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Abstract
Purpose Breast cancer treatment often employs DNA
double-strand breaks (DSBs), such as that induced by irra-
diation or anticancer agents. Ubiquitination is required at
the site of DNA damage and plays a crucial role in the DSB
repair pathway. We investigated the eVect of proteasome
inhibitors on the pathway after exposure to chemotherapeu-
tic agents and examined its correlation with cytotoxicity.
Methods Cells were exposed for 1 h to DNA damage-
inducing chemotherapeutic agents. After DNA damage,
nuclear foci formation of conjugated ubiquitin (Ub-foci)
and cell viability were examined in the absence or presence
of proteasome inhibitors MG132 and epoxomicin.
Results Proteasome inhibitors trapped conjugated ubiqui-
tin in the cytosol and blocked irinotecan (CPT-11)- and epi-
rubicin-induced Ub-foci formation in MCF10A cells and
HeLa cells, but not in MCF7 cells. MG132 sensitized
MCF10A cells to CPT-11 and epirubicin treatment, demon-
strating a synergistic eVect. This synergistic eVect is likely
due to the failure to repair DNA, because a signiWcant rise
in unrepaired DNA damage was observed in the cells
treated with MG132. On the other hand, no synergy was

observed in MCF7 cells or when MG132 was combined
with docetaxel.
Conclusions The synergistic eVect of proteasome inhibi-
tors in combination with DNA damage-inducing agents
warrants further investigating into its eVectiveness in the
treatment of breast cancer.

Keywords Chemosensitivity · Ubiquitin · Proteasome 
inhibitor · Nuclear foci formation · DNA damage

Introduction

Induction of DNA double-strand breaks (DSBs) by irradia-
tion or anticancer agents is a major strategy employed for
breast cancer treatment. DSBs cause breast cancer cells to
undergo apoptosis when appropriate repair pathways, such
as those mediated by BRCA1, are perturbed. Therefore,
chemosensitivity and the competence of DNA damage
repair pathways are closely correlated. For example, it was
recently reported that acquired resistance to cisplatin or
PARP inhibitor in BRCA1- or BRCA2-mutated tumors can
be mediated by secondary mutations in these genes that
restore the wild-type reading frame [1–3].

Recently, the cascade of events in response to DSBs has
been signiWcantly uncovered. The sequential recruitment of
repair proteins at the site of DNA damage includes two
RING Wnger type E3 ubiquitin ligases, RNF8 and BRCA1.
RNF8 catalyzes lysine 63-linked polyubiquitin (K63-Ub)
chains on H2AX [4–7]. Ubiquitinated H2AX then recruits
the BRCA1/Abraxas/RAP80 complex through the RAP80
subunit, an adaptor that contains UIM (ubiquitin interacting
motif) domains [8–10]. BRCA1 forms a RING heterodimer
E3 ubiquitin ligase with BARD1 [11] and is required for
the recruitment of BRCA2 and Rad51 to damaged sites for
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homologous recombination repair [12]. Thus, ubiquitina-
tion is involved in key steps that properly conduct the
homologous recombination repair pathway after DSBs.
Indeed, inhibition of IR-induced nuclear foci (IRIF) forma-
tion of conjugated ubiquitin results in defective down-
stream events, including BRCA1 IRIF formation and IR
hypersensitivity [5–7, 13].

Ubiquitin modiWcation regulates a wide range of cellu-
lar pathways such as removal of misfolded or aged house-
keeping proteins, protein traYcking, the cellular immune
response by antigenic peptide processing, the cell cycle
and the DNA damage response. Ubiquitin modiWcation
requires several critical enzymes: a ubiquitin-activating
enzyme (E1), a ubiquitin carrier protein (E2), and a ubiq-
uitin ligase (E3) [14]. The E3 catalyzes the formation of
polyubiquitin chains (and sometimes monoubiquitina-
tion), utilizing ubiquitins that have been activated by the
E1 and E2 enzymes, and transfers them onto speciWc sub-
strate(s). While ubiquitin modiWcations signal a variety of
processes depending upon the type of ubiquitin chains,
the most common pathway is the ubiquitin-proteasome
system (UPS) that is mediated by Lys48-linked poly-
ubiquitin chains [14, 15]. Substrates conjugated with
Lys48-linked chains are recognized by the 19S regulatory
cap subunits of the 26S proteasome and are degraded by
the 20S catalytic core subunits [16]. These reactions can
be inhibited by proteasome inhibitors such as MG132,
epoxomicin or the clinically used bortezomib (PS-341,
Velcade®).

The eVect of proteasome inhibitors on the response to
DNA damage is not fully understood. Because the known
major ubiquitin chains built at the damaged site in
response to DSBs are Lys63- and Lys6-linked [9, 15, 17],
the direct eVect of the proteasome inhibitor could be lim-
ited. Interestingly, recent studies showed that inhibition of
the 26S proteasome by MG132 depleted the pool of avail-
able nuclear ubiquitin because undegraded polyubiquiti-
nated proteins accumulated in the cytosol [5, 18]. The
depletion of free nuclear ubiquitin resulted in the loss of
IRIF formation of conjugated ubiquitin, accompanied by
loss of BRCA1- and 53BP1-IRIF formations [5]. This sug-
gests the possibility that proteasome inhibitors may also
inhibit the repair pathway of DNA damage caused by
treatment with DNA damage-inducing chemotherapeutic
agents, thereby having an additive or synergistic eVect on
cytotoxicity. In this regard, we investigated the eVect of
proteasome inhibitors on the cellular distribution of conju-
gated ubiquitin and its correlation with chemotherapeutic
agent-induced nuclear foci formation and cytotoxicity.
The results suggest that the eVect of the proteasome inhib-
itors on ubiquitin distribution varies among cell lines and
that it correlates with the DNA damage response and
chemosensitivity.

Materials and methods

Cell culture

MCF7 breast carcinoma cells and HeLa cervical carcinoma
cells were cultured in Dulbecco’s ModiWed Eagle’s
Medium (DMEM) supplemented with 10% fetal calf serum
(FCS) and 1% antibiotic–antimycotic agent (Life Technol-
ogies, Inc, Grand Island, NY) in 5% CO2 at 37°C.
MCF10A normal human breast epithelial cells were grown
in DMEM/Ham’s F12 (1:1) medium supplemented with
2.5% FCS, 100 ng/ml cholera toxin, 20 ng/ml epidermal
growth factor, 500 ng/ml hydrocortisone, 10 mg/ml insulin
and 1% antibiotic–antimycotic agent. Cells were seeded at
a concentration of 1.5 £ 103 cells per well in Xat-bottom
96-well microplates or 5.0 £ 104 cells per well in Lab-Tek
eight-well chamber slides (Nalge Nunc) for the study of
cell viability or immunoXuorescence, respectively, 24 h
before treatment with proteasome inhibitor and/or chemo-
therapeutic agents. For induction of DNA damage with che-
motherapeutic agents, cells were incubated for 1 h with the
indicated doses of either CPT-11 (Sigma, Saint Louis, MO)
or epirubicin (PWzer, New York, NY). Cells were washed
with phosphate buVered saline (PBS) and further incubated
in the culture medium with or without proteasome inhibi-
tors. In some experiments, docetaxel (TAXOLTM, SanoW-
aventis K.K. Tokyo, Japan) was added instead of the DNA-
damaging agents. Proteasome inhibitors MG132 (Calbio-
chem, San Diego, CA) or epoxomicin (Millennium Pharma,
Cambridge, MA) or solvent DMSO was added at the indi-
cated doses simultaneously with the chemotherapeutic
agents and was maintained after the removal of the chemo-
therapeutic agents.

Indirect immunocytochemistry

Indirect immunocytochemistry was performed as previ-
ously described with one modiWcation [19]. BrieXy, prolif-
erating cells were Wxed with 3% formalin for 15 min and
permeabilized with 0.2% Triton X-100 for 5 min. Cells
were washed with PBS, blocked with 0.5% bovine serum
albumin in PBS and incubated with a monoclonal antibody
to conjugated ubiquitin (FK2, Nippon Bio-Test, Japan)
diluted in the blocking buVer (10 �g/ml). FITC-conjugated
anti-mouse IgG (Jackson Immuno Research, West Grove,
PA) was used as the secondary antibody at a 1:25 dilution.
For double staining with phosphorylated H2AX (�H2AX),
a monoclonal antibody to �H2AX (upstate, Lake Placid,
NY) was directly Xuorescently labeled with Alexa Fluor®

555 (Invitrogen, Carlsbad, CA) according to the manufac-
turer’s instructions and was added to the cells previously
stained with anti-conjugated ubiquitin. Cells were washed
and re-Wxed with 3% formalin for 15 min. After washing
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three times, the nucleus was counterstained with DAPI-
containing Xuorescent mounting medium (Invitrogen,
Carlsbad, CA), and the cells were examined with a confocal
laser scanning microscope (LSM 510, Carl Zeiss).

Measurements of chemosensitivity

Twenty-four hours after release from transient exposure to
chemotherapeutic agents, cell viabilities were determined
with the CellTiter 96® Aqueous One Solution Cell Prolifera-
tion Assay (Promega Corp., Madison, WI) according to the
manufacturer’s instructions. BrieXy, 6 �M CellTiter 96®

Aqueous One Solution Reagent was directly added to the
culture medium of cells in 96-well plates, incubated for 2 h,
and the quantity of formazan product was measured by light
absorbance at 570 nm primary wavelength and 600 nm ref-
erence wavelength by scanning with a 96-well plate reader
(multi-spectrophotometer, DAINIPPON, Osaka, Japan). The
percentages of cell viability are exhibited as the mean of
triplicate experiments, where cells not exposed to chemo-
therapeutic agents or MG132 represent 100% viability.

Comet assay

Neutral comet assays were performed using the Trevigen’s
CometAssay kit (4250-050-K) according to the manufac-
turer’s instructions. DNA was stained with Trevigen SYBR
green, and Comet images were examined with a confocal
laser scanning microscope (LSM 510, Carl Zeiss). Tail
moments were analyzed by the TriTek CometScore Free-
ware program. The average value of tail moments was
determined by counting at least 100 cells per sample.

Results

EVect of proteasome inhibitors on the cellular distribution 
of conjugated ubiquitin

Previously it was shown that treatment of cells with the
proteasome inhibitor MG132 resulted in accumulation of
conjugated ubiquitin in the cytosol [5]. To investigate
whether this phenomenon is commonly observed among
various cell types and with diVerent proteasome inhibitors,
we incubated MCF10A, MCF7, and HeLa cells with
MG132 or epoxomicin at diVerent doses for 4 h. Epoxomi-
cin is currently the most speciWc proteasome inhibitor,
reacting irreversibly with the chymotrypsin-like site of the
proteasome [20–22]. Cells were then stained with FK2 anti-
body that recognizes conjugated ubiquitin. Interestingly,
whereas conjugated ubiquitin staining accumulated in the
cytosol in MCF10A cells and HeLa cells at the lowest dose
of MG132 (0.1 �M) examined, it remained nuclear in
MCF7 cells even at the highest dose (5 �M) (Fig. 1). The
same results were observed when MG132 was substituted
with epoxomicin (Fig. 1). Thus, MCF7 is more resistant to
the proteasome inhibitors in regard to the cytosol trap of
ubiquitin than other cells tested. The results indicate that
there are diVerent competencies among cell lines for pro-
teasome inhibitor-induced cytosol trapping of ubiquitin.

Proteasome inhibitors block CPT-11-induced Ub-foci 
formation at the site of DNA damage

MG-132-induced cytosol trapping of ubiquitin inhibited
IR-induced Ub-foci formation as well as accumulation of

Fig. 1 EVect of proteasome 
inhibitors on cellular distribu-
tion of conjugated ubiquitin. 
MCF10A, MCF7 and HeLa cells 
were incubated with or without 
(–) the indicated dose of MG132 
or epoxomicin for 4 h. Cells 
were Wxed and stained with 
antibody to conjugated ubiquitin 
(upper panels). The nucleus was 
counterstained with DAPI 
(lower panels)
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downstream proteins at the damaged foci [5]. This
prompted us to test whether proteasome inhibitors also
inhibit Ub-foci formation caused by DNA-damaging che-
motherapeutic agents. MCF10A cells were treated for 1 h
with CPT-11, a topoisomerase I inhibitor that interacts with
cellular topoisomerase I—DNA complexes and provokes
single strand DNA breaks or S-phase speciWc DSBs in
cells[23]. The Ub-foci were analyzed 4 h after incubation in
the presence or absence of the proteasome inhibitors.
Nuclear foci formation of �H2AX was also analyzed as a
marker for sites of DNA damage. CPT-11 treatment
resulted in Ub-foci formation that merged with �H2AX foci
in the absence of proteasome inhibitors (Fig. 2, left panels).
On the other hand, in the presence of either MG132 or
epoxomicin, CPT-11 treatment resulted in �H2AX foci, but
not Ub-foci formation (Fig. 2, middle and right panels).

The same results were observed with HeLa cells (data not
shown). Thus, the proteasome inhibitors blocked CPT-11-
induced Ub-foci formation at the sites of DNA damage.

The eVect of proteasome inhibitors on Ub-foci formation 
varies among cell lines

Because cytosol trapping of ubiquitin by proteasome inhib-
itors varied among cell lines (Fig. 1), we next tested
whether the inhibitors also cause variation of Ub-foci for-
mation after CPT-11 treatment. MCF10A and MCF7 cells
were treated with CPT-11 in the presence or absence of the
proteasome inhibitors MG132 or epoxomicin, and the Ub-
foci were analyzed. Consistent with the cellular distribution
of conjugated ubiquitin, both MG132 and epoxomicin
blocked Ub-foci formation in MCF10A and HeLa cells,
though they did not aVect the foci in MCF7 cells (Fig. 3 and
data not shown). We next tested epirubicin, a topoisomer-
ase II inhibitor that also provokes DSBs and is often used in
breast cancer treatments. Ub-foci formation induced by
epirubicin was again blocked by MG132 and epoxomicin in
MCF10A cells, but not in MCF7 cells (Fig. 3). These
results suggest that the ability of proteasome inhibitors to
trap ubiquitin in the cytosol is directly linked to the ability
to inhibit DNA damage-induced Ub-foci formation, which
varies among cell lines.

A proteasome inhibitor modulates chemosensitivity 
of cells in correlation with its eVect on Ub-foci formation

Defects in Ub-foci formation after DNA damage cause the
failure to initiate proper DNA damage responses including
the DNA repair process, resulting in hypersensitivity of
cells to the damage. Therefore, treatment of cells with pro-
teasome inhibitor in combination with DNA damage-induc-
ing chemotherapeutic reagents could result in additive or
synergistic eVects on cytotoxicity. To test this hypothesis,

Fig. 2 Proteasome inhibitors perturb DNA damage-induced Ub-foci
formation after exposure to CPT-11. MCF10A cells were incubated
with (+) or without (–) 45 �M CPT-11 for 1 h in the absence (left pan-
els) or presence of 0.5 �M MG132 or 0.05 �M epoxomicin, as indi-
cated. Cells were further incubated with the proteasome inhibitors for
3 h, Wxed and stained with the indicated antibodies. Merge indicates
overlaid images of the two detected proteins. The nucleus was coun-
terstained with DAPI. Ub: anti-conjugated ubiquitin antibody

Fig. 3 The eVect of proteasome 
inhibitors on Ub-foci formation 
varies among cell lines. 
MCF10A and MCF7 cells were 
incubated with or without (–) 
45 �M CPT-11 or 1.8 �g/ml 
epirubicin for 1 h in the absence 
(left panels) or presence of 
0.5 �M MG132 or 0.05 �M 
epoxomicin, as indicated. Cells 
were further incubated with the 
proteasome inhibitors for 3 h, 
Wxed and stained with antibody 
to conjugated ubiquitin (upper 
panels). The nucleus was coun-
terstained with DAPI (lower 
panels)
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MCF10A cells were incubated with CPT-11 or epirubicin
for 1 h to induce DNA damage in the presence or absence
of MG132 (Fig. 4a, b). Cells were further cultured with or
without MG132 for 24 h and cell viability was analyzed.
Without CPT-11 or epirubicin, exposure of cells to MG132
alone did not aVect viability. However, MG132 treatment
dramatically reduced cell viability after CPT-11- or epiru-
bicin-induced DNA damage when compared to that without
MG132. Because MG132 treatment does not cause cytotox-
icity at the dosage (0.5 �M) and time length (25 h)
employed in the experiments (Fig. 4 and data not shown),
the result suggests that MG132 has a synergistic eVect on
the cytotoxicity of MCF10A cells when used in combina-
tion with CPT-11 or epirubicin. On the other hand, combi-
nation of MG132 with docetaxel, an anti-mitotic agent
often used in breast cancer treatment that binds to and stabi-
lizes microtubules but does not directly provoke DNA dam-
age, did not show a synergistic or additive eVect (Fig. 4c).
Furthermore, the synergistic eVect of MG132 and CPT-11
or epirubicin was not observed in MCF7 cells (Fig. 4d, e),
where epirubicin-induced Ub-foci formation was retained
regardless of the presence of MG132 (Fig. 3). Together, the
results suggest that the proteasome inhibitor causes cells to
become sensitive to DNA-damaging agents through

inhibition of Ub-foci formation. Cells resistant to this eVect
caused by proteasome inhibitors also could be resistant to
the synergistic killing eVect of MG132 and DNA-damaging
agents.

A proteasome inhibitor increases damaged DNA 
after treatment with CPT-11 or epirubicin

The absence of Ub-foci required for homologous recombi-
nation repair of DSB accompanied by increased chemosen-
sitivity suggested that cells treated with MG132 were
susceptible to DNA damage-inducing agents because of
failure to repair DNA. To further address this possibility,
we next performed single-cell electrophoresis analysis
under neutral conditions (neutral comet assay) to speciW-
cally measure DSBs and to directly estimate unrepaired
DNA damage in these cells. MCF10A cells were treated
with CPT-11 or epirubicin for 1 h followed by incubation
in the presence or absence of the proteasome inhibitor
MG132. Unrepaired DNA fragments were measured 18 h
post-incubation. Consistent with our hypothesis, cells
treated with MG132 exhibited signiWcantly more DNA
damage than control cells (Fig. 5). The standard deviations
of tail moments in MG132-treated cells were relatively

Fig. 4 The eVect of proteasome inhibitors on cell viability of cells
treated with chemotherapeutic agents MCF10A cells (a–c) and MCF7
cells (d–f) were incubated with the indicated doses of CPT-11 (a, d),
epirubicin (b, e) or docetaxel (c, f) for 1 h in the absence (control, solid

lines) or presence (dashed line) of 0.5 �M MG132, as indicated. Cells
were further incubated with or without MG132, and cell viability was
analyzed 24 h after exposure to the chemotherapeutic agents
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large (Fig. 5b) because only a portion of cells from each
sample contained fragmented DNA. This may be a result of
incubating the cells with DNA damage-inducing agents for
too short of a time (1 h) causing only a select portion of
cells, for example cells in S-phase, to be sensitive to DNA
damage. The percentage of cells that exhibited tail
moments higher than a value of 5 was 32.9% for CPT-11/
MG132- and 39.4% for epirubicin/MG132-treated cells.
None (0%) of the solvent DMSO-treated cells incubated
with either CPT-11 or epirubicin showed a value higher
than 5. These results suggest that cells are unable to repair
DSB caused by CPT-11 or epirubicin in the presence of a
proteasome inhibitor.

Discussion

The UPS contributes to a wide range of cellular events and,
therefore, the components of this pathway have become
attractive, novel targets for therapeutic intervention. Break-
throughs have been achieved with the proteasome inhibitor
bortezomib (Velcade, PS-341, Millennium) [24]. Approxi-
mately a third of relapsed, refractory multiple myeloma
patients showed a signiWcant response to bortezomib [25],
and the US FDA approved bortezomib for use as a therapy
for multiple myeloma. Preclinical and early clinical studies
suggested bortezomib is likely to be eVective in solid
tumors, and clinical trials in non-hematologic malignancies
including breast cancer are ongoing. Phase II studies
showed that bortezomib failed to show any objective
response on metastatic advanced breast cancer when used
as a single agent [26, 27]. However, the eVect for selected
patients, such as those with tumors expressing a particular

hormone receptor, HER2 status or those in earlier stages of
breast cancer, remain to be determined. In addition, recent
clinical data have proven the eYcacy of bortezomib in
combination with several chemotherapeutic agents for
breast cancer treatment [28–30].

The mechanisms underlying the therapeutic eVect of
bortezomib have been investigated intensively. In multiple
myeloma, inhibition of the transcription factor NF�B by
blocking the degradation of its inhibitory partner I�B is one
such putative model [31]. However, recent studies suggest
that multiple factors might contribute to the eYcacy of the
drug. For DNA damage responses, depletion of ubiquitina-
tion at sites of DNA damage could be one of the major
mechanisms leading cells to apoptosis. Proteasome inhibi-
tors sensitize tumor cells to DNA damage-inducing chemo-
therapeutic agents [32, 33]. Particularly relevant for breast
cancer, proteasome inhibitors sensitize myeloma cells to
doxorubicin [32]. One potent mechanism for this eVect is
that bortezomib down-regulates the expression of eVectors
involved in the cellular response to DNA damage [32].
However, our result and a recent study reported from other
laboratories [34, 35] suggest that there is an alternative
mechanism where proteasome inhibitors perturb the ubiqui-
tination-mediated DNA repair cascade. Proteasome inhibi-
tors as well as depletion of 19S and 20S proteasome
subunits inhibited DNA damage–signaling processes,
including monoubiquitination and nuclear foci formation of
FANCD2 and foci formation of phosphorylated ATM,
53BP1, NBS1, BRCA1 and RAD51 [34, 35]. The mecha-
nisms responsible for inhibition remain unclear. Because
PCNA monoubiquitination in response to DNA damage in
cells treated with proteasome inhibitors was retained, it was
speculated that free ubiquitin was still available to modify

Fig. 5 Cells are deWcient in repairing DSB caused by CPT-11 or epi-
rubicin in the presence of proteasome inhibitors. (a) MCF10A cells
treated with CPT-11 (135 �M) or epirubicin (5.4 �g/ml) were further
incubated for 18 h in the absence (DMSO) or presence of MG132
(0.5 �M) and analyzed for the presence of DSB by the neutral comet
assay. SYBR green staining of DNA shows comet tails migrating out

of the nucleus. Images are representative samples. Arrows indicate the
positions of remnant undamaged nuclear DNA. (b) Comet tail
moments of cells from (a). Data represent the mean of 100 cells. Error
bars represent standard deviation. SigniWcantly diVerent from control:
*P = 0.021, **P = 0.035
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nuclear proteins at sites of DNA damage [34]. However, it
was recently reported that K63- or K6-linked polyubiquiti-
nation at DNA damaged sites is required for the recruitment
of BRCA1 and 53BP1 [8–10] and that proteasome inhibi-
tors inhibit nuclear foci formation of conjugated ubiquitin
after IR [5]. Our results show that proteasome inhibitors
also inhibit foci formation after exposure to chemothera-
peutic agents (Fig. 2, 3). Together, it is possible that protea-
some inhibitors reduce the free ubiquitin pool in the nucleus
to a level where monoubiquitination of PCNA is not aVected
but where polyubiquitination required for BRCA1/53BP1
recruitment is perturbed. The observation that FANCD2
foci formation was more severely aVected than FANCD2
monoubiquitination in cells depleted for proteasome sub-
units [34] is consistent with this explanation.

Our results indicate that the eVectiveness of proteasome
inhibitors in terms of the cytosol trap of ubiquitin is
remarkably diVerent among cell lines. These diVerences
inXuence the capacity of Ub-foci formation and chemosen-
sitivity. It was previously reported that bortezomib has
diVerential cellular and molecular eVects in human breast
cancer cells [36]. However, no relationship was observed
between the eVect of bortezomib on cell viability and
expression of HER-2, epidermal growth factor receptor,
AKT or ERK1/2 [36]. From our results, it is possible that
the capacity of Ub-foci formation may cause the observed
diVerential eVects of bortezomib on cytotoxicity.

Recent studies in gene expression proWling identiWed
speciWc subtypes of breast cancer with biologic and thera-
peutic implications. One particular subset, basal-like breast
cancer expressing basal/myoepithelial cell markers such as
cytokeratin 5/6, 14, 17 or Vimentin but not expressing
estrogen receptor, progesterone receptor or HER2, exhib-
ited an aggressive phenotype and a particularly poor prog-
nosis [37–39]. Evidence from multiple sources strongly
indicates that impairment of BRCA1 pathways is responsi-
ble for this phenotype [40–43]. Therefore, it is expected
that this phenotype could be sensitive to DNA damage-
inducing agents such as topoisomerase inhibitors, DNA
cross-linkers or PARP inhibitors. Because proteasome
inhibitors sensitize cells to DNA damage-inducing agents,
they could aVect the eYcacy of these agents in the treat-
ment of basal-like breast cancer. Alternatively, proteasome
inhibitors may perturb the ubiquitin-mediated BRCA1 cas-
cade in luminal type breast cancers, leading the DNA repair
pathway to mimic that of basal-like breast cancer.

Conclusion

Treatment of cells with proteasome inhibitors trapped con-
jugated ubiquitin in the cytosol causing failure of Ub-foci
formation and failure to repair DNA in response to DNA

damage-inducing chemotherapeutic agents. The degree of
this eVect varied among cell lines. Cells that exhibited cyto-
sol trapping of ubiquitin upon treatment with proteasome
inhibitors were sensitized to DNA damage-inducing agents,
exhibiting lower rates of cell viability. In contrast, cells not
exhibiting the trapping eVect were resistant to the synergy
between proteasome inhibitors and DNA damage-inducing
agents. Our results suggest that the synergistic eVect of pro-
teasome inhibitors in combination with DNA damage-
inducing agents warrants further investigation into its eVec-
tiveness in the treatment of breast cancer.
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