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Abstract: When a random rove is used in a perceptual task to control the
influence of an unwanted cue that may confound the decision strategy of pri-
mary interest, the effectiveness of the rove is determined by its range. Green
[Profile Analysis (Oxford University Press, Oxford, 1988)] provided a for-
mula which allows experimenters to determine the roving range required to
ensure that the listeners relying on the unwanted cue cannot exceed a pre-
defined percentage of correct responses in a two-interval, two-alternative
forced-choice experiment. Here, Green’s analysis is extended to the yes-no
and m-alternative, forced-choice paradigms �m�2�.
© 2009 Acoustical Society of America
PACS numbers: 43.66.Ba, 43.66.Fe, 43.66.Dc, 43.66.Hg [QJF]

Date Received: April 10, 2009 Date Accepted: June 19, 2009
1. Introduction

In designing an auditory detection or discrimination experiment, the researcher often faces the
possibility that multiple decision strategies, or perceptual cues, are available to the listeners in
performing the task. For example, in a spectral-shape discrimination experiment, the primary
interest of the researcher is the listeners’ ability to detect a change in the relative level of differ-
ent frequency components. However, a change in the relative level is always accompanied by
changes in the absolute level of certain frequency components. As a result, the task can also be
performed based on the absolute level of a single component, without having to monitor the
relative level of different frequency components at all. Unless the influence of the change in
absolute level on the listener’s decision is under control, the outcome of such an experiment will
not have any definitive implication on the listeners’ ability to discriminate spectral shapes. Any
cue other than the cue of primary interest is denoted as an unwanted cue in this paper. (Thus, in
the above example the absolute-level cue is an unwanted cue). One approach to limiting the
influence of an unwanted cue is to apply random rove to the stimulus dimension associated with
that cue, de-correlating the cue from the primary cue. For example, by randomly varying the
absolute overall stimulus level upon each stimulus presentation independent of changes made to
spectral shape, any change in absolute level will be an unreliable indication of a change in
spectral shape. For this reason, random rove has been an essential component in studies of
spectral-shape discrimination (e.g., Spiegel et al., 1981; Green, 1988). Aside from its role in
studies of spectral-shape discrimination, the randomization technique has had a long history in
auditory research, and has been applied in a wide range of studies and tasks to control the
influence of various unwanted cues, including frequency discrimination or pitch perception
(e.g., Henning, 1966; Moore and Glasberg, 1989; Emmerich et al., 1989; Dai et al., 1994;
Shackleton and Carlyon, 1994; Carlyon and Shackleton, 1994; Moore et al., 2006; Micheyl and

Oxenham, 2007; Oxenham et al., 2009), binaural hearing (e.g., Koehnke and Colburn, 1987;
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Wightman and Kistler, 1999; Zahorik, 2002; Stellmack et al., 2006; Fan et al., 2008), and cases
where multiple cues were controlled in a single task (e.g., Richards et al., 1989; Lutfi, 2001).

The extent to which an unwanted cue is controlled by a random rove is directly deter-
mined by the range of the rove. For the two-interval, two-alternative forced-choice (2I-2AFC)
paradigm, Green (1988) (pp. 19–21) provided a quantitative analysis of the limit that the ran-
dom rove imposed on the discrimination performance that can be achieved on the basis of an
unwanted cue. Specifically, for a given size of the change in the variable associated with the
unwanted cue, �, and a range of rove, R, the upper limit of percent correct based on the un-
wanted cue is given by PC���=0.5+� /R−0.5�� /R�2. Green’s formula can be used as a guide-
line in several ways for applying the randomization technique. For example, suppose the experi-
menter in a spectral-shape discrimination experiment applies a rove of R=20 dB to limit an
unwanted absolute-level cue of �=1 dB. According to Green’s formula, the unwanted cue
alone can produce a percent correct of PC=54.9% at the best. In another example, suppose the
experimenter wants to determine the range of rove needed to limit a 1-dB unwanted cue to a
percent correct of PC=52%. According to Green’s formula, the rove must have a range of R
=� / �1−�2�1−PC��=49.5 dB to accomplish that objective.

Green’s formula was derived specifically for applications with a 2I–2AFC paradigm;
to the authors’ best knowledge, it has not been extended to other psychophysical paradigms.
Because different paradigms have their own special merits (Macmillan and Creelman, 2005),
there are occasions when the experimenter wants to apply the randomization technique under
other paradigms than the 2I–2AFC option. For example, Versfeld and Houstma (1991, 1995)
applied random rove to spectral-shape discrimination under a 3AFC paradigm. Therefore, it is
useful to provide a theoretical analysis of the limit imposed by randomization on the perfor-
mance that can be achieved based on an unwanted cue in other paradigms than 2–I2AFC. The
primary purpose of this note is to extend the analysis by Green (1988) to the yes-no and general
multiple-alternative, forced-choice (mAFC) paradigms. The analysis addresses random roves
applied to both continuous and discrete variables.

2. Analysis and discussion

2.1 Random rove applied to continuous variables

The following analysis is limited to randomizations based on uniform distributions which have
been used in most applications of the randomization technique in auditory-perception research.
Among different distributions of a fixed range, the uniform distribution has been shown to
produce the lowest limit on percent correct (Dai, 2008). Let x be the stimulus variable associ-
ated with the unwanted cue, upon which randomization is applied. For the standard-alone con-
dition, the distribution has a probability density function of yn�x�= f�x�=1/R, defined within the
range R�x�0, and is zero elsewhere. For the standard-plus-signal condition, it is yS�x�= f�x
−��, defined within R+��x��, and is zero elsewhere.

In the yes-no task, the optimum decision rule based on likelihood ratio is to respond
“yes” if the magnitude of the observation is greater than a fixed criterion. The criterion is unbi-
ased if it corresponds to a likelihood ratio of unity (assuming that equal number of no-signal
and signal trials are included). The proportion of correct responses is identical to the proportion
of yes responses over the trials when the signal is presented. Given this decision rule and the two
density functions f�x� and f�x−��, the proportion of correct and unbiased responses for � can
be expressed as a weighted sum of two PCs:

PCyes-no��� = �1 −
�

R
�PC0 +

�

R
PC1,

in which PC0=50% represents the chance performance when the observation or sample of x
falls into the overlapping region (i.e., where the likelihood ratio is unity) of the two distribu-
tions, and PC1=100% represents the perfect performance when the sample falls into the non-

overlapping region (i.e., where likelihood ratio is infinity) of the shifted distribution. Combin-
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ing the above expressions, we obtain

PCyes-no��� =
1

2
+

1

2

�

R
. �1�

This function is plotted as the dark dotted line in Fig. 1.
In a mAFC paradigm, in which the random rove is implemented with a uniform dis-

tribution, the optimum decision rule is to respond to the interval in which the magnitude of the
observation variable is greater than that in any of the other m−1 intervals. Given that the sample
drawn from the standard-plus-signal distribution equals x=�, the probability that every sample
drawn from the m−1 standard-alone distributions is less than � would be ��−�

� yN���d��m−1. This
probability integrated over all possible values of �, therefore, would be the PC value, which can
be expressed generally as (Green and Swets, 1966) (p. 47):

PCm��� = 	
−�

�

yS���
	
−�

�

yN���d��m−1

d� . �2�

By plugging in the above-defined probability density functions into Eq. (2), PC can be further
expressed as

PCm��� = 	
�

R+�

f�� − ��
	
0

�

f���d��m−1

d� . �3�

Substituting the expression for f�x� into Eq. (3) and integrating, we have

PCm��� =
1

m

1 − ��

R
�m� +

�

R
. �4�

Fig. 1. Percentage of correct responses �PC� based on unwanted cues ���, which is limited by random rove
implemented with continuous uniform distributions, as a function of the ratio between � and the range of the rove
�R�. Different curves represent the results computed for different psychophysical paradigms, including the yes-no
�dark dotted line� and mAFC paradigms with m=2–8 �as indicated by the legends�. The intercepts of the curves on
the y axis �i.e., �=0� represent the chance performances for the specific paradigms.
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The first term of Eq. (4) represents the performance when the sample falls into the overlapping
region of the shifted signal distribution and the m−1 un-shifted non-signal distributions. The
second term represents the perfect performance when the sample falls into the non-overlapping
region of the shifted signal distribution. This function is plotted in Fig. 1 for m=2, 3, 4, 5, and 8.

Figure 1 shows for different paradigms the limit imposed by a uniformly distributed
random rove on the percent-correct performance that can be achieved based on an unwanted
cue. For each paradigm, the proportion of correct responses (PC) attainable using the unwanted
cue is calculated using Eq. (1) (for the yes-no paradigm) or Eq. (4) (for mAFC paradigms), and
is plotted as a function of the ratio between the size of an unwanted cue ��� and the range of the
rove �R�. Given that a uniform distribution will be used to limit the unwanted cue in the yes-no
or mAFC tasks, the researcher can use Eq. (1) or (4) to determine how big a range is sufficient
to keep performance based on the cue from reaching a certain value. For relatively small ratios
of � /R, mAFC paradigms with greater m values produced lower limits on PC, largely due to the
lower baseline or chance performance level for these paradigms. While the yes-no and 2I–
2AFC paradigms share the same chance performance at 50%, random rove implemented with
the yes-no paradigm produced percent correct values below those of the 2I–2AFC paradigm at
all values of � /R. As the ratio � /R increases, random rove implemented with the yes-no para-
digm becomes increasingly more effective relative to that implemented with the mAFC para-
digms. Beyond about � /R=0.7, the yes-no paradigm produces the lowest percent correct values
than all the mAFC paradigms shown.

2.2 Random rove applied to discrete variables

Thus far, the analysis has been carried out for continuous variables. However, in experimental
applications of the randomization technique, the experimenter may choose to draw samples
from a discrete distribution. Although discrete distributions can be approximated by continuous
ones when their probability mass functions have a very large number of bins, the results ob-
tained with continuous and discrete distributions become clearly different when the bins are
sparse. Thus, in general, randomization applied to discrete variables should not be treated as a
special case of that applied to continuous variables. In particular, Eqs. (1) and (4) will lead to
sizable error when the number of bins is small. In practice, a small number of bins in discrete
distributions can happen when the range of randomization �R� is comparable to the size of the
signal ���, which may result from either a severely limited range to apply randomization (as
with hearing impaired ears) or an unusually large signal size (as with an extremely difficult task,
e.g., Dai and Green, 1992). Therefore, we need to derive for discrete variables the equations
relating PC to � and R, which is the purpose of this section.

For analyzing random rove applied to discrete variables, we define the probability
mass function of the random rove as having n bins spaced at equal inter-bin intervals of b
=R / �n−1�, with each bin representing a probability of p=1/n. Note that the amount of shift of
the distribution caused by the unwanted cue, �, is allowed to take only integer numbers of the
inter-bin intervals; other values of � will produce no overlap of bins between the distributions,
leading to a percent correct of 100%, and rendering the application of random rove useless.
With a shift of � between the two distributions for the non-signal and signal events, the number
of bins that do not overlap will be � /b= �n−1�� /R, which amounts to a probability of p� /b
= ��n−1� /n�� /R. Note that for continuous distributions the probability of the non-overlapping
portion is simply � /R. Thus, the expressions for the limits on PC imposed by random rove for
discrete variables can be obtained by replacing � /R with ��n−1� /n�� /R in Eqs. (1) and (4). We
have

PCyes-no
discrete��� =

1

2
+

1

2

n − 1

n

�

R
, �5�
for the yes-no paradigm, and
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PCm
discrete��� =

1

m

1 − �n − 1

n

�

R
�m� +

n − 1

n

�

R
, �6�

for the mAFC paradigms. These results may be interpreted as if, by implementing the random
rove with discrete instead of continuous distributions, the size of the unwanted cue is effectively
reduced by a factor of �n−1� /n.

To illustrate the different outcomes of random rove applied to discrete and continuous
variables, the limit on the percent-correct performance for the 2I–2AFC paradigm is computed
as a function of � /R using Eq. (6), for discrete variables with several values of the number of
bins. Figure 2 presents the results obtained with n=2 (circles), 3 (squares), 4 (diamonds), 5
(right triangle), 10 (up triangle), and 20 (down triangle) bins. For comparison, the solid dark
curve from Fig. 1, which represents the result obtained using a continuous distribution with the
2I–2AFC paradigm, is re-plotted here. A general summary of the results is that, for all possible
values of � /R where the discrete distributions are available, random rove leads to lower percent
correct values, thus is more effective, when implemented with discrete than with continuous
distributions. The advantage of discrete distributions is most pronounced for distributions with
five or fewer bins. For example, with n=2 and a shift of �=R, the percent correct is 100% with
a continuous distribution, but is limited to PC=87.5% with a discrete distribution. With con-
tinuous distributions, to limit the unwanted cue to the same PC=87.5% would require a rove
range twice the size of �, i.e., � /R=0.5. Thus, when �=R, implementing random rove with the
discrete distribution effectively reduces the size of the unwanted cue by half (or equivalently,
effectively increases the rove range by a factor of 2) relative to that with the continuous distri-
bution. The advantage of discrete distributions over continuous distributions diminishes as the
number of bins increases. For distributions with more than n=20 bins, the outcomes are closely
approximated by the function obtained with the continuous distribution.

Depending on the specific experimental situation, the experimenter may opt for dis-

Fig. 2. Same format as in Fig. 1, but for the 2I–2AFC paradigm only. The symbols represent the percent correct
values limited by random rove implemented with discrete uniform distributions with n=2 �circles�, 3 �squares�, 4
�diamonds�, 5 �right triangles�, 10 �up triangles�, and 20 �down triangles� bins. The solid line represents the function
obtained with continuous uniform distributions in Fig. 1, which is replotted her for comparison.
crete distributions with sparse bins over continuous distributions to maximize the effect of ran-
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domization. This approach may prove to be a useful addition to techniques developed for ex-
perimental conditions where the range of rove is limited to not much greater than the size of the
unwanted cue (e.g., Kidd and Mason, 1992; Kidd and Dai, 1993), helping us deal with special
cases such as when there is a severely limited dynamic range due to hearing impairment, or
when the perceptual task is extremely difficult.
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