytotoxic cells and erythrocytes, respectively. Interestingly, the pattern of change in M2.1,
M2.2, M2.3 and M2.4 for the SLE group was well conserved across diseases. Indeed, increased
expression for M2.2 & M2.3, and decreased expression for M2.1 and M2.4 was also observed
in transplant recipients, as well as in patients with acute S. pneumoniae infections. This partial
convergence is likely to reflect the existence of core transcriptional responses to disease or
injury (e.g. inflammation).

The proposed biomarker selection strategy relies on modules for reducing highly dimensional
microarray datasets in a step-wise manner (Figure 2). Starting from the full set of 28 modules
only those for which a set minimum proportion of transcripts are significantly changed between
the study groups are selected (Figure 2A; e.g. minimum proportion of differentially expressed
transcripts at p<0.05 = 15% over-expressed or under-expressed transcripts; in the example
given 11 SLE modules meet this criterion). This eliminates from the selection pool the modules
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registering fewer consistent changes that may be attributed to noise. The cutoffs used for gene
selection can be adjusted to adapt the number of candidate markers that will be returned by
this analysis.

We next generated composite values for each sample. The arithmetic average of normalized
expression values across significantly over-expressed or under-expressed genes selected from
each module was calculated (Figure 2B). Each resulting “transcriptional vector” recapitulates
the expression of a given module (or select set of genes within a module) in a given patient. A
spider graph connects all the vector values obtained for each patient (Figure 2C). This is in
contrast with the module maps defined earlier, which display the frequency of significant
changes for an entire patient cohort module-by-module.

SLE patient profiles are linked to disease activity
Transcriptional vectors were derived for the entire cohort of 22 untreated pediatric SLE patients
using the set of 11 SLE modules detailed above (the 628 differentially expressed genes
distributed among those 11 vectors are listed in Supplementary Table 3). On Figure 3A each
line represents the expression profile of one patient; the thicker line shows the average
expression for the patients forming this group. The values are normalized per-gene using the
median expression value of healthy and are represented on a logarithmic scale. Figure 3B
displays the expression pattern characteristic of healthy volunteers. Differences between the
healthy and SLE groups were statistically significant for each of the modules (p<0.01 Mann-
Whitney U test). Patient profiles were also generated for an independent set of 31 children with
SLE treated orally with steroids and/or cytotoxic drugs and/or hydroxychloroquine (Figure 3C
– Supplementary Table 4). Interestingly, average profiles for both treated and untreated patient
cohorts were almost superimposable (Figure 3D – no significant difference at p<0.01; V2.2
p=0.04; Mann Whitney U test). However, patient selection in both groups was such that they
presented similar disease activity as measured by the clinical index SLEDAI (SLE disease
activity index – untreated patients average=11.5 ± 7.9; treated patients=9.4 ± 6.4, Student's t-
Test p=0.3).

In order to investigate a possible link between SLE activity and patient transcriptional profiles
we stratified samples based solely on SLEDAI scores. Samples from patients with mild disease
activity (SLEDAI [0-6]) presented a profile closer to that of healthy subjects (Figure 3E);
whereas patients with high disease activity (SLEDAI [14-28]) presented an exacerbated profile
(Figure 3F – comparison of mild vs. high disease activity: V1.7, V2.2, V2.3, V2.4, V2.8 &
V3.1: p<0.01; V1.1 p=0.07; V2.1 p=0.06; V2.5 p=0.8; V2.6 p=0.02; V2.7 p=0.08; Mann
Whitney U test).

These results suggest that composite transcriptional vectors identified in SLE patients are
associated with disease severity and have potential value as biomarkers.

Generating multivariate transcriptional scores as indicators of SLE disease progression
SLE is a heterogeneous multisystemic disease presenting a wide range of clinical and
laboratory abnormalities. Objectively assessing disease activity across patients or
longitudinally in individual patients can therefore be challenging. At least 6 composite
measures of SLE global disease activity have been developed (Bae et al., 2001; Bencivelli et
al., 1992; Bombardier et al., 1992; Hay et al., 1993; Liang et al., 1989; Petri et al., 1999) and
have been used to assess disease progression during clinical trials. These measures, however,
rely on a series of clinical and laboratory findings and are cumbersome to obtain. The SLEDAI,
one of the simplest measures, considers 24 different attributes that need to be obtained at every
clinic visit. Additionally, given the heterogeneous nature of the clinical disease, not all SLE
manifestations are computed within these measures, making the overall assessment of the
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patient sometimes difficult. Thus, establishment of an objective disease activity index would
be beneficial. We engaged to assess whether such activity index could be generated from blood
leukocyte microarray transcriptional data.

The analysis of pediatric SLE patient profiles carried out above showed a link between
transcriptional vectors and clinical disease manifestations. We have previously found that
expression of individual genes, or gene signatures (such as interferon-inducible genes) could
be affected by treatment (Bennett et al., 2003). Therefore, our aim was to maximize the number
of transcriptional signatures used as a basis for the generation of a clinical indicator of disease
activity. We computed correlations between composite expression values for individual
dimensions (transcriptional vectors) and the clinical activity index (SLEDAI) for each of the
patients in our untreated cohort (Figure 4A). We found that two dimensions (corresponding to
V2.2 - “neutrophil” - and V3.1 - “interferon-inducible” - modules) correlated positively with
disease activity, whereas dimensions corresponding to V1.7, V2.4 and V2.8 (“ribosomal
proteins” and “T cells”) correlated negatively. We next verified that differences in expression
observed for a selection of transcripts that belong to these five modules could be confirmed
using real-time PCR. Two transcripts from M1.7, M2.2, M2.4, M2.8 and M3.1 were tested in
10 healthy controls and 25 patients. Differences in expression were significant in 9 out of the
10 transcripts tested (CCDC72, ELA2, MPO, FBL, EEF1D, IL23A, SIGLEC1 p<0.001;
GATA3, MX1 p<0.05; GLTSCR2 p=0.8). Only one of the transcripts tested, GLTSCR2, did not
display the expected difference between control and SLE groups. This degree of concordance
is consistent with rates reported in the literature (Bosotti et al., 2007). The discrepancy could
be attributed to differences in probe selection for the respective assays. Expression values
obtained by real-time PCR for the 9 differentially expressed transcripts were also significantly
correlated with microarray data (Supplementary Figures 4 & 5).

A non-parametric method for analyzing multivariate ordinal data was used to score the patients
based on these five dimensions (Spangler et al., 2004; Wittkowski et al., 2004). The advantage
of this approach is that there is no need for additional assumptions and validations. Once
available knowledge has been incorporated by making the initial transformations the proposed
scores are valid by construction, as long as each variable increases or decreases with the
unobservable latent factor. Thus, no empirical evaluation is needed. Because no assumptions
are made regarding the functional form of the relationship, U- scores are scale independent.

U-scores were obtained for all patients in the untreated cohort (n=22). A polarity of 1 was
attributed to vectors correlating positively with disease activity (i.e. Neutrophil: V2.2,
Interferon: V3.1). The polarity of vectors correlating inversely with disease activity was set to
-1 (T cells: V2.8, and Ribosomal proteins: V1.7 and V2.4). This allowed the ranking of all
patients within this group. U-scores have positive (most severe disease) or negative values (less
severe disease) reflecting the rank of each sample vs. the other patients forming this cohort.
The association between the multivariate “transcriptional scores” and SLEDAI was assessed
using linear regression and was determined to be statistically significant (Figure 4B; r=0.83,
df=1, t=6.66, and p-value<.0001). The correlation achieved by this score was superior to that
of its individual components. Using the same process, correlation between “Transcriptional
score” and SLEDAI was examined for the treated pediatric SLE patient cohort (n=31) and was
found to be statistically significant as well (Figure 4C; r=0.63, df=1, t=4.40, and p-
value=0.0001).

Thus, distinct immunological signatures associated with the pathogenesis of SLE have been
reduced to a unique multivariate score correlating with disease activity.
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Multivariate transcriptional scores are used to monitor disease progression in patients with
SLE

Lupus disease flares can lead to irreversible worsening of the status of the patient. We tested
the relevance of the multivariate transcriptional score for the longitudinal monitoring of disease
activity a cohort of 20 pediatric SLE patients (two to four time points/patient, intervals between
each time point varied from one month to 18 months). Half of the patients had been included
in our cross-sectional analysis before they were enrolled in this longitudinal study.

During the follow up period, the SLEDAI fluctuated in 10 patients whereas it remained constant
in the other 10 (Figure 5). Parallel trends were observed between transcriptional U-scores and
SLEDAI longitudinal measures in a majority of patients. The positive association between
SLEDAI and transcriptional scores was verified statistically using a linear regression model.
The estimated model was: transcriptional score = 18.13 + 1.26 (SLEDAI) - 0.03 (Days). The
overall model was statistically significant (df=1, chi-sq=28.44, and p-value<.0001), as was the
association between the SLEDAI and transcriptional scores (df=28, t=2.41, and p-
value=0.0229). For every one unit increase in SLEDAI score the transcriptional score increases
by 1.3. Overall SLEDAI index and transcriptional scores reflected similar activities according
to their respective scales in all but 6 patients (SLE31, SLE78, SLE125, SLE130, SLE135 and
SLE 99) in whom the transcriptional U-scores were disproportionately high compared to
SLEDAI index (SLEDAI values are positive while multivariate U-scores can be positive or
negative). One of the patients with the highest discrepancy (SLE78) was diagnosed during the
follow-up period with a life-threatening complication (pulmonary hypertension) which is not
computed within the SLEDAI. Thus, severity of disease was more accurately assessed by the
transcriptional score. Disease flaring and subsequent recovery was detected in one patient
(SLE31) upon longitudinal follow up using both SLEDAI and transcriptional score.
Interestingly, however, the amplitude of change observed in the case of the transcriptional U-
score appears not only to be much greater (0 to 40 vs. 6 to 10 for SLEDAI), but an increase
could already be detected at the second time point, 2 months before the worsening of the clinical
condition of this patient was detected by SLEDAI. Thus, these data illustrate the potential value
of microarray data and the multivariate transcriptional scores derived from it for the
longitudinal follow up of disease progression in patients with complex multisystemic diseases
like SLE.

Composite transcriptional vectors are stable across laboratories and microarray platforms
To be truly viable as biomarkers, composite transcriptional vectors must prove reliable. Early
on, poor reproducibility of microarray results obtained by different laboratories and across
platforms raised suspicion about the validity of these results and remains a major concern
(Bammler et al., 2005; Frantz, 2005; Ioannidis, 2005; Irizarry et al., 2005; Larkin et al.,
2005; Michiels et al., 2005; Shi et al., 2006). We compared transcriptional profiles obtained
using two commercial microarray platforms, Affymetrix and Illumina. PBMCs were isolated
from four healthy volunteers and ten liver transplant recipients. Starting from the same source
of total RNA, targets were generated independently and analyzed using Affymetrix U133
GeneChips (at the Baylor Institute for Immunology Research) and Illumina Human Ref8
BeadChips (at Illumina Inc.). Fundamental differences exist between the two microarray
technologies (see Methods for details). Probe IDs provided by each manufacturer were
converted into a common ID that was used for matching gene expression profiles. Overall the
Affymetrix and Illumina profiles for M3.1 appear to be similar (Figure 6). However,
correlations comparing both platforms performed for individual genes forming M3.1 resulted
in a median R2 value of 0.36 (ranging from 0.17 and 0.55) In other modules such as M1.2 and
M3.2 correlations observed at the level of individual genes were also poor (R2 median (range)
= 0.13 (0.02-0.5) for genes forming M1.2; and 0.19 (0.06-0.4) for genes forming M3.2 – Figure
6). In order to compare overall modular expression pattern across the two platforms we derived

Chaussabel et al. Page 8

Immunity. Author manuscript; available in PMC 2009 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for each module a composite transcriptional vector (averaging the values obtained for the genes
forming each module). Remarkably, the module-level expression values thus derived from
Affymetrix and Illumina data were highly comparable (Figure 6; transplant group Pearson
correlation coefficient R2 = 0.83, 0.98 and 0.93, for M1.2, M3.1 and M3.2 respectively;
p<0.0001 – in addition R2 values of M1.1=0.84; M1.3=0.95; M1.4=0.81; M1.5=0.74;
M1.8=0.62; M2.1=0.98; M2.2=0.82; M2.3=0.99; M2.6=0.73; M2.8=0.83; M2.10=0.66;
M3.3=0.65; M3.8=0.57; R2 values for other modules <0.5). Taken together, these results
indicate that module-level composite expression data produce a more stable metric than
individual gene expression values, thereby enhancing data reproducibility across microarray
platforms. This property may be attributed to the stringent module selection process (transcripts
must be co-expressed across many samples) and the fact that composite expression values are
derived from multiple measurements (smoothing the imprecision observed at the level of
individual probes).

Discussion
Patient blood transcriptional profiling studies generate large scale data that is difficult to
exploit. Adopting a module-based data mining strategy can facilitate biomarker and biological
knowledge discovery by focusing the analysis of microarray data on stable sets of transcripts
selected on the basis of their clustering pattern across diseases.

The module construction strategy that we have designed takes advantage of the biological
variability inherent to patient-based studies in order to identify the major transcriptional
components of this system. A clustering algorithm teases apart the patterns emerging from the
blood profiles obtained for different diseases. Once patterns have been identified for each
disease the cluster membership of individual transcripts is compared. A module is formed of
transcripts found to always belong to the same clusters across all diseases (8 out of 8 in our
example). The stringency of this requirement is progressively relaxed during the subsequent
rounds of selection so that modules are formed when transcripts fall in the same clusters in any
combination of 7 (round 2) or combination of 6 diseases (round 3). This stepwise reduction of
the stringency of filtering criteria accounts for the fact that transcripts may not be “turned on”
in all diseases. Indeed, modules linked to interferon or inflammation (M3.1 and M3.2) were
for instance not formed until the third round of selection. The validity of the transcriptional
modules thus generated was verified by different approaches. Random permutations attested
of the statistical validity of the module construction, while co-expression was confirmed in
independent datasets (PBMC samples from healthy volunteers or patients with S.
pneumoniae infection that were not used to identify modules), across laboratories and
microarray platforms (Affymetrix vs. Illumina). Furthermore, as should be expected of
transcriptional modules, literature profiling of genes forming each one of them revealed
significant functional convergence, with half of the modules associated with clearly identifiable
functional themes.

By including profiles from a wide range of diseases our goal was to identify a “universal” set
of modules that could be used as a stable framework for subsequent analysis of any PBMC
dataset. However, we nonetheless anticipate that adding more diseases to the selection pool
will result in a refined partitioning of the modules already identified and will add modules to
the existing set. Also, although the collection of genome-wide PBMC transcriptional profiles
used for module selection is already extensive the identification of a definitive module set will
require expending the scale of this analysis.

Reducing the dimension of microarray data makes it more amenable to interpretation. When
confronted to such overwhelming amount of information it is necessary to reduce it to a
manageable number of variables and to use visualization schemes as a means to facilitate the
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identification of patterns in the data, especially when performing comparisons across diseases.
Furthermore, following functional interpretation, we found that the modules identified are
linked to the two components driving differential gene expression in blood: changes in relative
cellular abundance (e.g. B cell, cytotoxic cell modules), and gene regulation (e.g. inflammation,
interferon). Thus, overlaying these functional annotations to the fixed module patterns further
supports the interpretation of disease fingerprints. Inevitably, however, reducing microarray
data to a small set of variables and broad functional categories can only offer an oversimplified
view of the data, and interactive mining tools are therefore necessary to restore the unique
depth perspective that systems scale data are able to provide.

We have also explored the use of transcriptional modules as a basis for biomarker discovery.
By construction modules include only transcripts which co-clustered in at least 6 out of 8
diseases across many samples. The probability of this happening just by chance is very low.
In fact we have run tests in which gene labels were permuted randomly in the different diseases
and could not identify any modules. Also, using sets of transcriptional modules as a basis for
biomarker discovery should help focus on biologically relevant transcripts. Another potential
benefit of using modules as a framework for biomarker discovery is that it allows the reduction
of the dimension of microarray data. Identifying a small set of clinically valuable markers from
tens of thousands of candidates in a single analysis step is a considerable challenge, noise being
again a major issue. However, when the data are first reduced from over 44,000 variables to
about 5000 distributed in 28 modules, biomarker discovery becomes a much more manageable
proposition. In the case of SLE, comparisons carried out on a module-by-module basis
identified 11 sub-modules with a minimum of 15% of transcripts over- or under-expressed
compared to healthy. Once the data are reduced to 11 composite values (or transcriptional
vectors) it then becomes possible to summarize the results as one single multivariate score.
Repeating measurements for multiple transcripts sharing the same pattern within a module also
makes for a more robust measurement, which explains, at least in part, the level of correlation
measured between data generated on two microarray platforms in two independent
laboratories. Finally the fact that some of the modules can be associated to well-recognized
biological pathways linked to disease pathogenesis will help in further asserting the credibility
of biomarkers derived from such analysis.

Indeed, upon being identified SLE vectors were validated in an independent set of samples.
Furthermore, multivariate resulting transcriptional scores were correlated to clinical disease
activity indices in both cross-sectional and longitudinal sets of samples. Our data demonstrate
that composite transcriptional vectors can be directly correlated to clinical disease activity in
patients with lupus.

In conclusion, the modular analysis framework that we have generated could prove useful for
the discovery of diagnostic or prognostic markers and provide the means to monitoring disease
progression and response to treatment in other complex disease settings

Experimental Procedures
Patient information

Subjects were recruited at the Baylor University Medical Center at Dallas, Texas Scottish Rite
Hospital and Children's Medical Center of Dallas. The study was approved by the Institutional
Review Boards of UT Southwestern Medical Center, Texas Scottish Rite Hospital, and Baylor
Health Care System, and informed consent was obtained from all patients (legal representatives
and patients over 10 yr of age). Bacterial and viral infections were confirmed by standard
bacterial cultures, direct fluorescent antigen testing, and viral cultures. Patients with infections
were recruited once a confirmed microbiologic diagnosis was established. The clinical and
demographic characteristics of SLE patients are summarized in Supplementary Table 4.
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Processing of blood samples
Blood samples were collected in acid citrate dextrose or EDTA tubes (BD Vacutainer) and
immediately delivered at room temperature to the Baylor Institute for Immunology Research,
Dallas, TX, for processing. Peripheral blood mononuclear cells (PBMCs) were isolated via
Ficoll gradient and immediately lysed in RLT reagent (Qiagen, Valencia, CA) with beta-
mercaptoethanol (BME) and stored at −80°C prior to the RNA extraction step.

Microarray analysis
Total RNA was isolated using the RNeasy kit (Qiagen) according to the manufacturer's
instructions and RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent, Palo
Alto, CA).

Affymetrix GeneChips—Target labeling was performed according to the manufacturer's
standard protocol (Affymetrix Inc., Santa Clara, CA). Biotinylated cRNA targets were purified
and subsequently hybridized to Affymetrix HG-U133A and U133B GeneChips (>44,000 probe
sets). Arrays were scanned using an Affymetrix confocal laser scanner. Microarray Suite,
Version 5.0 (MAS 5.0; Affymetrix) software was used to assess fluorescent hybridization
signals, to normalize signals, and to evaluate signal detection calls. Normalization of signal
values per chip was achieved using the MAS 5.0 global method of scaling to the target intensity
value of 500 per GeneChip. A gene expression analysis software program, GeneSpring,
Version 7.1 (Agilent), was used to perform statistical analysis and clustering.

Illumina BeadChips—Samples were processed and data acquired by Illumina Inc. (San
Diego, CA). Targets were prepared using the Illumina RNA amplification kit (Ambion, Austin,
TX). cRNA targets were hybridized to Sentrix HumanRef8 BeadChips (>25,000 probes),
which were scanned on an Illumina BeadStation 500. Illumina's Beadstudio software was used
to assess fluorescent hybridization signals.

Quantitative real-time PCR
Biotinylated cRNA prepared for microarray analysis was reverse transcribed into cDNA using
the The High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Foster City
CA). Real-time PCR was set up with Roche Probes Master reagents and Universal Probe
Library hydrolysis probes. PCR reaction was performed on the LightCycler 480 (Roche
Applied Science). Secondary derivative calculation data was collected and cross point values
of target genes were normalized to two housekeeping genes (ARHGDIB and GUSB).

Module construction algorithm
Our goal was to extract from an extensive leukocyte microarray dataset groups of coordinately
expressed transcripts spanning multiple diseases (i.e. identifying genes which expression is
correlated across multiple samples). Although the initial steps of our approach produce clusters
of coordinately transcribed genes in a similar manner as other groups, we refine the process
by generating modules based on cluster membership across multiple independent microarray
experiments: 1. parallel analyses were performed, grouping transcripts for 8 different disease
datasets using the K-means clustering algorithm. 2. Transcripts that which are co-expressed in
the context of several diseases were then identified (i.e. we examine cluster membership across
multiple independent microarray experiments). Also, in the first round of selection we started
by choosing transcripts with shared cluster membership for all 8 diseases. For the subsequent
round of selection we accounted for the fact that the different diseases may produce different
patterns, thus we decreased the level of stringency accordingly (i.e. allowing for one, or even
two diseases to be dropped in the second, and the third rounds of selection, respectively). In
summary this approach relies on the K-means clustering algorithm, and is tailored to capture
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transcriptional modules spanning multiple diseases, starting from a large number of transcripts.
This module construction algorithm is described in detail in the supplementary experimental
procedures section.

Multivariate U-scores
The detailed explanation of this method has been published recently (Wittkowski et al.,
2004) and the required tools are available at http://Mustat.Rockefeller.edu. Briefly, scores were
obtained by computing the average normalized expression levels for all transcripts within the
modules that were identified as differentially expressed in SLE PBMCs.

Literature profiling
The literature profiling algorithm employed in this study has been previously described in detail
(Chaussabel and Sher, 2002). This approach links genes sharing similar keywords. It uses
hierarchical clustering to analyze patterns of term occurrence in literature abstracts.

Association between SLEDAI and Multivariate U-Scores
Linear regression was used in the cross sectional analyses to assess the association between
the multivariate “transcriptional scores” and SLEDAI for the treated and untreated pediatric
SLE patients. Results and figures were obtained using JMP statistical software (Version 7;
SAS Institute). When assessing this association for the corresponding longitudinal data a linear
mixed effect model with a random intercept was used to account for the repeated and unequally
spaced observations. This modeling technique is well described in such texts as Verbeke and
Molenberghs (Verbeke and Molenberghs, 2000) and Fitzmaurice et al. (Fitzmaurice et al.,
2004). SAS statistical software (Version 9.1; SAS Institute) was used for this portion of the
analysis.

Accession number for materials deposited in a public database
The microarray data used in this study has been deposited in NCBI's Gene Expression Omnibus
(GEO) with the accession number GSE11907.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis of patient blood leukocyte transcriptional profiles
A) Module-level analysis: Gene expression from patients with acute S. pneumoniae infection
and respective healthy volunteer PBMCs were compared (p<0.05, Mann-Whitney U test) in
modules M1.3, M1.5, M1.8 and M3.2. Pie charts indicate the proportion of genes significantly
changed for each module. Graphs represent transcriptional profiles of genes that were
significantly changed. Each line shows levels of expression (y-axis) of a single transcript across
multiple conditions (samples, x-axis). Expression is normalized to the median expression value
of the control group. Results obtained for the 28 PBMC transcriptional modules are displayed
on a grid. Coordinates indicate module IDs (e.g. M2.8 is row M2, column 8). Spots indicate
proportion of genes significantly changed for each module in patient with S. pneumoniae

Chaussabel et al. Page 16

Immunity. Author manuscript; available in PMC 2009 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



infection as compared to healthy controls. Red: overexpressed, Blue: underexpressed. B)
Disease Fingerprints: Three additional datasets were similarly processed. Profiles were
obtained from patients with Systemic Lupus Erythematosus, Liver transplant recipients under
pharamacological immunosuppression infection and patients with metastatic melanoma.
Functional interpretation is indicated on a grid by a color code. Detailed functional module
descriptions are in Table 1.
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Figure 2. Module-based biomarker selection strategy
Modules are used as a starting point for the generation of biomarker signatures and progressive
reduction of the dimension of microarray data: A) Mapping global transcriptional changes
using a modular framework identified 11 modules for which at least 15% of the transcripts are
significantly changed between controls and SLE. B) Transcriptional vectors were generated
by averaging the normalized expression values of differentially expressed transcripts for each
one of the 11 modules selected. C) Composite expression values are plotted as vectors on a
“spider graph”. Each line represents a patient profile. Multivariate scores can be generated to
recapitulate the changes registered by several transcriptional vectors and monitor changes in
an individual patient over time.
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Figure 3. SLE transcriptional vectors
A) Composite transcriptional vectors identified from a pediatric SLE patient population
sampled prior to the initiation of therapy. Each line on the radar plot represents a patient profile
(logarithmic scale). Values are normalized per-gene using the median expression value of
healthy. The thicker line represents the average normalized expression profile for this group
of patients. Profiles generated for healthy volunteers B) and an independent cohort of pediatric
SLE patients under treatment C). Averaged normalized expression profiles for treated (green)
and untreated (orange) SLE patients cohorts D). Patient profiles were plotted on the same
vectors on the basis of clinical activity (SLEDAI), regardless of treatment. E) Patients with
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low disease activity (SLEDAI from 0 to 6). F) Patients with high disease activity (SLEDAI
from 14 to 28).
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Figure 4. SLE transcriptional vectors correlate with disease activity
A) Expression profiles of genes forming vectors V1.7SLE, V2.2SLE, V2.4SLE, V2.8SLE and
V3.1SLE correlating with a clinical SLE disease activity index (SLEDAI). Graphs represent
expression level of individual transcripts forming each of the vectors in 12 healthy individuals
and 21 untreated pediatric SLE patients. Average expression values across transcripts forming
each vector are shown on the graph in yellow. Correlations between averaged vector expression
values and SLEDAI are shown below (Spearman correlation). B) Multivariate scores were
obtained for 22 untreated pediatric SLE patients by linear regression analysis of multivariate
transcriptional U-scores (y axis) for vector V1.7SLE, V2.2SLE, V2.4SLE, V2.8SLE, V3.1 SLE,
and SLEDAI (x axis). The light shaded area indicates the 95% limits confidence limits for
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individual predicted values. The dark shaded area indicates the 95% limits confidence limits
for the slope and intercept. C) The same analysis applied to 31 pediatric SLE patients receiving
different combinations of therapy.
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Figure 5. Longitudinal disease monitoring with a multivariate disease activity score
SLEDAI index (blue, right y axis) and transcriptional U-scores (red, left y axis) of pediatric
patients (identified by an SLE ID) over time (x axis). Time elapsed between sampling is
indicated in months.
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Figure 6. Cross-microarray platform comparison
PBMC samples from healthy donors and liver transplant recipient analyzed on two different
microarray platforms: Affymetrix U133A&B GeneChips and Illumina Sentrix Human Ref8
BeadChips. The same source of total RNA was used to independently prepare biotin-labeled
cRNA targets. Expression is normalized to the median of measurements obtained across all
samples. Averaged expression values of the genes in each module are shown for both
Affymetrix and Illumina platforms.
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Table 1

Module I.D. Number of
probe sets Keyword selection Assessment

M 1.1 76 Ig, Immunoglobulin, Bone, Marrow,
PreB, IgM,Mu.

Plasma cells. Includes genes coding for Immunoglobulin chains (e.g. IGHM, IGJ,
IGLL1, IGKC, IGHD) and the plasma cell marker CD38.

M 1.2 130 Platelet, Adhesion, Aggregation,
Endothelial, Vascular

Platelets. Includes genes coding for platelet glycoproteins (ITGA2B, ITGB3, GP6,
GP1A/B), and platelet-derived immune mediators such as PPPB (pro-platelet basic
protein) and PF4 (platelet factor 4).

M 1.3 80 Immunoreceptor, BCR, B-cell, IgG
B-cells. Includes genes coding for B-cell surface markers (CD72, CD79A/B, CD19,
CD22) and other B-cell associated molecules: Early B-cell factor (EBF), B-cell linker
(BLNK) and B lymphoid tyrosine kinase (BLK).

M 1.4 132 Replication, Repression, Repair, CREB,
Lymphoid, TNF-alpha

Undetermined. This set includes regulators and targets of cAMP signaling pathway
(JUND, ATF4, CREM, PDE4, NR4A2, VIL2), as well as repressors of TNF-alpha
mediated NF-KB activation (CYLD, ASK, TNFAIP3).

M 1.5 142 Monocytes, Dendritic, MHC,
Costimulatory, TLR4, MYD88

Myeloid lineage. Includes molecules expressed by cells of the myeloid lineage
(CD86, CD163, FCGR2A), some of which being involved in pathogen recognition
(CD14, TLR2, MYD88). This set also includes TNF family members (TNFR2, BAFF).

M 1.6 141 Zinc, Finger, P53, RAS
Undetermined. This set includes genes coding for signaling molecules, e.g. the zinc
finger containing inhibitor of activated STAT (PIAS1 and PIAS2), or the nuclear factor
of activated T-cells NFATC3.

M 1.7 129 Ribosome, Translational, 40S, 60S,
HLA

MHC/Ribosomal proteins. Almost exclusively formed by genes coding MHC class I
molecules (HLA-A,B,C,G,E)+ Beta 2-microglobulin (B2M) or Ribosomal proteins
(RPLs, RPSs).

M 1.8 154 Metabolism, Biosynthesis, Replication,
Helicase

Undetermined. Includes genes encoding metabolic enzymes (GLS, NSF1, NAT1) and
factors involved in DNA replication (PURA, TERF2, EIF2S1).

M 2.1 95 NK, Killer, Cytolytic, CD8, Cell-
mediated, T-cell, CTL, IFN-g

Cytotoxic cells. Includes cytotoxic T-cells amd NK-cells surface markers (CD8A, CD2,
CD160, NKG7, KLRs), cytolytic molecules (granzyme, perforin, granulysin),
chemokines (CCL5, XCL1) and CTL/NK-cell associated molecules (CTSW).

M 2.2 49 Granulocytes, Neutrophils, Defense,
Myeloid, Marrow

Neutrophils. This set includes innate molecules that are found in neutrophil granules
(Lactotransferrin: LTF, defensin: DEAF1, Bacterial Permeability Increasing protein:
BPI, Cathelicidin antimicrobial protein: CAMP…).

M 2.3 148 Erythrocytes, Red, Anemia, Globin,
Hemoglobin

Erythrocytes. Includes hemoglobin genes (HGBs) and other erythrocyte-associated
genes (erythrocytic alkirin: ANK1, Glycophorin C: GYPC, hydroxymethylbilane
synthase: HMBS, erythroid associated factor: ERAF).

M 2.4 133 Ribonucleoprotein, 60S, nucleolus,
Assembly, Elongation

Ribosomal proteins. Including genes encoding ribosomal proteins (RPLs, RPSs),
Eukaryotic Translation Elongation factor family members (EEFs) and Nucleolar
proteins (NPM1, NOAL2, NAP1L1).

M 2.5 315 Adenoma, Interstitial, Mesenchyme,
Dendrite, Motor

Undetermined. This module includes genes encoding immune-related (CD40, CD80,
CXCL12, IFNA5, IL4R) as well as cytoskeleton-related molecules (Myosin, Dedicator
of Cytokenesis, Syndecan 2, Plexin C1, Distrobrevin).

M 2.6 165 Granulocytes, Monocytes, Myeloid,
ERK, Necrosis

Myeloid lineage. Includes genes expressed in myeloid lineage cells (IGTB2/CD18,
Lymphotoxin beta receptor, Myeloid related proteins 8/14 Formyl peptide receptor 1),
such as Monocytes and Neutrophils.

M 2.7 71 No keywords extracted.
Undetermined. This module is largely composed of transcripts with no known function.
Only 20 genes associated with literature, including a member of the chemokine-like
factor superfamily (CKLFSF8).

M 2.8 141 Lymphoma, T-cell, CD4, CD8, TCR,
Thymus, Lymphoid, IL2

T-cells. Includes T-cell surface markers (CD5, CD6, CD7, CD26, CD28, CD96) and
molecules expressed by lymphoid lineage cells (lymphotoxin beta, IL2-inducible T-cell
kinase, TCF7, T-cell differentiation protein mal, GATA3, STAT5B).

M 2.9 159 ERK, Transactivation, Cytoskeletal,
MAPK, JNK

Undetermined. Includes genes encoding molecules that associate to the cytoskeleton
(Actin related protein 2,3, MAPK1, MAP3K1, RAB5A). Also present are T-cell expressed
genes (FAS, ITGA4/CD49D, ZNF1A1).

M 2.10 106 Myeloid, Macrophage, Dendritic,
Inflammatory, Interleukin

Undetermined. Includes genes encoding for Immune-related cell surface molecules
(CD36, CD86, LILRB), cytokines (IL15) and molecules involved in signaling pathways
(FYB, TICAM2-Toll-like receptor pathway).

M 2.11 176 Replication, Repress, RAS,
Autophosphorylation, Oncogenic

Undetermined. Includes kinases (UHMK1, CSNK1G1, CDK6, WNK1, TAOK1,
CALM2, PRKCI, ITPKB, SRPK2, STK17B, DYRK2, PIK3R1, STK4, CLK4, PKN2) and
RAS family members (G3BP, RAB14, RASA2, RAP2A, KRAS).
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Module I.D. Number of
probe sets Keyword selection Assessment

M 3.1 122 ISRE, Influenza, Antiviral, IFN-
gamma, IFN-alpha, Interferon

Interferon-inducible. This set includes interferon-inducible genes: antiviral molecules
(OAS1,2,3,L, GBP1, G1P2, EIF2AK2, PKR, MX1, PML), chemokines (CXCL10),
signaling molecules (STAT1, STAT2, IRF7, ISGF3G).

M 3.2 322 TGF-beta, TNF, Inflammatory,
Apoptotic, Lipopolysaccharide

Inflammation I. Includes genes encoding molecules involved in inflammatory
processes (e.g. IL8, ICAM1, C5R1, CD44, PLAUR, IL1A, CXCL16), and regulators of
apoptosis (MCL1, FOXO3A, RARA, BCL3,6,2A1, GADD45B).

M 3.3 276 Inflammatory, Defense, Lysosomal,
Oxidative, LPS

Inflammation II. Includes molecules inducing or inducible by inflammation (IL18,
ALOX5, ANPEP, AOAH, HMOX1, SERPINB1), as well as lysosomal enzymes (PPT1,
CTSB, NEU1, ASAH1, LAMP2, CAST).

M 3.4 325 Ligase, Kinase, KIP1, Ubiquitin,
Chaperone

Undetermined. Includes protein phosphatases (PPP1R12A, PTPRC, PPP1CB,
PPM1B) and phosphoinositide 3-kinase (PI3K) family members (PIK3CA, PIK32A,
PIP5K3).

M 3.5 22 No keyword extracted Undetermined. Composed of only a small number of transcripts. Includes hemoglobin
genes (HBA1, HBA2, HBB).

M 3.6 288 Ribosomal, T-cell, Beta-catenin
Undetermined. This set includes mitochondrial ribosomal proteins (MRPLs, MRPs),
mitochondrial elongations factors (GFM1,2), Sortin Nexins (SN1,6,14) as well as
lysosomal ATPases (ATP6V1C).

M 3.7 301 Spliceosome, Methylation, Ubiquitin
Undetermined. Includes genes encoding proteasome subunits (PSMA2, PSMB5,8);
ubiquitin protein ligases HIP2, STUB1, as well as components of ubiqutin ligase
complexes (SUGT1).

M 3.8 284 CDC, TCR, CREB, Glycosylase
Undetermined. Includes genes encoding enzymes: aminomethyltransferase,
arginyltransferase, asparagines synthetase, diacylglycerol kinase, inositol phosphatases,
methyltransferases, helicases…

M 3.9 260 Chromatin, Checkpoint, Replication,
Transactivation

Undetermined. Includes genes encoding kinases (IBTK, PRKRIR, PRKDC, PRKCI)
and phosphatases (e.g. PTPLB, PPP2CB/3CB, PTPRC, MTM1, MTMR2).
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